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Abstract
This paper is devoted to the proof of Donsker’s theorem for backward stochastic differential
equations (BSDEs for short). The main objective is to give a simple method to discretize in
time a BSDE. Our approach is based upon the notion of “convergence of filtrations” and covers
the case of a (y, z)–dependent generator.

1 Introduction

We consider in this paper the following backward stochastic differential equation (BSDE for
short):

Yt = ξ +
∫ T

t

f(Ys, Zs)ds −
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (1)

where W is a standard Brownian motion. The unknowns are the adapted (w.r.t. FW
· ) processes

Y and Z. (y, z) 7−→ f(y, z) is a Lipschitz function and ξ is a random variable measurable w.r.t.
FW

T and square integrable. It is by now well known that the BSDE (1) has a unique square
integrable solution under the usual assumptions described above; see e.g. the original work of
E. Pardoux and S. Peng [12] or the survey paper by N. El Karoui, M.-C. Quenez and
S. Peng [7].
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Unlike SDEs – for which a lot of approximations are available – the problem of the time
discretization of BSDEs seems to be difficult: only several authors have given a contribution
in this direction. Let us mention the works of V. Bally [1], D. Chevance [2, 3], J. Douglas,
J. Ma and Ph. Protter [6] and more recently J. Ma and J. Yong [10].
In the last two works, the authors proposed numerical schemes to compute the solution of a
forward–backward SDE. The method uses strongly the relationship between forward–backward
SDEs and quasilinear PDEs in the spirit of the “four-step scheme” introduced by J. Ma, Ph.
Protter and J. Yong [9]. This requires the numerical resolution of a quasilinear PDEs.
V. Bally and D. Chevance proposed a time discretization of the BSDE (1) that avoids
the resolution of a PDE. D. Chevance, in his PhD [3] and in his paper [2], proposed a
discretization when the function f does not depend on z. The main point is to remark that,
in this case, Y in the BSDE (1) is given by the equation

Yt = E

(
ξ +

∫ T

t

f(Ys)ds
∣∣∣ FW

t

)
, 0 ≤ t ≤ T,

which can be discretized in time with step-size h = T/n by solving backwards in time

yk = E
(
yk+1 + hf(yk+1)

∣∣ Fn
k

)
, k = n − 1, . . . , 0

and to set Y n
t = y[t/h]. This works if f does not depend on z and under reasonable as-

sumptions, the convergence of Y n to Y is proved [2, 3] together with the rate of convergence.
D. Chevance gives also a space discretization to obtain a numerical scheme for solving the
BSDE. Independently of the work [3], F. Coquet, V. Mackevičius and J. Mémin proved
the convergence of the sequence Y n using the tool of convergence of filtrations; see [4].
The method developed by V. Bally in [1] applies to the case where the function f depends
on both variables y and z. The time discretization is performed on a random net, namely the
jump times of a Poisson process. This random net appears to be one of the main arguments
to overcome the difficulties due to the dependence of f in the variable z: it avoids to deal with
the evaluations of the process Z on the points of the net. In fact, the discretization concerns
the term

∫ T

t f(Ys, Zs)ds while the Brownian motion and thus the stochastic integral
∫ T

t ZsdWs

are not discretized.

The contribution of this paper is to prove the convergence of one of the most naive methods
to discretize the BSDE (1) in the case when f depends on both variables y and z. This
method consists in replacing the Brownian motion W by a scaled random walk Wn and thus
the stochastic integral is also discretized. This leads to a discrete-time BSDE. This approach
does not depend on the dimension (of W or Y ) and for simplicity, we deal with real valued
processes.

To be more precise, the first step is to solve the discrete-time BSDE (h stands for T/n)

yk = yk+1 + hf(yk, zk) −
√

h zkεk+1, k = n − 1, . . . , 0, yn = ξn, (2)

where {εk}1≤k≤n is an i.i.d. Bernoulli symmetric sequence, and ξn is a square integrable
random variable, measurable w.r.t. Gn with Gk = σ(ε1, . . . , εk). By a solution, we mean a
discrete process {yk, zk}0≤k≤n−1, adapted w.r.t. Gk. For solving (2), one chooses first

zk = h−1/2
E
(
yk+1εk+1

∣∣Gk

)
, (3)
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and take yk as the solution of (2). Notice that, for n large enough, yk is well-defined since f
is Lipschitz w.r.t. y, and that it is Gk–measurable since it is Gk+1–measurable and orthogonal
to εk+1 (this would not happen if ε were chosen Gaussian and it is the reason why Wn is not
chosen as the discretization of W along the regular net with step-size h).
We define two continuous time processes by setting, for 0 ≤ t ≤ T , Y n

t = y[t/h], Zn
t = zbt/hc

where bnc = (n − 1)+ for all integer n and bxc = [x] if x is not an integer.
The aim of the paper is to prove the convergence of the pair (Y n, Zn) to (Y, Z); see Theorem 2.1
and its corollary below. This point of view is attractive because it consists in solving in both
y and z a discrete BSDE. As in [4], weak convergence of filtrations will be a useful tool.

2 Statement of the result

Let (Ω,F ,P) be a probability space carrying a Brownian motion (Wt)0≤t≤T and a sequence
of i.i.d. Bernoulli sequences {εn

k}1≤k≤n, n ∈ N
∗ . We consider, for n ∈ N

∗ , the scaled random
walks

Wn
t =

√
h

[t/h]∑
k=1

εn
k , 0 ≤ t ≤ T, h =

T

n
. (4)

We will work under the following assumptions:

(H1) f : R × R −→ R is Lipschitz i.e. for some K ≥ 0,

∀(y, z), (y′, z′) ∈ R
2 ,

∣∣f(y, z) − f(y′, z′)
∣∣ ≤ K

(|y − y′| + |z − z′|);
(H2) ξ is FW

T measurable and, for all n, ξn is Gn
n measurable where Gn

k = σ(εn
1 , . . . , εn

k ) such
that

E
[
ξ2
]

+ sup
n

E
[
(ξn)2

]
< ∞;

(H3) ξn converges to ξ in L1 as n → ∞.

Since f is Lipschitz, we can solve (for n large enough) the discrete BSDE (2) where the sequence
{εk}k is replaced by {εn

k}k. If {yn
k , zn

k }k is the solution of this equation, we set, for 0 ≤ t ≤ T ,
Y n

t = yn
[t/h], Zn

t = zn
bt/hc. In addition, let {Yt, Zt}0≤t≤T be the solution of the BSDE (1). We

will prove the following

Theorem 2.1 Let the assumptions (H1), (H2) and (H3) hold. Let us consider the scaled
random walks Wn defined in (4). If Wn −→ W as n → ∞ in the sense that

sup
0≤t≤T

∣∣Wn
t − Wt

∣∣ −→ 0 in probability,

then we have (Y n, Zn) −→ (Y, Z) i.e.

sup
0≤t≤T

|Y n
t − Yt|2 +

∫ T

0

|Zn
s − Zs|2ds −→ 0 as n → ∞ in probability. (5)

Remark. Theorem 2.1 can be extended to the case when f depends on t. In such case, (2)
has to be replaced by

yk = yk+1 + hf(kh, yk, zk) −
√

h zkεk+1, k = n − 1, . . . , 0,
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and f has to be continuous in t. 2

Method for the proof. The key point is to use the following decomposition

Y n − Y = (Y n − Y n,p) + (Y n,p − Y ∞,p) + (Y ∞,p − Y ), (6)
Zn − Z = (Zn − Zn,p) + (Zn,p − Z∞,p) + (Z∞,p − Z), (7)

where the superscript p stands for the approximation of the solution to the BSDE via the
Picard method. More precisely, we set Y ∞,0 = 0, Z∞,0 = 0, yn,0 = 0, zn,0 = 0 and define
(Y ∞,p+1, Z∞,p+1) as the solution of the BSDE

Y ∞,p+1
t = ξ +

∫ T

t

f(Y ∞,p
s , Z∞,p

s )ds −
∫ T

t

Z∞,p+1
s dWs, 0 ≤ t ≤ T, (8)

((Y ∞,p+1, Z∞,p+1) is solution of a BSDE with random coefficients) and similarly

yn,p+1
k = yn,p+1

k+1 + hf(yn,p
k , zn,p

k ) −
√

h zn,p+1
k εn

k+1, k = n − 1, . . . , 0, yn,p+1
n = ξn. (9)

In order to define the discrete processes on [0, T ] we set, for 0 ≤ t ≤ T , Y n,p
t = yn,p

[t/h] and
Zn,p

t = zn,p
bt/hc so that Y n,p is càdlàg and Zn,p càglàd (càdlàg means right continuous with left

limits and càglàd left continuous with right limits).
We shall prove in Lemma 4.1 that the convergence of

(
Y n,p, Zn,p

)
to
(
Y n, Zn

)
is uniform in

n for the classical norm used for BSDEs which is stronger that the convergence in the sense
of (5); this part is standard manipulations.
We shall prove that for any p, the convergence of

(
Y n,p, Zn,p

)
to
(
Y ∞,p, Z∞,p

)
holds in the

sense of (5); this is the difficult part of the proof, and we shall need the results of section 3.

Remark. Let us now consider the case when ξn = E
(
ξ | Gn

n

)
. The convergence of ξn to ξ in

L1 comes from Theorem 3.1. In this situation, the convergence in probability implies actually
the convergence in L1 meaning the convergence of (Y n, Zn) to (Y, Z) for the norm used in the
framework of BSDEs. Standard manipulations on BSDEs show that we can assume w.l.o.g
that ξ is in L∞. Indeed, if it is not the case, we have, the “tilde” meaning ξ and ξn replaced
in (1) and (2) by ξ1|ξ|≤k and E

(
ξ1|ξ|≤k | Gn

n

)
, for a constant C depending only on T and on

the Lipschitz constant K,

sup
n

E

[
sup

0≤t≤T
|Ỹ n

t − Y n
t |2 +

∫ T

0

|Z̃n
s − Zn

s |2ds

]
≤ CE

[
ξ21|ξ|>k

]
,

E

[
sup

0≤t≤T
|Ỹt − Yt|2 +

∫ T

0

|Z̃s − Zs|2ds

]
≤ CE

[
ξ21|ξ|>k

]
,

and the last two terms can be as small as needed providing we choose k large enough.
But, if ξ is bounded (since f(0, 0) is also bounded), we can prove that, for any p ≥ 2,

sup
n

E

[
sup

0≤t≤T
|Y n

t |p +
(∫ T

0

|Zn
s |2ds

)p/2
]

< ∞,

and thus we have the convergence in L1 provided we have the convergence in probability. 2

In Theorem 2.1, the BSDE (1) and the discrete BSDEs were solved on the same probability
space. But, we can also consider these equations on different probability spaces and obtain
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the convergence of solutions in law instead of in probability. This approach is in the spirit of
Donsker’s theorem.
Let us consider a standard Brownian motion W defined on a probability space and a Bernoulli
symmetric sequence {εk}k≥1 defined on a possibly different probability space. We define, for
each n, the scaled random walks

Sn
t =

√
h

[t/h]∑
k=1

εk, 0 ≤ t ≤ T, with h =
T

n
.

We denote by D the space of càdlàg (right continuous with left limits) from [0, T ] in R endowed
with the topology of uniform convergence and we assume that:

(H4) g : D −→ R is continuous and has a polynomial growth.

Let {Yt, Zt}0≤t≤T be the solution of the BSDE (1) with ξ = g(W ) and let {Y n
t , Zn

t }0≤t≤T

the piecewise constant process associated with the solution of the discrete BSDE (2) with
ξn = g(Sn). We have the following corollary

Corollary 2.2 Let the assumptions (H1) and (H4) hold. Then, the sequence of processes
{Y n}n converges in law to Y for the topology of uniform convergence on D .

Proof. Let us notice that the laws of solution (Y, Z) of (1) and of (yk, zk) of (2) depend only
on
(
PW , g−1(PW ), f

)
and

(
PSn , g−1(PSn), f

)
where g−1(PW ) (resp. g−1(PSn)) is the law of

g(W ) (resp. g(Sn)). So, as far as the convergence in law is concerned, we can consider the
equations (1) and (2) on any probability space.
But, from Donsker’s theorem and Skorokhod representation theorem, there exists a probability
space, with a Brownian motion W and a sequence of i.i.d. Bernoulli sequences (εn)n such that
the processes

Wn
t =

√
h

[t/h]∑
k=1

εn
k , 0 ≤ t ≤ T,

satisfy
sup

0≤t≤T

∣∣Wn
t − Wt

∣∣ −→ 0, as n → ∞,

in probability as well as in Lp, for any 1 ≤ p < ∞.
It remains to solve the equations (1,2) on this space and to apply Theorem 2.1 to obtain the
convergence of (Y n, Zn) to (Y, Z) in the sense of (5). This convergence implies the convergence
of {Y n}n to Y in law for the topology of uniform convergence on D . 2

3 Convergence of filtrations

Let us consider a sequence of càdlàg processes Wn = (Wn
t )0≤t≤T and W = (Wt)0≤t≤T a

Brownian motion, all defined on the same probability space (Ω,G,P); T is finite. We denote
by (Fn

t ) (resp. (Ft)) the right continuous filtration generated by Wn (resp. W ). Let us
consider finally a sequence Xn of Fn

T -measurable integrable random variables, and X an FT -
measurable integrable random variable, together with the càdlàg martingales

Mn
t = E

(
Xn | Fn

t

)
, Mt = E

(
X | Ft

)
.

We denote by [Mn, Mn] (resp. [M, M ]) the quadratic variation of Mn (resp. M) and by
[Mn, Wn] (resp. [M, W ]) the cross variation of Mn and Wn (resp. M and W ).
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Theorem 3.1 Let us consider the following assumptions

(A1) for each n, Wn is a square integrable Fn–martingale with independent increments;

(A2) Wn −→ W in probability for the topology of uniform convergence of càdlàg processes
indexed by t ∈ [0, T ];

(A3) a. E
[
X2
]

+ supn E
[
(Xn)2

]
< ∞,

b. E
[|Xn − X |] −→ 0;

Then, if conditions (A1) to (A3) are satisfied, we get(
Wn, Mn, [Mn, Mn], [Mn, Wn]

) −→ (
W, M, [M, M ], [M, W ]

)
in probability

for the topology of uniform convergence on [0, T ].
Moreover, for each t ∈ [0, T ], for each 0 < δ < 1,(
Wn

t , Mn
t , [Mn, Mn]1/2

t , [Mn, Wn]1/2
t

) −→ (
Wt, Mt, [M, M ]1/2

t , [M, W ]1/2
t

)
in L1+δ

(
Ω,G,P

)
.

Proof. For the first part, we have, from Proposition 2 in F. Coquet, J. Mémin and L.
S lomiński [5], the weak convergence of filtrations Fn· to F·: this means that for every A ∈ FT ,
the martingales E(1A | Fn

· ) converge in probability to E(1A | F·) in the sense of J1–Skorokhod
topology of the space D of càdlàg functions. Applying now the second point of Remark 1 of [5]
to Xn and X , we get the convergence in probability of Mn to M in the sense of J1–Skorokhod
topology. But since M is a continuous martingale this convergence is also uniform in t.
From the assumption (A3)a, we deduce that supn E

[
sup0≤t≤T |Mn

t |2
]

is finite and thus we
have supn E

[
sup0≤t≤T |∆Mn

t |
]

< ∞ and by assumption the same is true for the jumps of Wn.
It follows, from J. Jacod [8] Theorem 1–4, that

[Mn, Mn] −→ [M, M ], [Mn, Wn] −→ [M, W ] in probability.

In fact, in [8], convergences are expressed as convergences in law under J1–topology, but
convergences in probability also hold, see J. Mémin and L. S lomiński [11] Corollary 1.9 for
refinements.
Since the limit processes W , M , [M, M ] and [M, W ] are continuous, the convergence in J1–
Skorokhod topology for each component gives the uniform convergence in t of the quadruplet.
The second point of the theorem comes from the boundedness in L2

(
Ω,G,P

)
of the sequence(

Wn
t , Mn

t , [Mn, Mn]1/2
t , [Mn, Wn]1/2

t

)
for t fixed. 2

Using Theorem 3.1, we get the following result which is one of the key point in the proof of
our main result.

Corollary 3.2 Let W and Wn, n ∈ N
∗ , be the standard Brownian motion and the random

walks of Theorem 2.1. Let us consider, on the same space, X and Xn satisfying the assumption
(A3) of Theorem 3.1.
Then there exists a sequence (Zn

t )0≤t≤T of Fn
· –predictable processes, and an F·–predictable

process (Zt)0≤t≤T such that:

∀t ∈ [0, T ], Mn
t = E

[
Xn
]

+
∫ t

0

Zn
s dWn

s , Mt = E
[
X
]

+
∫ t

0

ZsdWs,
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and ∫ T

0

(Zn
t − Zt)2dt −→ 0 in probability.

Moreover, if 0 < δ < 1, Zn converges to Z in the space L1+δ
(
Ω × [0, T ],G × B([0, T ]),P⊗ λ

)
where λ denotes the Lebesgue measure on

(
[0, T ],B([0, T ])

)
.

Proof. The first part is completely classic: the predictable representation of Fn· –martingales
in terms of stochastic integrals w.r.t. Wn, and of F·–martingales in terms of stochastic integrals
w.r.t. the Brownian motion W .
Setting An

t := h[t/h] and applying the first part of the previous theorem, we obtain

sup
0≤t≤T

∣∣∣ ∫ t

0

Zn
s dAn

s −
∫ t

0

Zsds
∣∣∣ P−→ 0, sup

0≤t≤T

∣∣∣ ∫ t

0

(Zn
s )2dAn

s −
∫ t

0

Z2
sds
∣∣∣ P−→ 0. (10)

From these uniform (in t) convergences, we deduce that

sup
0≤t≤T

∣∣∣ ∫ t

0

Zn
s ds −

∫ t

0

Zsds
∣∣∣ P−→ 0, sup

0≤t≤T

∣∣∣ ∫ t

0

(Zn
s )2ds −

∫ t

0

Z2
sds
∣∣∣ P−→ 0.

Extracting a subsequence (still indexed by n), we have for almost every ω,

sup
0≤t≤T

∣∣∣ ∫ t

0

Zn
s (ω)ds −

∫ t

0

Zs(ω)ds
∣∣∣ −→ 0, sup

0≤t≤T

∣∣∣ ∫ t

0

(Zn
s )2(ω)ds −

∫ t

0

Z2
s (ω)ds

∣∣∣ −→ 0,

which implies the convergence of Zn
· (ω) to Z·(ω) weakly in L2([0, T ], λ). Since

∥∥Zn
· (ω)

∥∥
L2([0,T ],λ)

tends to
∥∥Z·(ω)

∥∥
L2([0,T ],λ)

the convergence hold actually strongly in L2([0, T ], λ). This gives
the first part of the result.
The last result comes immediately with the L2–boundedness of

{( ∫ T

0
(Zn

s )2ds
)1/2

}
n
. 2

4 Proof of Theorem 2.1

Equations (6,7) with the following lemma proved in appendix

Lemma 4.1 With the notations following (8,9),

sup
n

E

[
sup

0≤t≤T

∣∣Y n
t − Y n,p

t

∣∣2 +
∫ T

0

∣∣Zn
t − Zn,p

t

∣∣2dt

]
−→ 0, as p → ∞.

imply that it remains to prove the convergence to zero of the process Y n,p − Y ∞,p and Zn,p −
Z∞,p. This will be done by induction on p. For sake of clarity, we drop the superscript p, set
the time in subscript and write everything in continuous time, so that equations (8,9) become

Y ′
t = ξ +

∫ T

t

f(Ys, Zs)ds −
∫ T

t

Z ′
sdWs, 0 ≤ t ≤ T,

Y ′n
t = ξn +

∫ T

t

f(Y n
s−, Zn

s )dAn
s −

∫ T

t

Z ′n
s dWn

s , 0 ≤ t ≤ T,
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where An
s = [s/h]h and Y− denotes the càglàd process associated to Y . The assumption is

that {Y n
t , Zn

t }0≤t≤T converges to {Yt, Zt}0≤t≤T in the sense of (5) and we have to prove that
{Y ′n

t , Z ′n
t }0≤t≤T converges to {Y ′

t , Z ′
t}0≤t≤T in the same sense.

The process, defined by

Mn
t = Y ′n

t +
∫ t

0

f(Y n
s−, Zn

s )dAn
s , 0 ≤ t ≤ T, (11)

satisfies

Mn
t = Mn

0 +
∫ t

0

Z ′n
s dWn

s . (12)

Hence Mn is an Fn
· –martingale and, since Y n

T = ξn,

Mn
t = E

(
Mn

T | Fn
t

)
, Mn

T = Y n
T +

∫ T

0

f(Y n
s−, Zn

s )dAn
s . (13)

If we want to apply Corollary 3.2, we have to prove the L1 convergence of Mn
T . But since Y n

and Zn are piecewise constant, we have∣∣∣Mn
T − YT −

∫ T

0

f(Ys, Zs)ds
∣∣∣ ≤ ∣∣Y n

T − YT

∣∣+
∫ T

0

∣∣f(Y n
s , Zn

s ) − f(Ys, Zs)
∣∣ds

≤ (1 + KT ) sup
0≤t≤T

∣∣Y n
t − Yt

∣∣+ K

∫ T

0

∣∣Zn
s − Zs|ds,

which tends to zero in probability and then in L1 by L2–boundedness. This and equations
(12,13), imply together with Corollary 3.2 that Mn converges to

Mt = E

(
YT +

∫ T

0

f(Ys, Zs)ds
∣∣∣ Ft

)
= Y ′

t +
∫ t

0

f(Ys, Zs)ds

in the sense that

sup
0≤t≤T

∣∣Mn
t − Mt

∣∣+
∫ T

0

∣∣Z ′n
s − Z ′

s

∣∣2ds −→ 0 in probability.

Since we want to prove that

sup
0≤t≤T

∣∣Y ′n
t − Y ′

t

∣∣+
∫ T

0

∣∣Z ′n
s − Z ′

s

∣∣2ds −→ 0 in probability

it remain only to demonstrate

sup
0≤t≤T

∣∣∣ ∫ t

0

f(Y n
s , Zn

s )dAn
s −

∫ t

0

f(Ys, Zs)ds
∣∣∣ −→ 0 in probability.

This is true since we have just proved the convergence of
∫ T

0
|f(Y n

s , Zn
s )− f(Ys, Zs)|ds to zero

in probability and since the jumps of t 7→ ∫ t

0
f(Y n

s , Zn
s )dAn

s tends to zero according to (10).
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5 Discrete BSDEs and PDEs

In this section, we give an application of Theorem 2.1 to BSDEs in a Markovian framework
which are related to semilinear PDEs. Let us first recall the relations between BSDEs and
PDEs. The setup is the following: let b and σ be two functions defined on [0, T ] × R with
values in R; f is a function defined on [0, T ] × R

3 in R and g from R to R. We assume that
these functions are K–Lipschitz continuous w.r.t. all their variables.
Let us introduce the unique (in the class of continuous functions with polynomial growth)
viscosity solution to the PDE on [0, T ] × R,

∂tU +
1
2
σ2(t, x)∂x,xU + b(t, x)∂xU + f(t, x, U, σ(t, x)∂xU) = 0, U(T, ·) = g(·). (14)

It is a very well known fact – we refer to S. Peng [14] for classical solutions and to E.
Pardoux, S. Peng [13] for viscosity solutions – that U is related to the following BSDE: for
x ∈ R, {(Yt, Zt)}0≤t≤T is the solution to the equation

Yt = g(XT ) +
∫ T

t

f(r, Xr, Yr, Zr)dr −
∫ T

r

ZrdWr, 0 ≤ t ≤ T ; (15)

the terminal condition in this BSDE is of the special form g(XT ) where {Xt}0≤t≤T is the
solution to the SDE

Xt = x +
∫ t

0

b(r, Xr)dr +
∫ t

0

σ(r, Xr)dWr , 0 ≤ t ≤ T. (16)

By the nonlinear Feynman-Kac formula, we have:

∀t ∈ [0, T ], U(t, Xt) = Yt.

In the remaining of this section, we will use the result of Theorem 2.1 to discretize the solution
to the BSDE (15) and then to construct an approximation of the solution U to the PDE (14)
which solves a discrete PDE.
The framework is the same as in the section 2: (Ω,F ,P) is a probability space carrying a
Brownian motion (Wt)0≤t≤T and a sequence of i.i.d. Bernoulli sequences {εn

k}1≤k≤n, n ∈ N
∗ .

We consider, for n ∈ N
∗ , the scaled random walks

Wn
t =

√
h

[t/h]∑
k=1

εn
k , 0 ≤ t ≤ T,

and we assume that
sup

0≤t≤T

∣∣Wn
t − Wt

∣∣ −→ 0 in probability,

as well as in Lp for all real p ≥ 1. This is not a restriction as explained in Corollary 2.2. We
define also Gn

k = σ(εn
1 , . . . , εn

k ).
We consider the time discretization of the interval [0, T ] with step-size T/n; we pick n such
that KT/n < 1 and we set h = T/n so that Kh < 1.
We fix a real x. {χn

i }i is defined by the relation

χn
0 = x, χn

i+1 = χn
i + hb

(
(i + 1)h, χn

i

)
+
√

hσ
(
(i + 1)h, χn

i

)
εn

i+1, i = k, . . . , n − 1. (17)
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{χn
i }0≤i≤n is {Gn

i }i–measurable. To define this process in continuous time, we set,

∀t ∈ [0, T ], Xn
t = χn

[t/h].

It is worth noting that the process {Xn
t }0≤t≤T is the strong solution to the SDE

Xn
t = x +

∫ t

0

b
(
r, Xn

r−
)
d[Wn, Wn]r +

∫ t

0

σ
(
r, Xn

r−
)
dWn

r , 0 ≤ t ≤ T ;

Hence, we are in the classical context of convergence of solutions to SDEs. We refer to
L. S lomiński [15] for general results in this area.
We solve the discrete BSDE – {yn

i , zn
i }i is the {Gn

i }i–adapted solution –

yn
i = yn

i+1 + hf
(
(i + 1)h, χn

i , yn
i , zn

i

)−√
hzn

i εn
i+1, i = 0, . . . , n − 1, yn

n = g(χn
n). (18)

Similarly to the previous SDE, if we set

∀t ∈ [0, T ], Y n
t = yn

[t/h], Zn
t = Zn

bt/hc,

the equation (18) can be rewritten as

Y n
t = g(Xn

T ) +
∫ T

t

f
(
r, Xn

r−, Y n
r−, Zn

r

)
d[Wn, Wn]r −

∫ T

t

Zn
r dWn

r , 0 ≤ t ≤ T.

Let Dn
− and Dn

+ be the following discrete operators:

Dn
+ u(k, x) =

1
2
{
u
(
k, x + hb(kh, x) +

√
hσ(kh, x)

)
+ u
(
k, x + hb(kh, x) −

√
hσ(kh, x)

)}
,

Dn
− u(k, x) =

1
2
{
u
(
k, x + hb(kh, x) +

√
hσ(kh, x)

) − u
(
k, x + hb(kh, x) −

√
hσ(kh, x)

)}
.

We have the following result:

Proposition 5.1 Let un solves the following discrete (in time) PDE: for each x,

un(k, x)−hf
(
(k+1)h, x, un(k, x), h−1/2 Dn

− un(k+1, x)
)

= Dn
+ un(k+1, x), k = 0, . . . , n−1,

with the terminal condition un(n, x) = g(x). Then, we have,

∀k = 0, . . . , n − 1, yn
k = un(k, χn

k ), zn
k = h−1/2 Dn

− un(k + 1, χn
k ).

Proof. Suppose that yn
k+1 = un(k + 1, χn

k+1) for some k ∈ {0, . . . , n − 1}. From the equa-
tion (18), we have

zn
k = h−1/2

E
[
un(k + 1, χn

k+1)εn
k+1 | Gn

k

]
= h−1/2 Dn

− un(k + 1, χn
k ),

and then, since E
[
un(k + 1, χn

k+1) | Gn
k

]
= Dn

+ un(k + 1, χn
k ),

yn
k = Dn

+ un(k + 1, χn
k ) + hf

(
(k + 1)h, χn

k , yn
k , h−1/2 Dn

− un(k + 1, χn
k )
)
.

Noting that f is K-Lipschitz and that Kh < 1, we get yn
k = un(k, χn

k ).
The proof is thus complete by induction since obviously un(n, χn

n) = g(χn
n) = yn

n . 2

We define a new sequence of functions by setting

∀t ∈ [0, T ], ∀x ∈ R, Un(t, x) = un([t/h], x),

and we are interested in the convergence of the sequence {Un}n.
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Theorem 5.2 For each x ∈ R, Un(0, x) converges to U(0, x), U being the solution to the
semilinear PDE (14). This convergence is uniform on compact sets.

Proof. We fix x ∈ R. We have Un(0, x) = Y n
0 and also U(0, x) = Y0. As a consequence the

proof of the first statement will be finished if we are able to prove that

E

[
sup

0≤r≤T

∣∣Y n
r − Yr

∣∣2] −→ 0, as n −→ ∞.

This follows from slight adaptations of Theorem 2.1 since, from L. S lomiński [15, Theorem
3.1], we know that

E

[
sup

0≤r≤T

∣∣Xn
r − Xr

∣∣2] −→ 0, as n −→ ∞.

For the proof of the uniform convergence on compact sets, we first remark that since f is
Lipschitz, for each compact K, there exists a constant C such that, for all x, x′ in K,

sup
n

E

[
sup

0≤r≤T

∣∣Y n
r (x) − Y n

r (x′)
∣∣2] ≤ C |x − x′|2, (19)

and the same is true for Y (x) in place of Y n(x). The last inequality is derived from the similar
inequality for Xn(x) (see [15]).
Let us fix a compact K. For each k ∈ N

∗ , we can find a finite set of points of K say Kk such
that for each point x ∈ K there exists a point xk ∈ Kk such that |x − xk| ≤ 1/k. Let x ∈ K;
We have from (19),

E

[
sup

0≤r≤T

∣∣Y n
r (x) − Yr(x)

∣∣2] ≤ 3 sup
x∈Kk

E

[
sup

0≤r≤T

∣∣Y n
r (x) − Y n

r (x)
∣∣2]+ 6C/k2,

and thus, Kk being finite,

lim sup
n→∞

sup
x∈K

E

[
sup

0≤r≤T

∣∣Y n
r (x) − Yr(x)

∣∣2] ≤ 6C/k2

which gives the result since k is arbitrary. 2

Remark. As in the continuous time case, we can construct the function un from the discrete
SDE and BSDE (17,18) if we let the diffusion start at time s instead of time 0. An easy
consequence is that the sequence of functions Un converges to U uniformly on compact sets
of [0, T ]×R and not only at time t = 0 as proved just before. We choose to present the result
only for t = 0 to avoid a lot of notations coming from the flow generated by a SDE. 2

A Proof of Lemma 4.1

For the proof of this lemma we come back to the discrete notations and we show that

Lemma A.1 There exist α > 1 and n0 ∈ N such that for all n ≥ n0, for all p ∈ N
∗ ,∥∥(yn,p+1 − yn,p, zn,p+1 − zn,p

)∥∥2

α
≤ 2

3

∥∥(yn,p − yn,p−1, zn,p − zn,p−1
)∥∥2

α
,
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where, for p ∈ N,

∥∥(yn,p+1−yn,p, zn,p+1−zn,p
)∥∥2

α
:= E

[
sup

0≤k≤n
αkh

∣∣yn,p+1
k − yn,p

k

∣∣2 + h
n−1∑
k=0

αkh
∣∣zn,p+1

k − zn,p
k

∣∣2] .

Proof. For notational convenience, let us write y, z in place of yn,p+1 − yn,p, zn,p+1 − zn,p

and u, v in place of yn,p − yn,p−1, zn,p − zn,p−1. Let us pick β > 1 to be chosen later. With
these notations in hands, we have, for k = 0, . . . , n − 1, since yn = 0,

βky2
k =

n−1∑
i=k

βiy2
i − βi+1y2

i+1 = (1 − β)
n−1∑
i=k

βiy2
i + β

n−1∑
i=k

βi
(
y2

i − y2
i+1

)
.

We write y2
i − y2

i+1 = 2yi

(
yi − yi+1

)− (yi − yi+1

)2, to use the equation (9), since

yi − yi+1 = h
{
f(yn,p

i , zn,p
i ) − f(yn,p−1

i , zn,p−1
i )

}−√
hziε

n
i+1. (20)

Since f is Lipschitz in (y, z) with constant K, we have, for each ν > 0,

2yi

{
f(yn,p

i , zn,p
i ) − f(yn,p−1

i , zn,p−1
i )

} ≤ 2K|yi|
(|ui| + |vi|

) ≤ 2(K2/ν) y2
i + ν

(
u2

i + v2
i

)
,

and moreover, (20) implies easily that

hz2
i ≤ 2

(
yi − yi+1

)2 + 4K2h2
(
u2

i + v2
i

)
.

As a byproduct of these inequalities, we deduce that, for k = 0, . . . , n − 1,

2
n−1∑
i=k

βiyi

(
yi − yi+1

) ≤ 2K2(h/ν)
n−1∑
i=k

βiy2
i + νh

n−1∑
i=k

βi
(
u2

i + v2
i

)− 2
√

h

n−1∑
i=k

βiyiziε
n
i+1,

−
n−1∑
i=k

βi
(
yi − yi+1

)2 ≤ −(h/2)
n−1∑
i=k

βiz2
i + 2K2h2

n−1∑
i=k

βi
(
u2

i + v2
i

)
,

and, setting ρ = (ν + 2K2h)βh, we get

βky2
k +β(h/2)

n−1∑
i=k

βiz2
i ≤ (1−β+2K2hβ/ν

) n−1∑
i=k

βiy2
i −2β

√
h

n−1∑
i=k

βiyiziε
n
i+1+ρ

n−1∑
i=k

βi
(
u2

i +v2
i

)
.

Thus, if 1 − β + 2K2hβ/ν ≤ 0, we have, for k = 0, . . . , n − 1,

βky2
k + β(h/2)

n−1∑
i=k

βiz2
i ≤ ρ

n−1∑
i=0

βi
(
u2

i + v2
i

)− 2β
√

h

n−1∑
i=k

βiyiziε
n
i+1; (21)

in particular, taking the expectation of the previous inequality for k = 0, we get

E

[
n−1∑
i=0

βiz2
i

]
≤ 2
(
ν + 2K2h

)
E

[
n−1∑
i=0

βi
(
u2

i + v2
i

)]
. (22)
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Now, coming back to (21), we have, since yn = 0,

sup
0≤k≤n

βky2
k ≤ ρ

n−1∑
i=0

βi
(
u2

i + v2
i

)
+ 4β

√
h sup

0≤k≤n−1

∣∣∣ k∑
i=0

βiyiziε
n
i+1

∣∣∣,
and using Burkholder–Davis–Gundy inequality, we obtain, for a universal constant C,

E

[
sup

0≤k≤n
βky2

k

]
≤ ρE

[
n−1∑
i=0

βi
(
u2

i + v2
i

)]
+ C

√
hβE

[( n−1∑
i=0

β2iy2
i z2

i

)1/2
]

≤ ρE

[
n−1∑
i=0

βi
(
u2

i + v2
i

)]
+ C2β2(h/2)E

[
n−1∑
i=0

βiz2
i

]
+

1
2
E

[
sup

0≤k≤n
βky2

k

]
.

Finally, from (22), we get the inequality,

E

[
sup

0≤k≤n
βky2

k + h

n−1∑
i=0

βiz2
i

]
≤ λE

[
sup

0≤k≤n
βku2

k + h

n−1∑
i=0

βiv2
i

]
, (23)

where λ = 2(ν + 2K2h)(1 + β + C2β2)(1 ∨ T ), and providing that 1 − β + 2K2hβ/ν ≤ 0.
Firstly, we choose ν such that 2ν(2 + C2)(1 ∨ T ) = 1/2. We consider only n greater than n1

(i.e. Kh < 1 and 2K2h/ν < 1). Let us pick β of the form αh with α ≥ 1. We want that
1−αh+2K2hαh/ν ≤ 0 meaning that α ≥ exp{−h−1 log(1−2K2h/ν)}. Since exp{−h−1 log(1−
2K2h/ν)} tends to exp{2K2/ν} as n → ∞ (h → 0), we choose α = exp{1 + 2K2/ν}. Hence,
for n greater than n2 the condition is satisfied and (23) holds for β = αh. It remains to observe
that, ν and α being fixed as explained above, λ converges, as n → ∞, to 2ν(2 + C2)(1 ∨ T )
which is equal to 1/2. It follows that for n large enough, say n ≥ n0, λ ≤ 2/3 and

E

[
sup

0≤k≤n
αkhy2

k + h

n−1∑
i=0

αihz2
i

]
≤ 2

3
E

[
sup

0≤k≤n
αkhu2

k + h

n−1∑
i=0

αihv2
i

]
,

which concludes the proof of this technical lemma. 2

To complete the proof of Lemma 4.1, it remains to check that

sup
n

E

[
sup

0≤k≤n−1

∣∣yn,1
k

∣∣2 + h

n−1∑
i=0

∣∣zn,1
i

∣∣2]
is finite. But it is plain to check (using the same computations as above) that for n large
enough,

E

[
sup

0≤k≤n−1

∣∣yn,1
k

∣∣2 + h

n−1∑
i=0

∣∣zn,1
i

∣∣2] ≤ C exp(2T )
(
E
[
ξ2
]

+ 3T |f(0, 0)|2 + 1
)
,

where C is a universal constant.
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