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Abstract

For a sequence of independent identically distributed Euclidean ran vectors, we prove a law of
the iterated logarithm for the sample covariance matrix when o(log log n) terms are omitted.
The result is proved under the hypotheses that the random vectors belong to the generalized
domain of attraction of the multivariate Gaussian law. As an application, we obtain a bounded
law of the iterated logarithm for the multivariate t-statistic.

Introduction:

LetX,X1, X2, · · · be independent identically distributed (iid) random column vectors taking
values in Euclidean space, IRd. We use the standard inner product 〈·, ·〉 and induced norm.
Assume that the law of X is full. That is, the law of X is not supported on any d−1 dimensional
hyperplane of IRd. We say that the law of X, or merely X, is in the generalized domain of
attraction of the multivariate Gaussian law (GDOAG) if there exist operators Tn and vectors
bn such that TnSn − bn ⇒ N(0, I). Here, Sn =

∑n
i=1Xi, I is the identity on IRd, N(0, I) is the

standard Gaussian distribution on IRd and ⇒ denotes weak convergence. Since the standard
Gaussian law is an affine transformation of any other Gaussian law, there is no loss of generality
in assuming the limit is standard. Also, if the law of X is in the GDOAG then E‖X‖ <∞ and
so, changing Tn accordingly, one can take bn = nEX. See [11], Proposition 8.1.6. Therefore,
there is no loss of generality in assuming that EX = 0. This will be assumed throughout the
article. If the law of X is in the GDOAG we then have that there exist nonsingular operators,
Tn, such that

TnSn ⇒ N(0, I). (1)

In order to simplify the presentation we extend the definition of the normalizing operators
to noninteger values. Define Tx = T[x], where [·] denotes the greatest integer function.
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Meerschaert [10] uses regular variation in IRd to characterize GDOAs. The characterization
using regular variation will be central to our approach. The main result we will use from
Meerschaert [10] is that the norming operators in (1) can be chosen to satisfy

lim
x→∞

‖TbxT−1x − b−1/2I‖ = 0 (2)

if the law of X belongs to the GDOAG. Moreover, the convergence is uniform over compact
subsets of (0,∞) Meerschaert [10], Theorem 3.1.

In this paper, we investigate the law of the iterated logarithm behavior of the sample
covariance matrix Cn =

∑n
i=1XiX

T
i . It is shown that if X is in the GDOAG, there exist Tn

satisfying (1) and a set Bn ⊂ {1, 2, · · · , n} with cardinality rn = o(log log n), such that

Tn/log logn(Cn −Rn)
1/2

√
log log n

→ I a.s.

Here (·)1/2 is the symmetric square root and Rn =
∑

i∈Bn
XiX

T
i .

Moreover, from this one may obtain a self normalized bounded LIL. In particular, we will
show that if X is in the GDOAG, then

lim sup
∥

∥

∥

C
−1/2
n Sn√
2 log log n

∥

∥

∥
= 1 a.s.

These results are multivariate analogues of some univariate results obtained by Griffin and
Kuelbs [7] and Gine and Mason [6].

Results:

For t > 0, let Lt = max(1, loge t) and let L2t = LLt. Also, let α(t) = t/L2t. For x ∈ IRd

and A ⊂ IRd, define the distance from x to A to be d(x,A) = infy∈A ‖x − y‖. For a sequence
of vectors, {xn}, denote the cluster set of {xn} by C({xn}) = {y : lim inf ‖xn − y‖ = 0}. Write
xn →→ A if d(xn, A)→ 0 and C({xn}) = A. Define tn = n

L2n
. Let B̄ = {x ∈ IRd : ‖x‖ ≤ 1}.

We first describe what we mean by an extreme value. Assuming that X is in the GDOAG,
with EX = 0, let Tn be as in (1) and (2). For each n, rearrange X1, · · · , Xn as Xn(1), · · · , Xn(n)
so that ‖TtnXn(1)‖ ≥ ‖TtnXn(2)‖ ≥ · · · ≥ ‖TtnXn(n)‖. Ties may be broken in any arbitrary

manner. Next, define S
(r)
n = Sn −

∑r
i=1Xn(i) and S

(0)
n = Sn. Finally, for any sequence rn > 0

define Rn =
∑rn

i=1Xn(i)Xn(i)
T
. If rn = 0, define Rn = 0.

Following are the statements of the main results contained in this article. Proofs and
technical lemmas are contained in the subsequent section.

Theorem 1: Let X be in the GDOAG with EX = 0. There exist operators Tn, satisfying (1)
and (2), and scalars rn = o(L2n) such that

Ttn(Cn −Rn)T
∗
tn

L2n
→ I a.s.

If we can pass the operator square root through the limit in Theorem 1, we will obtain the
following corollary. To do so requires the operators Tn to be positive and symmetric. The proof
of Theorem 1 relies heavily on property (2). It is not clear whether one can obtain operators
using the techniques of Meerschaert to yield operators that satisfy (2) and are positive and
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symmetric. On the other hand, the operators of Hahn and Klass, [8], are positive and symmetric,
but may not satisfy (2). Therefore, we do not include this condition in the statement of the
corollary. Billingsley’s multivariate convergence of types theorem allows us to switch back and
forth between the two approaches to normalizing operators, utilizing whichever property we
need, regular variation or symmetry.

Corollary 2: Let X be in the GDOAG with EX = 0. There exist positive symmetric operators
An satisfying (1) and scalars rn = o(L2n) such that

Atn(Cn −Rn)
1/2

√
L2n

→ I a.s.

From Sepanski [15], wherein was proved a trimmed LIL with the operators Tn, and Corollary
2 above, we will obtain the following self normalized LIL.

Corollary 3: Let X be in the GDOAG with EX = 0. There exist rn = o(L2n) such that

(Cn −Rn)
−1/2S

(rn)
n√

2L2n
→→ B̄ a.s.

Theorem 4: If X is in the GDOAG with EX = 0, then

lim sup
n

∥

∥

∥

C
−1/2
n Sn√
2 log log n

∥

∥

∥
= 1 a.s.

Theorem 4 stands in comparison to the real valued Theorem 1 of Griffin and Kuelbs [7].
There they show that if X is in the Domain of Attraction of a Gaussian Law in IR, then

∑n
i=1(Xi − EXi)

√

2L2n
∑n

i=1X
2
i

→→ [−1, 1] a.s.

To see why results such as Theorem 1 and its corollaries may be true, consider first the case
where E‖X‖2 <∞. In this case, the covariance matrix, C = E(XXT ) exists. Moreover, by the
classical case of the Central Limit Theorem, one may take Tn = (nC)−1/2 in (1) and (2). In
which case,

TtnC
1/2
n√

L2n
=
C−1/2C

1/2
n√

n
→ I a.s.

by the Strong Law of Large Numbers. Hence, Corollary 2 holds with rn ≡ 0, and therefore
Rn ≡ 0. From this, and the classical LIL, one may infer the conclusions of the other three
results.

The main impetus of this article is to extend the results to the case where X is in the
GDOAG but E‖X‖2 = ∞. Here, accounting for the influence of extreme terms is paramount.
Although there may be extreme terms, they are few in number. In fact, they are on the order
of o(L2n). Also, note that Theorem 4 contains no trimming. Heuristically, this is due to the
fact that when any extreme reappear in the sum, they are essentially cancelled out when they
reappear in the inverse of the sample covariance matrix.
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Proofs: We begin by constructing the sequence {rn}. This construction mirrors that of Kuelbs
and Ledoux [9]. Define Γ(t) = sups≥t sP (‖TsX‖ ≥ 1). By Gaussian convergence criteria (see,
for example, Araujo and Gine, [1], Theorem 5.9), Γ(t) ↓ 0, as t ↑ ∞. We let

ξn =

(

L
( 1

Γ(
√
n)

)

)−1/2

.

Gaussian convergence guarantees that ξn ↓ 0. By basic calculus, ξnL
(

ξn
Γ(δtn)

)

→∞, ∀δ > 0.

Replacing ξn by anything larger does not alter the second of these, so we may assume,

without loss of generality that ξn ↓ 0, ξnL
(

ξn
Γ(δtn)

)

→∞, ∀δ > 0, and also that rn = [ξnL2n] ↑
∞. Having defined the sequence rn, we now proceed to the proof of Theorem 1.
Proof of Theorem 1: Fix a > 1, ρ > 0. Let nk = [ak], and Ik = (nk, nk+1]. For 1 ≤ j ≤ nk+1,
define the random matrices,

uj = uj(k, a, ρ) = XjX
T
j I[‖TtnkXj‖ ≤ ρ]

wj = wj(k, a, ρ) = XjX
T
j I[‖TtnkXj‖ > ρ]

Next, for n ∈ Ik define the random truncated covariance matrices

Un = Un(a, ρ) =

n
∑

j=1

(uj − Euj)

Wn = Wn(a, ρ) =

n
∑

j=1

wj

We analyze each of the sequences according to the following Lemmas. Note that Cn − Rn =
Un +Wn −Rn + nEXXT I[‖TtnkX‖ ≤ ρ].
Lemma 5: Assume that X has mean zero and is in the GDOAG. For all ρ > 0, a > 1, v > 0,
and for all unit vectors θ, φ,

lim sup
k

max
n∈Ik

∣

∣

∣

∣

∣

θTTtnkUnT
∗
tnk

φ

L2n

∣

∣

∣

∣

∣

≤ ρvev

2
a+

ρ

v
a.s.

Lemma 6: Assume that X has mean zero and is in the GDOAG. For all ρ > 0, and a > 1,

lim sup
k

max
n∈Ik

∥

∥

∥

∥

∥

Ttnk (Wn −Rn)T
∗
tnk

L2n

∥

∥

∥

∥

∥

= 0 a.s.

Lemma 7: Assume that X has mean zero and is in the GDOAG. For all ρ > 0, and a > 1,

lim sup
k

max
n∈Ik

∥

∥

∥

∥

∥

tnTtnkE(XXT I[‖TtnkX‖ ≤ ρ])T ∗tnk
− I

∥

∥

∥

∥

∥

≤ a− 1

Assuming each lemma to be true for the time being and deferring the proofs of them
until later, we continue with the proof of Theorem 1. Combining Lemmas 5-7 via the triangle
inequality yields, for every pair of unit vectors φ, θ, and for every v > 0, ρ > 0, a > 1,

lim sup
k

max
n∈Ik

∣

∣

∣

∣

∣

θTTtnk (Cn −Rn)T
∗
tnk

φ

L2n
− 〈θ, φ〉

∣

∣

∣

∣

∣

≤ ρvev

2
a+

ρ

v
+ a− 1 a.s.
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Note that the left side here no longer depends on ρ and v. First, we let v =
√
ρ, and then let

ρ ↓ 0. Then we have that for every pair of unit vectors φ, θ, and for every a > 1,

lim sup
k

max
n∈Ik

∣

∣

∣

∣

∣

θTTtnk (Cn −Rn)T
∗
tnk

φ

L2n
− 〈θ, φ〉

∣

∣

∣

∣

∣

≤ a− 1 a.s.

Intersecting over θ and φ in a countable dense subset of the unit sphere yields for every a > 1,

lim sup
k

max
n∈Ik

∥

∥

∥

∥

∥

Ttnk (Cn −Rn)T
∗
tnk

L2n
− I

∥

∥

∥

∥

∥

≤ a− 1 a.s.

Finally, we need to eliminate the dependence on a > 1 by eliminating the subsequence nk from
the left side. This essentially follows from (2).

First, observe that since tn is eventually increasing we have that for n ∈ Ik, tnk ≤ tn ≤ tnk+1
.

Therefore, dividing through by tnk , we have that 1 ≤ tn
tnk

≤ tnk+1

tnk
. The latter converges to a and

therefore is eventually bounded by 2a. Hence, for large k, { tn
tnk
}n∈Ik ⊂ [1, 2a]. Applying (2) over

this compact set yields maxn∈Ik ‖TtnT−1tnk
− ( tn

tnk
)−1/2I‖ ≤ supb∈[1,2a] ‖TbtnkT

−1
tnk
− b−1/2I‖ → 0.

From this we obtain

lim sup
k

max
n∈Ik

‖TtnT−1tnk
‖ ≤ lim sup

k
max
n∈Ik

‖TtnT−1tnk
− (

tn
tnk

)−1/2I‖+ lim sup
k

max
n∈Ik

(
tn
tnk

)−1/2 ≤ 1

Also by (2), and the fact that ‖T‖ = ‖T ∗‖, we obtain uniformly over n ∈ Ik

o(1) =
(

TtnT
−1
tnk
− (

tn
tnk

)−1/2I
)(

T ∗tnk
−1T ∗tn − (

tn
tnk

)−1/2I
)

=
(

TtnT
−1
tnk

T ∗tnk
−1T ∗tn −

tnk
tn

I
)

+

√

tnk
tn

(

TtnT
−1
tnk
− (

tn
tnk

)−1/2I + T ∗tnk
−1T ∗tn − (

tn
tnk

)−1/2I
)

=
(

TtnT
−1
tnk

T ∗tnk
−1T ∗tn −

tnk
tn

I
)

+O(1)o(1)

Finally, we note that 1 ≤ tn
tnk

≤ tnk+1

tnk
implies 0 ≤ maxn∈Ik(1 −

tnk
tn

) ≤ 1 − tnk
tnk+1

→ 1 − 1
a .

Putting the three facts outlined above together yields,

lim sup
k

max
n∈Ik

∥

∥

∥

Ttn(Cn −Rn)T
∗
tn

L2n
− I

∥

∥

∥

≤ lim sup
k

max
n∈Ik

‖TtnT−1tnk
‖2 lim sup

k
max
n∈Ik

∥

∥

∥

Ttnk (Cn −Rn)T
∗
tnk

L2n
− I

∥

∥

∥

+ lim sup
k

max
n∈Ik

∥

∥

∥
TtnT

−1
tnk

T ∗tnk
−1T ∗tn −

tnk
tn

I
∥

∥

∥
+ lim sup

k
max
n∈Ik

∥

∥

∥

(

1− tnk
tn

)

I
∥

∥

∥

≤ (1)(a− 1) + 0 +
(

1− 1

a

)

a.s.

To complete the proof of Theorem 1 (subject to Lemmas 5-7) let a ↓ 1 through a countable set.
Proof of Lemma 5: The proof uses classical blocking arguments and the Borel-Cantelli Lemma
along the subsequence nk. A maximal inequality (Ottaviani’s) allows us to pass to the full
sequence.
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Fix unit vectors θ, φ. Let ε > 0, ξ > 0 be given. Apply Ottaviani’s inequality (see, for
example, Dudley, [3], p.251) to obtain

P
(

max
n∈Ik

∣

∣

∣
θTTtnkUnT

∗
tnk

φ
∣

∣

∣

L2n
≥ (1 + ξ)ε

)

≤ P
(

max
n∈Ik

∣

∣

∣
θTTtnkUnT

∗
tnk

φ
∣

∣

∣
≥ (1 + ξ)εL2nk

)

≤ 2P
(∣

∣

∣
θTTtnkUnk+1

T ∗tnk
φ
∣

∣

∣
≥ εL2nk

)

(3)

as long as maxn∈Ik P (|∑nk+1

j=n+1 θ
TTtnk (uj−Euj)T

∗
tnk

φ| ≥ εL2nk) ≤ 1
2 . To verify that this is the

case, at least for sufficiently large k, we apply Chebychev’s inequality.

P
(∣

∣

∣

nk+1
∑

j=n+1

θTTtnk (uj − Euj)T
∗
tnk

φ
∣

∣

∣
≥ εL2nk

)

≤ 1

ε2L2n2k
V ar

(

nk+1
∑

j=n+1

θTTtnk (uj − Euj)T
∗
tnk

φ
)

≤ ρ2nk+1
ε2L2n2k

E
∥

∥

∥
TtnkX

∥

∥

∥

2

I[‖TtnkX‖ ≤ ρ]

=
ρ2

ε2L2nk
· nk+1
nk

· tnkE
∥

∥

∥
TtnkX

∥

∥

∥

2

I[‖TtnkX‖ ≤ ρ].

This converges to zero, as k goes to infinity, due to the fact that the first factor does, while the
second factor converges to a and the third factor is bounded by the truncated variance condition
of Gaussian convergence.

We will show that the last series in (3) is finitely summable over k. In order to do so,
we require another Lemma. The lemma is based on an inequality of Pruitt [12]. For iid ran-
dom vectors, Yj and unit vectors θ, φ, define Zj(θ, φ) = 〈Yj , θ〉〈Yj , φ〉I[‖Yj‖ ≤ ρ]. Also, write
K(θ, φ, ρ) = ρ−2EZ2(θ, φ), and Mn(θ, φ) =

∑n
j=1 Zj(θ, φ).

Lemma 8: Let Y1, · · · , Yn be iid random vectors in Euclidean space, IRd. For any ρ > 0, s >
0, v > 0, and for any unit vectors θ, φ

P
(∣

∣

∣
Mn(θ, φ)−EMn(θ, φ)

∣

∣

∣
>
v

2
evρnρK(θ, φ, ρ) +

sρ

v

)

≤ 2e−s

Proof: By Taylor’s expansion for the exponential function, if x ∈ (−ρ2, ρ2) then eux ≤ 1+ux+
u2x2

2 euρ
2

. Also, 1 + t ≤ et,∀t. Dropping subscripts, applying these inequalities to the random
variable Z(θ, φ), (note that |Z(θ, φ)| ≤ ρ2), taking expectations, and using Jensen’s inequality,
we have that

EeuZ(θ,φ) ≤ 1 + uEZ(θ, φ) +
u2ρ2euρ

2

2
K(θ, φ, ρ)

≤ exp
(

uEZ(θ, φ) +
u2ρ2euρ

2

2
K(θ, φ, ρ)

)

.

Below, we apply Markov’s inequality in the second step and the previous inequality in the last
step. We have the following.

P (Mn(θ, φ) > t)P (euMn(θ,φ) > eut)

≤ e−utEeuMn(θ,φ)

= e−ut
(

EeuZ(θ,φ)
)n

≤ exp
(

nuEZ(θ, φ) + n
u2ρ2euρ

2

2
K(θ, φ, ρ)− ut

)

.



A Law of the Iterated Logarithm 69

Take t = nEZ(θ, φ) + nuρ
2euρ

2

2 K(θ, φ, ρ) + s
u , v = uρ. Observe that nEZ(θ, φ) = EMn(θ, φ),

and then apply the same argument to −Mn(θ, φ) to complete the proof of Lemma 8.
Continuing on with the proof of Lemma 5, we will apply Lemma 8 with Yj = TtnkXj . We

begin by analyzing

tnkK(θ, φ, ρ) = tnkρ
−2E〈TtnkX, θ〉

2〈TtnkX,φ〉
2I[‖TtnkX‖ ≤ ρ]

≤ tnkE〈TtnkX, θ〉
2I[‖TtnkX‖ ≤ ρ]→ 1,

by the basic convergence criteria for a standard Gaussian limit (see [11], Cor. 3.3.12). Using
the above, and the fact that nk+1/nk → a, we have that for all ξ > 0, and for sufficiently large
k,

vρevρnk+1K(θ, φ, ρ)

2L2nk
+

(1 + ξ)ρ

v
≤ vρevρ

2
a(1 + ξ) +

(1 + ξ)ρ

v

Let the right hand side of this inequality be ε. Continuing the string of inequalities started in
(3), by containment we then have that, for sufficiently large k,

P
(∣

∣

∣
θTTtnkUnk+1

T ∗tnk
φ
∣

∣

∣
≥ εL2nk

)

= P
(
∣

∣

∣
Mnk+1

(θ, φ)− EMnk+1
(θ, φ)

∣

∣

∣
≥ εL2nk

)

≤ P
(∣

∣

∣
Mnk+1

(θ, φ)− EMnk+1
(θ, φ)

∣

∣

∣
≥ 1

2
nk+1ρve

vρK(θ, φ, ρ) +
L2nk(1 + ξ)ρ

v

)

≤ 2e−(1+ξ)L2nk

This last series is finitely summable. Therefore, recalling the definition of ε, the above display,
(3), and the Borel-Cantelli Lemma yield that for all ξ > 0, ρ > 0, a > 1, v > 0, and for all unit
vectors θ, φ,

lim sup
k

max
n∈Ik

∣

∣

∣

∣

∣

θTTtnkUnT
∗
tnk

φ

L2n

∣

∣

∣

∣

∣

≤ ε(1 + ξ) =
ρvevρ

2
a(1 + ξ)2 +

(1 + ξ)2ρ

v
a.s.

Now let ξ ↓ 0. Note that the left side does not depend on ξ. This completes the proof of Lemma
5.
Proof of Lemma 6: Recall that Xn(1), · · · , Xn(n) are an ordering of X1, · · · , Xn under the
operator Ttn . Because in Lemma 6 we are normalizing by the operator Ttnk , we must also
consider an ordering of X1, · · · , Xn under the operator Ttnk . It is possible that the two orderings
are different. However, due to (2), for n ∈ Ik, they are not significantly different. To this end,
we let X ′n(1), · · · , X ′n(n) denote an ordering of X1, · · · , Xn under Ttnk such that ‖TtnkX

′
n(1)‖ ≥

‖TtnkX
′
n(2)‖ ≥ · · · ‖TtnkX

′
n(n)‖. Recalling the definition of wj ,

∥

∥

∥
Ttnk (Wn −Rn)T

∗
tnk

∥

∥

∥
=

∥

∥

∥
Ttnk

(

n
∑

j=1

wj −
rn
∑

j=1

Xn(j)Xn(j)
T
)

T ∗tnk

∥

∥

∥

≤
∥

∥

∥

n
∑

j=1

TtnkXjX
T
j T

∗
tnk

I[‖TtnkXj‖ > ρ]−
rn
∑

j=1

TtnkX
′
n(j)X

′
n(j)

T
T ∗tnk

∥

∥

∥

+
∥

∥

∥

rn
∑

j=1

TtnkX
′
n(j)X

′
n(j)

T
T ∗tnk

−
rn
∑

j=1

TtnkXn(j)Xn(j)
T
T ∗tnk

∥

∥

∥
(4)
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We now try to bound each of the two terms in (4). For n ∈ Ik, let pn =
∑n

i=1 I[‖TtnkXi‖ >
ρ], and let qn =

∑n
i=1 I[‖TtnXi‖ > ρa−1]. Note that pn and qn depend on k and are random.

By (2), observe that

max
n∈Ik

∥

∥

∥
TtnkT

−1
tn

∥

∥

∥
≤ max

n∈Ik

∥

∥

∥
TtnkT

−1
tn −

( tnk
tn

)−1/2
I
∥

∥

∥
+max

n∈Ik

( tnk
tn

)−1/2
→
√
a.

Therefore, for sufficiently large k, it can be made less than a, ( since a >
√
a,). We assume that

this holds for the rest of the proof. Therefore, pn ≤ qn, for k sufficiently large. Assume, for the
moment, that maxn∈Ik qn ≤ rnk . Note that since rn ↑, this also implies that pn ≤ qn ≤ rn.

Observe that if Xi /∈ {X ′n(1), · · · , X ′n(pn)} then ‖TtnkXi‖ ≤ ρ. Otherwise we would have
‖Ttnk X ′n(1)‖ ≥ ‖Ttnk X ′n(2)‖ ≥ · · · ≥ ‖Ttnk X ′n(pn)‖ ≥ ‖Ttnk Xi‖ > ρ. This is contrary
to the definition of pn. Moreover, ‖Ttnk X ′n(i)‖ > ρ for i = 1, · · · , pn. Similarly, if Xi /∈
{Xn(1), · · · , Xn(qn)} then ‖TtnXi‖ ≤ ρ/a, and ‖TtnXn(i)‖ > ρ/a for i = 1, · · · , qn.

Consider the first term in (4). If at most rn of X1, · · · , Xnk+1
satisfy ‖TtnkXi‖ > ρ, then

since n ≤ nk+1, at most rn of X1, · · · , Xn satisfy ‖TtnkXi‖ > ρ. Such summands will then ap-

pear in both
∑n

j=1 TtnkXjXjT
∗
tnk

I[‖Ttnk ‖ > ρ] and
∑rn

j=1 TtnkX
′
n(j)X

′
n(j)

T
T ∗tnk

. They therefore

cancel out in subtraction. If there are any other such summands, they appear only in the latter,
not the former, because they will be zeroed out by the indicator. By the preceeding paragraph,
such summands satisfy ‖TtnkXiX

T
i T

∗
tnk
‖ = ‖TtnkXi‖ 2 ≤ ρ2. Furthermore, there are at most

rn − pn ≤ rn such summands. Therefore,

∥

∥

∥

n
∑

j=1

TtnkXjX
T
j T

∗
tnk

I[‖Ttnk ‖ > ρ]−
rn
∑

j=1

TtnkX
′
n(j)X

′
n(j)

TT ∗tnk

∥

∥

∥
≤ rnρ

2. (5)

To handle the second term in (4) we have to consider the possibility that X1, · · · , Xn may
be ordered differently under Ttn and Ttnk . However, as noted, by (2), the orderings are not
significantly different.

By the definition of pn and qn, we have that for n sufficiently large, {X ′n(1), · · · , X ′n(pn)} ⊂
{Xn(1), · · · , Xn(qn)}. If not, X ′n(i) /∈ {Xn(1), · · · , Xn(qn)} for some i = 1, · · · , pn. In which case,
as observed above, ‖Ttn X ′n(i)‖ ≤ ρ/a. So, ‖Ttnk X ′n(i)‖ ≤ ρ. On the other hand, since i ≤ pn,
as observed above, ‖Ttnk X ′n(i)‖ > ρ. A contradiction.

Because of this containment, there is cancellation in the second term in (4). Indeed,

rn
∑

j=1

TtnkXn(j)Xn(j)
T
T ∗tnk

−
rn
∑

j=1

TtnkX
′
n(j)X

′
n(j)

T
T ∗tnk

=
∑

1

TtnkXjX
T
j T

∗
tnk
−

rn
∑

j=pn+1

Ttnk X ′n(j)X
′
n(j)

T
T ∗tnk

+

rn
∑

j=qn+1

Ttnk Xn(j)Xn(j)
T
T ∗tnk

.

Here,
∑

1 extends over all j such that Xj ⊂ {Xn(1), · · · , Xn(qn)} \ {X ′n(1), · · · , X ′n(pn)}. How-
ever, for any such Xj , ‖TtnkXj‖ ≤ ρa−1 < ρ. Furthermore, the number of such possible j
is qn − pn ≤ rn. In the third summation, each summand is bounded because for j > qn,
‖Ttnk Xn(j)‖ ≤ ρ. The number of such j is rn − qn ≤ rn. For the middle term, if j > pn, then
‖Ttnk X ′n(j)‖ ≤ ρ. The number of such j is rn − pn ≤ rn. Therefore,

∥

∥

∥

rn
∑

j=1

TtnkXn(j)Xn(j)
T
T ∗tnk

−
rn
∑

j=1

TtnkX
′
n(j)X

′
n(j)

T
T ∗tnk

∥

∥

∥
≤ 3rnρ

2 (6)
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Summarizing, by combining (4-6) , and since rn ≤ rnk+1
, for n ∈ Ik we have that

[max
n∈Ik

qn ≤ rnk ] ⊂
[

max
n∈Ik

∥

∥

∥
Ttnk (Wn −Rn)T

∗
tnk

∥

∥

∥
≤ 4rnk+1

ρ2
]

Now, let ε > 0. Since rn = o(L2n), and nk+1/nk → a we have that for sufficiently large k,
4rnk+1

ρ2

L2nk
< ε. We then obtain

P
(

max
n∈Ik

∥

∥

∥

Ttnk (Wn −Rn)T
∗
tnk

L2n

∥

∥

∥
> ε

)

≤ P
(

max
n∈Ik

∥

∥

∥
Ttnk (Wn −Rn)T

∗
tnk

∥

∥

∥
> εL2nk

)

≤ P
(

max
n∈Ik

∥

∥

∥
Ttnk (

n
∑

j=1

wj −
rn
∑

j=1

Xn(j))
∥

∥

∥
> 4rnk+1

ρ2
)

≤ P
(

max
n∈Ik

qn ≥ rnk+1
+ 1

)

(7)

Our goal is now to show that the quantity in (7) is finitely summable. By (2), observe that

max
n∈Ik

∥

∥

∥
TtnT

−1
tnk

∥

∥

∥
≤ max

n∈Ik

∥

∥

∥
TtnT

−1
tnk
−
( tn
tnk

)−1/2
I
∥

∥

∥
+max

n∈Ik

( tn
tnk

)−1/2
→ 1.

Therefore, for sufficiently large k, it can be made less than a, ( since a > 1). Then,

max
n∈Ik

qn = max
n∈Ik

n
∑

j=1

I
[

‖TtnXj‖ > ρ/a
]

≤ max
n∈Ik

n
∑

j=1

I
[

‖TtnkXj‖ >
ρ

a2
]

≤
nk+1
∑

j=1

I
[

‖TtnkXj‖ >
ρ

a2
]

.

Therefore,
[

maxn∈Ik qn ≥ rnk+1
+1

]

⊂
[
∑nk+1

j=1 I[‖TtnkXj‖ > ρ
a2 ] ≥ rnk+1

+1
]

The proof is now
reduced to showing that

∑

k

P
(

nk+1
∑

j=1

I[‖TtnkXj‖ >
ρ

a2
] ≥ rnk+1

+ 1
)

<∞. (8)

The probability here is Binomial, so we need a bound on probabilities, P (B ≥ α + 1), where
B has a binomial distribution with parameters n = nk+1, and p = P (‖TtnkX‖ >

ρ
a2 ). Take

α = rnk+1
. The bound we use is from Feller, [4], p. 173, equation (10.9),

P (B ≥ α+ 1) =
n!

α!(n− 1− α)!

∫ p

0

tα(1− t)n−α−1dt

≤ n!

α!(n− 1− α)!

pα+1

α+ 1

Note that n
n−α−1 → 1, as k →∞, since rn = o(L2n). Therefore, its square root is bounded

by two eventually. Also, note that as k → ∞, so do n, α, and n − α − 1. Since each of the
three factorials is going to infinity with k, we may apply Stirling’s Formula to each. Hence for
sufficiently large k,

n!

α!(n− 1− α)!
≤ 2

e
√
π

( n

n− α− 1

)n

nα+1α−(α+1/2) ≤ 2

e
√
π
exp

( n(α+ 1)

n− α− 1

)

nα+1α−(α+1/2)
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The last inequality here follows from the fact that (1 + x
n )

n ≤ ex ∀x, n.
Substituting this into the Binomial bound from Feller yields

P (B ≥ α+ 1) ≤ 2

e
√
π
exp

( n(α+ 1)

n− α− 1

)

nα+1α−(α+1/2)
pα+1

α+ 1

=
2

e
√
π

√
α

α+ 1

(

α−1np exp(
n

n− α− 1
)
)α+1

≤ 2

e
√
π

(

α−1np exp(
n

n− α− 1
)
)α+1

The last inequality follows from the fact that
√
α

α+1 → 0, and so is eventually bounded above by

one. Next, let δ = ρ2

a6 . By regular variation of Tt, (2), we have that ‖TtnkT
−1
δtnk

‖ →
√
δ, and so,

since a > 1, ‖TtnkX‖ ≤ ‖TtnkT
−1
δtnk

‖ ‖TδtnkX‖ ≤ a
√
δ‖TδtnkX‖, for large k. So, [‖TtnkX‖ >

ρ
a2 ] ⊂ [‖TδtnkX‖ > 1], by definition of δ. Recalling the construction of rn and the definition of
Γ(s) at the outset of this section, we’ve shown that p = P (‖TtnkX‖ >

ρ
a2 ) ≤ P (‖TδtnkX‖ >

1) ≤ 1
δtnk

Γ(δtnk).

Next, fix M > 0, to be specified later. Since ξnL(
ξn

Γ(δtn)
) → ∞, we have that for large

enough k, ξnkL(
ξnk

Γ(δtnk )
) ≥M. A little algebra yields, Γ(δtnk) ≤ ξnke

−M/ξnk .

Organizing the preceding paragraphs shows that the series in (8) is, for some constant C > 0
which may increase from one line to the next,

≤ C
∑

k

(

r−1nk+1
nk+1

1

δtnk
Γ(δtnk) exp(

nk+1
nk+1 − rnk+1

− 1
)

)rnk+1
+1

≤ C
∑

k

(

r−1nk+1
nk+1

1

δtnk
ξnke

−M/ξnk exp(
nk+1

nk+1 − rnk+1
− 1

)

)rnk+1
+1

= C
∑

k

(

1

δ

nk+1
nk

L2nkξnk
rnk+1

e−M/ξnk exp(
nk+1

nk+1 − rnk+1
− 1

)

)rnk+1
+1

≤ C
∑

k

(

a2ea

δ
e−M/ξnk

)rnk+1
+1

(9)

To see (9) we bound the tail of the series as follows. nk+1/nk → a, so eventually it is bounded by

a3/2. Also, since ξnkL2nk ↑,
ξnkL2nk
rnk+1

≤ ξnk+1
L2nk+1

[ξnk+1
L2nk+1]

→ 1, so eventually it is bounded by a1/2.

Finally, nk+1

nk+1−rnk−1
→ 1, so eventually it is bounded by a. Exponentiating, exp( nk+1

nk+1−rnk−1
) ≤

ea.
Next, given a > 1, and δ > 0, there exists x0(a, δ), such that for x ≥ x0, e

x/2 ≥ a2

δ e
a.

Since ξnk ↓ 0, M
ξnk

≥ x0 for large k. Hence, a2ea

δ e−M/ξnk ≤ e−M/2ξnk . Also, rnk+1
+ 1 =

[ξnk+1
L2nk+1] + 1 ≥ ξnk+1

L2nk+1 ≥ ξnkL2nk. So,
−M(rnk+1

+1)

2ξnk
≤ −ML2nk

2 .

Utilizing the previous paragraph in (9), for some constants C > 0, which may increase from
one inequality to the next,

∑

k

(

a2ea

δ
e−M/ξnk

)rnk+1

≤ C
∑

k

exp
(−M(rnk + 1)

2ξnk

)

≤ C
∑

k

exp
(−ML2nk

2

)

.
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This converges as long as M > 2. This shows the series in (7) converges and since ε > 0 was
arbitrary, this completes the proof of Lemma 6.
Proof of Lemma 7: First, we would like to replace the tn with tnk . This can be done via the
triangle inequality, and tn ↑ . Also, note that the quantity in the expectation is nothing but
u = u(k, a, ρ).

∥

∥

∥
tnTtnkEuT

∗
tnk
− I

∥

∥

∥
≤

∣

∣

∣

tn
tnk

∣

∣

∣

∥

∥

∥
tnkTtnkEuT

∗
tnk
− I

∥

∥

∥
+
∣

∣

∣

tn
tnk

− 1
∣

∣

∣

≤ tnk+1

tnk

∥

∥

∥
tnkTtnkEuT

∗
tnk
− I

∥

∥

∥
+
∣

∣

∣

tnk+1

tnk
− 1

∣

∣

∣

→ a · 0 + a− 1

as k → ∞, as we will show presently. The other two being obvious, we must show the second
factor of the first term goes to zero. However, this follows from ”Gaussian” convergence. Indeed,
Sepanski [16] shows that under mean 0 and GDOAG, TnCnT

∗
n → I in probability. Considering

this as a triangular array {TnXiX
T
i T

∗
n} of random elements in the space of operators from IRd

to IRd, we have TnCnT
∗
n is shift convergent to the zero operator, when centered by I. On the

other hand, (see Araujo and Gine, Theorem 5.9) if the triangular array is shift convergent it can
be centered by the truncated means. That is TnCnT

∗
n − nETnXXTT ∗nI[‖TnXXTT ∗n‖ ≤ δ] is

convergent to the zero operator for all δ > 0. Replace δ with ρ2 and apply convergence of types
to yield nETnXXTT ∗nI[‖TnXXTT ∗n‖ ≤ ρ2] − I → 0. Taking square roots inside the indicator,
(‖TnXXTT ∗n‖ = ‖TnX‖2) and applying this along the subsequence tnk completes the proof of
Lemma 7.

Proof of Corollary 2: Let Ttn be as in Theorem 1. Let An be the normalizing sequence
constructed by Hahn and Klass. In particular, the key property we will need is that An satisfy
(1) and are positive and symmetric. Since both An and Tn satisfy (1), we may apply Billings-
ley’s multivariate Convergence of Types Theorem [2] to conclude that there exist orthogonal
transformations Pn, and a sequence of linear operators Bn → I such that Tn = BnPnAn. From
this it follows that Theorem 1 holds for the sequence An, except that perhaps An may not
satisfy (2). However, the almost sure limit does hold as claimed in the corollary. Indeed, since
AtnT

−1
tn = P ∗tnB

−1
tn , we have that

∥

∥

∥

Atn(Cn −Rn)Atn

L2n
− I

∥

∥

∥
=

∥

∥

∥
AtnT

−1
tn

[Ttn(Cn −Rn)T
∗
tn

L2n

]

T ∗−1tn Atn − I
∥

∥

∥

=
∥

∥

∥
P ∗tnB

−1
tn

[Ttn(Cn −Rn)T
∗
tn

L2n

]

B∗−1tn Ptn − I
∥

∥

∥

=
∥

∥

∥
B−1tn

[Ttn(Cn −Rn)T
∗
tn

L2n

]

B∗−1tn − I
∥

∥

∥
→ 0 a.s.,

since the outside factors converge to the identity and the inside factor converges to the identity
almost surely by Theorem 1. Since Atn are positive and symmetric and since Cn − Rn are

positive and symmetric as well,
Atn (Cn−Rn)

1/2

√
L2n

→ I a.s.

Proof of Corollary 3: In Sepanski [15] it was shown that
TtnS

(rn)
n√

2L2n
→→ B̄ a.s., for operators

satisfying (1) and (2). However, this will also hold for any other sequence of operators satisfying
(1) by convergence of types and the fact that B̄ is invariant under orthogonal transformations.



74 Electronic Communications in Probability

Hence, it holds with Ttn replaced by the Hahn and Klass sequence of operators Atn . Now combine
with Corollary (2) to obtain the result.

Proof of Theorem 4: The point here is to eliminate the trimming from Corollary 3, both
from the normalizing operator, and from the partial sum. This can be done since the two types
of trimming, or lack thereof, basically cancel each other out. First, we prove a simple result
relating the norms of the trimmed operator to the untrimmed operator.

Lemma 9: Let v1, · · · , vn be vectors in IRd. Suppose S ⊂ {1, · · · , n}. Define A =
∑n

i=1 viv
T
i ,

and B =
∑

i∈S viv
T
i . Assume that A is invertible, then ‖A−1/2B1/2‖ ≤ 1.

Proof: First, clearly A and B are nonnegative and symmetric, therefore each has a nonnegative
and symmetric square root. We denote the unit sphere by Sd−1.

∥

∥

∥
A−1/2B1/2

∥

∥

∥

2

=
∥

∥

∥
(A−1/2B1/2)(A−1/2B1/2)∗

∥

∥

∥

=
∥

∥

∥
A−1/2BA−1/2

∥

∥

∥

= sup
θ∈Sd−1

〈

A−1/2BA−1/2θ, θ
〉

= sup
θ∈Sd−1

〈

BA−1/2θ,A−1/2θ
〉

= sup
θ∈Sd−1

〈

BA−1/2
( A1/2θ

‖A1/2θ‖
)

, A−1/2
( A1/2θ

‖A1/2θ‖
)〉

= sup
θ∈Sd−1

〈Bθ, θ〉
‖A1/2θ‖2

= sup
θ∈Sd−1

∑

i∈S〈vi, θ〉2
∑n

i=1〈vi, θ〉2
≤ 1.

From Lemma 9 we conclude that ‖C−1/2n (Cn − Rn)
1/2‖ ≤ 1. Combining this with Corollary 3,

we obtain
C
−1/2
n S

(rn)
n√

2L2n
→→ C ⊂ B̄ a.s. (10)

Of course, C is nonrandom due to the zero-one law.

Next, we show that, up to a set of measure zero,
C−1/2
n S(rn)

n√
2L2n

and
C−1/2
n Sn√
2L2n

have the same

cluster sets. We achieve this by showing the difference goes to zero with probability one.
Using the notation of Lemma 9, but denoting b =

∑

i∈S vi, and applying a similar argument,
we see that

‖A−1/2b‖ = sup
θ∈Sd−1

|〈A−1/2b, θ〉|

= sup
θ∈Sd−1

|〈b, θ〉|
‖A1/2θ‖

= sup
θ∈Sd−1

|∑i∈S〈vi, θ〉|
(

∑n
i=1〈vi, θ〉2

)1/2

≤ sup
θ∈Sd−1

∑

i∈S |〈vi, θ〉|
(

∑n
i=1〈vi, θ〉2

)1/2
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≤ sup
θ∈Sd−1

√
#S

(

∑

i∈S〈vi, θ〉2
)1/2

(

∑n
i=1〈vi, θ〉2

)1/2

≤
√

#S

The second to last inequality follows from Cauchy-Schwarz. Here #S denotes the cardinality

of S. Applying the above to A = Cn, and b =
∑rn

i=1Xn(i), yields ‖C−1/2n (Sn − S
(rn)
n )‖ ≤ √rn.

From this we conclude that

∥

∥

∥

C
−1/2
n (Sn − S

(rn)
n )√

2L2n

∥

∥

∥
≤

√

rn
2L2n

→ 0. (11)

(10) and (11) combine to yield

C
−1/2
n Sn√
2L2n

→→ C ⊂ B̄ a.s. (12)

This implies the upper bound in Theorem 4. To show the lower bound in Theorem 4, we
appeal to Theorem 1 of Griffin and Kuelbs, [7]. First, observe that by Cauchy-Schwarz,

|〈Sn, θ〉| = |〈C1/2
n C−1/2n Sn, θ〉| = |〈C−1/2n Sn, C

1/2
n θ〉| ≤ ‖C−1/2n Sn‖ ‖C1/2

n θ‖ = ‖C−1/2n Sn‖
(

n
∑

i=1

〈Xi, θ〉2
)1/2

Dividing through this inequality by
√
2L2n

(

∑n
i=1〈Xi, θ〉2

)1/2

yields for any unit vector θ,

1 ≤ lim sup
|〈Sn, θ〉|

√
2L2n

(

∑n
i=1〈Xi, θ〉2

)1/2
≤ lim sup

‖C−1/2n Sn‖√
2L2n

≤ 1 a.s.

The first inequality holds by Griffin and Kuelbs, [7], Theorem 1, which is applicable due to the
fact that if X is in the GDOA of the multivariate Gaussian law then, for any θ, 〈X, θ〉 is in the
DOA of the univariate Gaussian law. The last inequality holds by (12).
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