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Abstract

We consider the limit distribution of the orders of the k largest components in the Erdős-Rényi
random graph inside the “critical window” for arbitrary k. We prove a local limit theorem for this
joint distribution and derive an exact expression for the joint probability density function.

1 Introduction

The Erdős-Rényi random graph G(n, p) is a random graph on the vertex-set [n] := {1, . . . , n},
constructed by including each of the

�n

2

�

possible edges with probability p, independently of all
other edges. We shall be interested in the Erdős-Rényi random graph in the so-called critical

window. That is, we fix λ ∈ R and for p we take

p = pλ(n) =
1

n

�

1+
λ

n1/3

�

. (1.1)

For v ∈ [n] we let C (v) denote the connected component containing the vertex v. Let |C (v)|
denote the number of vertices in C (v), also called the order of C (v). For i ≥ 1 we shall use Ci

to denote the component of ith largest order (where ties are broken in an arbitrary way), and we
will sometimes also denote C1 by Cmax.
It is well-known that, for p in the critical window (1.1),

�

|C1|n−2/3, . . . , |Ck|n−2/3� d−→
�

Cλ1 , . . . , Cλ
k

�

, (1.2)
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where Cλ1 , . . . , Cλ
k

are positive, absolutely continuous random variables whose (joint) distribution
depends on λ. See [1, 3, 4, 5] and the references therein for the detailed history of the problem.
In particular, in [5], an exact formula was found for the distribution function of the limiting
variable Cλ1 , and in [1], it was shown that the limit in (1.2) can be described in terms of a certain
multiplicative coalescent. The aim of this paper is to prove a local limit theorem for the joint
probability distribution of the k largest connected components (k arbitrary) and to investigate the

joint limit distribution. While some ideas used in this paper have also appeared in earlier work, in
particular in [3, 4, 5], the results proved here have not been explicitly stated before.
Before we can state our results, we need to introduce some notation. For n ∈ N and 0≤ p ≤ 1, Pn,p

will denote the probability measure of the Erdős-Rényi graph of size n and with edge probability p.
For k ∈ N and x1, . . . , xk,λ ∈ R, we shall denote

Fk(x1, . . . , xk;λ) = lim
n→∞
Pn,pλ(n)

�

|C1| ≤ x1n2/3, . . . , |Ck| ≤ xkn2/3�. (1.3)

It has already been shown implicitly in the work of Łuczak, Pittel and Wierman [4] that this limit
exists and that Fk is continuous in all of its parameters. In our proof of the local limit theorem
below we will use that F1(x;λ) is continuous in both parameters, which can also easily be seen
from the explicit formula (3.25) in [5].
We will denote by C(m, r) the number of (labeled) connected graphs with m vertices and r edges
and for l ≥−1 we let γl denote Wright’s constants. That is, γl satisfies

C(k, k+ l) =
�

1+ o(1)
�

γl k
k−1/2+3l/2 as k→∞. (1.4)

Here l is even allowed to vary with k: as long as l = o(k1/3), the error term o(1) in (1.4) is
O(l3/2k−1/2) (see [9, Theorem 2]). Moreover, the constants γl satisfy (see [7, 8, 9]):

γl =
�

1+ o(1)
�

r

3

4π

�

e

12l

�l/2

as l →∞. (1.5)

By G we will denote the Laurent series

G(s) =

∞
∑

l=−1

γls
l . (1.6)

Note that by (1.5) the sum on the right-hand side is convergent for all s 6= 0. By a striking result of
Spencer [6], G equals s−1 times the moment generating function of the scaled Brownian excursion
area. For x > 0 and λ ∈ R, we further define

Φ(x;λ) =
G
�

x3/2�

x
p

2π
e−λ

3/6+(λ−x)3/6. (1.7)

The main result of this paper is the following local limit theorem for the joint distribution of the
vector (|C1|, . . . , |Ck|) in the Erdős-Rényi random graph:

Theorem 1.1 (Local limit theorem for largest clusters). Let λ ∈ R and b > a > 0 be fixed. As

n→∞, it holds that

sup
a≤xk≤···≤x1≤b

¯

¯n2k/3
Pn,pλ(n)(|Ci |= ⌊x in

2/3⌋ ∀i ≤ k)−Ψk

�

x1, . . . , xk;λ
�
¯

¯→ 0, (1.8)
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where, for all x1 ≥ · · · ≥ xk > 0 and λ ∈ R,

Ψk(x1, . . . , xk;λ) =
F1

�

xk;λ− (x1 + · · ·+ xk)
�

r1! · · · rm!

k
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

, (1.9)

and where 1 ≤ m ≤ k is the number of distinct values the x i take, r1 is the number of repetitions of

the largest value, r2 the number of repetitions of the second largest, and so on.

Theorem 1.1 gives rise to a set of explicit expressions for the probability densities fk of the limit
vectors (Cλ1 , . . . , Cλ

k
) with respect to k-dimensional Lebesgue measure. These densities are given

in terms of the distribution function F1 by the following corollary of Theorem 1.1:

Corollary 1.2 (Joint limiting density for largest clusters). For any k > 0, λ ∈ R and x1 ≥ · · · ≥
xk > 0,

fk(x1, . . . , xk;λ) = F1

�

xk;λ− (x1 + · · ·+ xk)
�

k
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

. (1.10)

Implicit in Corollary 1.2 is a system of differential equations that the joint limiting distributions
must satisfy. For instance, the case k = 1 means that ∂

∂ x
F1(x;λ) = F1(x;λ− x)Φ(x;λ). In general

this differential equation has many solutions, but we will show that there is only one solution for
which x 7→ F1(x;λ) is a probability distribution for all λ. This leads to the following theorem:

Theorem 1.3 (Uniqueness of solution differential equation). The set of relations (1.10) determines

the limit distributions Fk uniquely.

2 Proof of the local limit theorem

In this section we derive the local limit theorem for the vector (|C1|, . . . , |Ck|) in the Erdős-Rényi
random graph. We start by proving a convenient relation between the probability mass function
of this vector and the one of a typical component.

Lemma 2.1 (Probability mass function of largest clusters). Fix l1 ≥ l2 ≥ · · · ≥ lk > 0, n >

l1 + · · ·+ lk and p ∈ [0,1]. Let 1 ≤ m ≤ k be the number of distinct values the li take, and let r1 be

the number of repetitions of the largest value, r2 the number of repetitions of the second largest, and

so on up to rm. Then

Pn,p(|Ci |= li ∀i ≤ k, |Ck+1|< lk) =
Pmk ,p(|Cmax|< lk)

r1! · · · rm!

k−1
∏

i=0

mi

li+1
Pmi ,p(|C (1)|= li+1), (2.1)

where mi = n−
∑

j≤i l j for i = 1, . . . , k and m0 = n. Moreover,

Pn,p(|Ci |= li ∀i ≤ k)≤
1

r1! · · · rm!

k−1
∏

i=0

mi

li+1
Pmi ,p(|C (1)|= li+1). (2.2)

Proof. For A an event, we denote by I(A) the indicator function of A. For the graph G(n, p), let Ek

be the event that |Ci |= li for all i ≤ k. Then

I(Ek, |Ck+1|< lk) =
1

r1l1

n
∑

v=1

I(|C (v)|= l1, Ek, |Ck+1|< lk), (2.3)
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because if Ek and |Ck+1| < lk both hold then there are exactly r1l1 vertices v such that |C (v)| =
l1. Since Pn,p(|C (v)| = l1, Ek, |Ck+1| < lk) is the same for every vertex v, it follows by taking
expectations on both sides of the previous equation that

Pn,p(Ek, |Ck+1|< lk) =
n

r1l1
Pn,p(|C (1)|= l1, Ek, |Ck+1|< lk). (2.4)

Next we observe, by conditioning on C (1), that

Pn,p

�

Ek, |Ck+1|< lk

¯

¯ |C (1)|= l1
�

= Pn−l1,p(|C1|= l2, . . . , |Ck−1|= lk, |Ck|< lk). (2.5)

Combining (2.4) and (2.5), we thus get

Pn,p(Ek, |Ck+1|< lk) =
nPn,p(|C (1)|= l1)

r1l1
Pn−l1,p(|Ci |= li+1 ∀i < k, |Ck|< lk). (2.6)

The relation (2.1) now follows by a straightforward induction argument. To see that (2.2) holds,
notice that

I(|Ci |= li ∀i ≤ k)≤
1

r1l1

n
∑

v=1

I(|C (v)|= l1, |Ci |= li ∀i ≤ k). (2.7)

Proceeding analogously as before leads to (2.2).

Lemma 2.2 (Scaling function cluster distribution). Let β > α and b > a > 0 be arbitrary. As

n→∞,

sup
a≤x≤b
α≤λ≤β

¯

¯nPn,pλ(n)(|C (1)|= ⌊xn2/3⌋)− x Φ(x;λ)
¯

¯→ 0. (2.8)

Proof. For convenience let us write k := ⌊xn2/3⌋ and p = pλ(n), with a ≤ x ≤ b and α ≤ λ ≤ β
arbitrary. Throughout this proof, o(1) denotes error terms tending to 0 with n uniformly over all
x ,λ considered. First notice that

Pn,p(|C (1)|= k) =

�

n− 1

k− 1

�

�k

2

�

−k
∑

l=−1

C(k, k+ l)pk+l(1− p)

�k

2

�

−(k+l)+k(n−k)
. (2.9)

Stirling’s approximation m!=
�

1+O(m−1)
�p

2πm (m/e)m gives us that
�

n− 1

k− 1

�

=
k

n

�

n

k

�

=
�

1+ o(1)
�nkk1/2−k

n
p

2π

�

1−
k

n

�k−n

. (2.10)

Next we use the expansion 1+ x = exp
�

x − x2/2+ x3/3+O(x4)
�

for each factor on the left of
the following equation, to obtain

�

1−
k

n

�k−n

pk (1− p)

�k

2

�

−k+k(n−k)
=
�

1+ o(1)
�

n−k exp

�

λk2

2n4/3
−
λ2k

2n2/3
−

k3

6n2

�

. (2.11)

Using that k = ⌊xn2/3⌋, combining (2.9)–(2.11) and substituting (1.4) leads to

nPn,p(|C (1)|= k) =
�

1+ o(1)
�

e(λx2−λ2 x)/2−x3/6

�k

2

�

−k
∑

l=−1

C(k, k+ l)k1/2−k

nl
p

2π

�

np

1− p

�l

=
�

1+ o(1)
�

e(λ−x)3/6−λ3/6

�⌊log n⌋
∑

l=−1

γl x
3l/2

p
2π

+
R(n, k)
p

2π

�

,

(2.12)
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where

R(n, k) =

�k

2

�

−k
∑

l=⌊log n⌋+1

C(k, k+ l)k1/2−k

�

p

1− p

�l

. (2.13)

Clearly, Lemma 2.2 follows from (2.12) if we can show that in the limit n→∞, R(n, k) tends to 0
uniformly over all x ,λ considered.
To show this, we recall that by [2, Corollary 5.21], there exists an absolute constant c > 0 such
that

C(k, k+ l)≤ cl−l/2kk+(3l−1)/2 (2.14)

for all 1≤ l ≤
�k

2

�

− k. Substituting this bound into (2.13) gives

R(n, k)≤ c
∑

l>⌊log n⌋

�

k3/2

l1/2

p

1− p

�l

≤ c
∑

l>⌊log n⌋





const
p

log n





l

≤ c





const
p

log n





log n
∑

l>1

1

2l
, (2.15)

where we have used that k3/2p/(1−p) is bounded uniformly by a constant, and the last inequality
holds for n sufficiently large. Hence R(n, k) = o(1), which completes the proof.

Lemma 2.3 (Uniform weak convergence largest cluster). Let β > α and b > a > 0 be arbitrary.

As n→∞,

sup
a≤x≤b
α≤λ≤β

¯

¯Pn,pλ(n)(|Cmax|< xn2/3)− F1(x;λ)
¯

¯→ 0. (2.16)

Proof. Fix ǫ > 0. Recall that F1 is continuous in both arguments, as follows for instance from
[5, (3.25)]. Therefore, F1 is uniformly continuous on [a, b]× [α,β], and hence we can choose
a = x1 < · · ·< xm = b and α= λ1 < · · ·< λm = β such that for all 1≤ i, j ≤ m− 1,

sup
¦¯

¯F1(x;λ)− F1(x i;λ j)
¯

¯ : (x ,λ) ∈ [x i , x i+1]× [λ j ,λ j+1]
©

< ǫ. (2.17)

For all (x ,λ) ∈ [a, b]× [α,β] set gn(x ,λ) = Pn,pλ(n)(|Cmax| < xn2/3). Note that gn(x ,λ) is non-
decreasing in x and non-increasing in λ. By definition (1.3) of F1, there exists an n0 = n0(ǫ)

such that for all n ≥ n0, |F1(x i;λ j)− gn(x i ,λ j)| < ǫ for every 1 ≤ i, j ≤ m. Therefore, if (x ,λ) ∈
[x i , x i+1]× [λ j ,λ j+1], then for all n≥ n0,

gn(x ,λ)− F1(x;λ)< gn(x i+1,λ j)− F1(x i+1;λ j) + ǫ < 2ǫ, (2.18)

and likewise F1(x;λ)− gn(x ,λ)< 2ǫ. Hence gn→ F1 uniformly on [a, b]× [α,β].

Proof of Theorem 1.1. We start by introducing some notation. Fix a ≤ xk ≤ · · · ≤ x1 ≤ b, and for
i = 1, . . . , k set li = li(n) = ⌊x in

2/3⌋. Now for i = 0, . . . , k, let mi = mi(n) = n−
∑

j≤i l j and define
λi = λi(n) so that pλi

(mi) = pλ(n), that is,

pλ(n) =
1

n

�

1+λn−1/3
�

=
1

mi

�

1+λim
−1/3
i

�

= pλi
(mi). (2.19)
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Finally, for i = 1, . . . , k let yi = yi(n) be chosen such that ⌊yim
2/3
i−1⌋= ⌊x in

2/3⌋= li . Now

λi = m1/3
�

mi

n
(1+λn−1/3)− 1

�

=



1−
∑

j≤i

l j

n





1/3

n1/3



λn−1/3 −
∑

j≤i

li

n
+O(n−2/3)





= λ−
∑

j≤i

l j

n2/3
+O(n−1/3)

= λ− (x1 + · · ·+ x i) + o(1),

and more directly yi = x i + o(1), where the error terms o(1) are uniform over all choices of the x i

in [a, b]. Throughout this proof, the notation o(1) will be used in this meaning.
Note that for all sufficiently large n, the yi are all contained in a compact interval of the form
[a − ǫ, b + ǫ] for some 0 < ǫ < a, and the λi are also contained in a compact interval. Hence,

since li+1 = ⌊yi+1m
2/3
i
⌋, it follows from Lemma 2.2 that for i = 0, . . . , k− 1,

mi Pmi ,pλi
(mi)
(|C (1)|= li+1) = yi+1Φ(yi+1;λi) + o(1). (2.20)

But because Φ(x;λ) is uniformly continuous on a compact set, the function on the right tends
uniformly to x i+1Φ

�

x i+1;λ−
∑

j<i x j

�

. We conclude that

mi

n2/3

li+1
Pmi ,pλi

(mi)
(|C (1)|= li+1) = Φ

�

x i;λ−
∑

j<i

x j

�

+ o(1). (2.21)

Similarly, using that F1 is uniformly continuous on a compact set, from Lemma 2.3 we obtain

Pmk ,pλk
(mk)
(|Cmax|< lk) = F1

�

xk;λ− (x1 + · · ·+ xk)
�

+ o(1). (2.22)

By Lemma 2.1, we see that we are interested in the product of the left-hand sides of (2.21)
and (2.22). Since the right-hand sides of these equations are bounded uniformly over the x i

considered, it follows immediately that

n2k/3
Pn,pλ(n)(|Ci |= li ∀i ≤ k, |Ck+1|< lk) = Ψk(x1, . . . , xk;λ) + o(1). (2.23)

To complete the proof, set lk+1 = lk, and note that, by Lemma 2.1 and (2.21),

n2k/3
Pn,pλ(n)(|Ci |= li ∀i ≤ k, |Ck+1|= lk)

≤ n−2/3
k
∏

i=0

�

mi

n2/3

li+1
Pmi ,pλ j

(mi)
(|C (1)|= li+1)

�

= o(1). (2.24)

Because n2k/3
Pn,pλ(n)(|Ci | = li ∀i ≤ k) is the sum of the left-hand sides of (2.23) and (2.24), this

completes the proof of Theorem 1.1.

Proof of Corollary 1.2. For any x = (x1, . . . , xk) ∈ Rk, set

gn(x) = n2k/3
Pn,pλ(n)(|Ci |= ⌊x in

2/3⌋ ∀i ≤ k), (2.25)
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and notice that gn is then a probability density with respect to k-dimensional Lebesgue measure.
Let Xn = (X

1
n
, . . . , X k

n
) be a random vector having this density, and define the vector Yn on the

same space by setting Yn =
�

⌊X 1
n
n2/3⌋n−2/3, . . . , ⌊X k

n
n2/3⌋n−2/3�. Then Yn has the same distribution

as the vector (|C1|n−2/3, . . . , |Ck|n−2/3) in G
�

n, pλ(n)
�

. Now recall that by [1, Corollary 2], this
vector converges in distribution to a limit which lies a.s. in (0,∞)k. Let Pλ be the law of the limit
vector. Since |Xn − Yn| → 0 almost surely, Pλ is also the weak limit law of the Xn.
By Theorem 1.1, gn converges pointwise to Ψk( · ;λ) on (0,∞)k, and hence Ψk( · ;λ) is integrable
on (0,∞)k by Fatou’s lemma. Now let A be any compact set in (0,∞)k. Then gn converges
uniformly to Ψk( · ;λ) on A, so we can apply dominated convergence to see that

∫

A

gn(x) d x →
∫

A

Ψk(x;λ) d x = Pλ(A). (2.26)

Since this holds for any compact A in (0,∞)k, it follows that Ψk( · ;λ) is the density of Pλ with
respect to Lebesgue measure.

Remark: Since gn → Ψk pointwise, by Scheffé’s theorem, the total variational distance between
(|C1|n−2/3, . . . , |Ck|n−2/3) and (Cλ1 , . . . , Cλ

k
) tends to zero as n→∞.

3 Unique identification of the limit distributions

In this section we will show that the system of differential equations (1.10) identifies the joint
limiting distributions uniquely. Let us first observe that it suffices to show that there is only one
solution to the differential equation

∂

∂ x
F1(x;λ) = Φ(x;λ)F1(x;λ− x), (3.1)

such that x 7→ F1(x;λ) is the distribution function of a probability distribution for all λ ∈ R. In the
remainder of this section we will show that if F1 satisfies (3.1) and x 7→ F1(x;λ) is the distribution
function of a probability distribution for all λ ∈ R then F1 can be written as

F1(x;λ) = 1+ e−λ
3/6
∞
∑

k=1

(−1)k

k!

∫ ∞

x

· · ·
∫ ∞

x

k
∏

i=1

ϕ(x i)e
(λ−x1−···−xk)

3/6d x1 · · · d xk, (3.2)

where ϕ(x) = G(x3/2)
�

x
p

2π. This will prove Theorem 1.3 by our previous observation. To
this end, we first note that it can be seen from Stirling’s approximation and (1.5) that G(s) =

exp
�

s2/24+ o(s2)
�

as s→∞, so that
∫ ∞

x

Φ(y;λ) d y =

∫ ∞

x

exp[−Ω(y3)] d y <∞ (3.3)

for all λ ∈ R. To prove (3.2), we will make use of the following bound:

Lemma 3.1. Let a > δ > 0, λ ∈ R and k > λ/δ, and write ϕ(x) = G(x3/2)
�

x
p

2π. Denote by dk x

integration with respect to x1, . . . , xk. Then
∫

· · ·
∫

a<x1<···<xk

k
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

dk x =
e−λ

3/6

k!

∫

· · ·
∫

a<x1,...,xk

k
∏

i=1

ϕ(x i)e

�

λ−
∑

j≤k x j

�3�

6 dk x

≤
e−λ

3/6

k!

�

eδ
3/6

∫ ∞

a

Φ(y;δ) d y
�k

.

(3.4)
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Proof. Notice that Φ(x;λ) = ϕ(x)exp
�

−λ3/6+ (λ− x)3/6
�

, and that therefore we get

k
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

= ϕ(x1) · · ·ϕ(xk)exp
�

−λ3/6+
�

λ−
∑

j≤k

xk

�3
�

6
�

. (3.5)

The equality in (3.4) now follows from the fact that the integrand is invariant under permutations
of the variables. Next notice that if λ < kδ and x1, . . . , xk > a > δ, then

(λ− x1 − · · · − xk)
3 ≤
�

(δ− x1) + · · ·+ (δ− xk)
�3 ≤

∑

i≤k

�

δ− x i

�3 , (3.6)

since δ− x i < 0 for all i = 1, . . . , k and (u+ v)3 ≥ u3 + v3 for all u, v ≥ 0. So it follows that

∫

· · ·
∫

a<x1,...,xk

k
∏

i=1

ϕ(x i)e

�

λ−
∑

j≤k x j

�3�

6 dk x ≤ ekδ3/6

∫

· · ·
∫

a<x1,...,xk

k
∏

i=1

ϕ(x i)e
−δ3/6+(δ−x i)

3/6 dk x , (3.7)

which gives us the inequality in (3.4).

Proof of Theorem 1.3. Applying (3.1) twice, we see that

F1(x;λ) = 1−
∫ ∞

x

Φ(x1;λ)F1(x1;λ− x1) d x1

= 1−
∫ ∞

x

Φ(x1;λ)

 

1−
∫ ∞

x1

Φ(x2,λ− x1)F1(x2;λ− x1 − x2) d x2

!

d x1,

(3.8)

and repeating this m− 2 more times leads to

F1(x;λ) = 1+
m−1
∑

k=1

(−1)k
∫

· · ·
∫

x<x1<···<xk

k
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

d x1 · · · d xk

+ (−1)m
∫

· · ·
∫

x<x1<···<xm

m
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

F1

�

xm;λ−
m
∑

j=1

x j

�

d x1 · · · d xm. (3.9)

From Lemma 3.1 we see that for any ǫ > 0 we can choose m= m(ǫ) such that

∫

· · ·
∫

x<x1<···<xm

m
∏

i=1

Φ
�

x i;λ−
∑

j<i

x j

�

F1

�

xm;λ−
m
∑

j=1

x j

�

d x1 · · · d xm < ǫ, (3.10)

where we have used that F1 ≤ 1. Hence (3.2) follows from (3.9) and Lemma 3.1.

4 Discussion

We end the paper by mentioning a possibly useful extension of our results. Recall that the surplus
of a connected component C is equal to the number of edges in C minus the number of vertices
plus one, so that the surplus of a tree equals zero. There has been considerable interest in the
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surplus of the connected components of the Erdős-Rényi random graph (see e.g. [1, 3, 4] and the
references therein). For example, in [1] and with σn(k) denoting the surplus of Ck, it is shown
that

�

�

|C1|n−2/3,σn(1)
�

, . . . ,
�

|Ck|n−
2
3 ,σn(k)

�

�

d−→
�

�

Cλ1 ,σ(1)
�

, . . . ,
�

Cλ
k

,σ(k)
�

�

, (4.1)

for some bounded random variables σ(k). A straightforward adaption of our proof of Theorem 1.1
will give that

n2k/3
Pn,pλ(n)

�

|C1|= ⌊x1n2/3⌋, . . . , |Ck|= ⌊xkn2/3⌋,σn(1) = σ1, . . . ,σn(k) = σk

�

=Ψk(x1, . . . , xk,σ1, . . . ,σk;λ) + o(1), (4.2)

where o(1) now is uniform in σ1, . . . ,σk and in x1, . . . , xk satisfying a ≤ x1 ≤ · · · ≤ xk ≤ b for
some 0< a < b, and where we define

Ψk(x1, . . . , xk,σ1, . . . ,σk;λ) =
F1

�

xk;λ− (x1 + · · ·+ xk)
�

r1! · · · rm!

k
∏

i=1

Φσi

�

x i;λ−
∑

j<i

x j

�

, (4.3)

with

Φσ(x;λ) =
γσ−1 x3(σ−1)/2

x
p

2π
e−λ

3/6+(λ−x)3/6. (4.4)
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