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Abstract

We use excursion theory and the ergodic theorem to present an extreme-value analysis of the
classical law of the iterated logarithm (LIL) for Brownian motion. A simplified version of our
method also proves, in a paragraph, the classical theorem of Darling and Erdős (1956).

1 Introduction

Let {B(t)}t≥0 be a standard Brownian motion. The law of the iterated logarithm (LIL)
of Khintchine (1933) states that lim supt→∞(2t ln ln t)−1/2B(t) = 1 a.s. Equivalently,

With probability one, sup
s≥t

B(s)√
2s ln ln s

→ 1 as t→∞ . (1.1)

The goal of this note is to determine the rate at which this convergence occurs.
We consider the extreme-value distribution function (Resnick, 1987, p. 38),

Λ(x) := exp
(

−e−x
) ∀x ∈ R. (1.2)
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Also, let Lx := L(x) := ln(x), and define, iteratively, Lk+1x := Lk+1(x) := L(Lkx) for k ≥ 1.
Then, our main result can be described as follows:

Theorem 1.1. For all x ∈ R,

lim
t→∞

P

{

2L2t

(

sup
s≥t

B(s)√
2sL2s

− 1

)

− 3

2
L3t+ L4t+ L

(

3√
2

)

≤ x

}

= Λ(x), (1.3)

lim
t→∞

P

{

2L2t

(

sup
s≥t

|B(s)|√
2sL2s

− 1

)

− 3

2
L3t+ L4t+ L

(

3

2
√
2

)

≤ x

}

= Λ(x). (1.4)

An anonymous referee has kindly pointed out that our Theorem 1.1 is similar to the classical
result of Darling and Erdős (1956). We will show that, in a sense, this is so: While the
Darling–Erdős theorem does not seem to imply Theorem 1.1. a simplified version of our proof
of Theorem 1.1 also proves the Darling–Erdős theorem. See Section 5 below for details.
Theorem 1.1 is accompanied by the following strong law:

Theorem 1.2. With probability one,

lim
t→∞

L2t

L3t

(

sup
s≥t

B(s)√
2sL2s

− 1

)

=
3

4
. (1.5)

This should be compared with the following consequence of the theorem of Erdős (1942):

lim sup
t→∞

L2t

L3t

(

sup
s≥t

B(s)√
2sL2s

− 1

)

=
3

4
a.s. (1.6)

[Erdős’s theorem is stated for Bernoulli walks, but applies equally well—and for precisely the
same reasons—to Brownian motion. For the most general result along these lines see Feller
(1946); see also Einmahl (1989) where a gap in Feller’s proof is bridged.]
Theorem 1.1 is derived by analyzing the excursions of the Ornstein–Uhlenbeck process,

X(t) = e−t/2B(et) t ≥ 0. (1.7)

Our method is influenced by the ideas of Motoo (1959), although it has some new features as
well. Motoo’s method has been used also in other similar contexts as well. See, for instance,
the works of Anderson (1970), Berman (1964; 1986; 1988), Bertoin (1998), Breiman (1968),
Rootzén (1988), and Serfozo (1980). For other results related to the general theme of this
paper see Fill (1983), Sen and Wichura (1984), and Wichura (1973).

Acknowledgement. An anonymous referee kindly suggested that we consider the connection
to the Darling–Erdős theorem. He/she also pointed out the reference Einmahl (1989). These
remarks have improved the presentation of the paper, and put it in more proper historical
context. We thank this referee heartily.

2 Proof of Theorem 1.1

An application of Itô’s formula shows us that the process X satisfies the s.d.e.,

X(t) = X(0) +

∫ exp(t)

1

1√
s
dB(s)− 1

2

∫ t

0

X(s) ds. (2.1)
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The stochastic integral in (2.1) has quadratic variation
∫ exp(t)

1
s−1 ds = t. Therefore, this

stochastic integral defines a Brownian motion. Call the said Brownian motion W to see that
X satisfies the s.d.e.,

dX = dW − 1

2
X dt. (2.2)

In particular, the quadratic variation of X at time t is t. This means that the semi-martingale
local times of X are occupation densities (Revuz and Yor, 1999, Chapter VI). In particular, if
{`0t (X)}t≥0 denotes the local time of X at zero, then

`0t (X) = lim
ε→0

1

2ε

∫ t

0

1{|X(s)|≤ε} ds a.s. and in Lp(P) (2.3)

See Revuz and Yor (1999, Corollary 1.6, p. 224).
Let {τ(t)}t≥0 denote the right-continuous inverse-process to `0(X). By the ergodic theorem,
τ(t)/t converges a.s. as t tends to ∞. In fact,

lim
t→∞

τ(t)

t
=
√
2π a.s. (2.4)

To compute the constant
√
2π, we note that by monotonicity, τ(t)/t ∼ t/`0t (X) a.s. But

another application of the ergodic theorem implies that `0t (X) ∼ E[`0t (X)] a.s. The assertion
(2.4) then follows from the fact that E[`0t (X)] = t/

√
2π; see (2.3).

Define

εt := sup
s≥τ(t)

X(s)√
2Ls

∀t ≥ e. (2.5)

Lemma 2.1. Almost surely,

∣

∣

∣

∣

εn − sup
j≥n

Mj√
2Lj

∣

∣

∣

∣

= O

(

1

Ln
·
√

L2n

n

)

(n→∞), (2.6)

where

Mj := sup
s∈[τ(j),τ(j+1)]

X(s) ∀j ≥ 1. (2.7)

Proof. According to (2.4),

sup
s∈[τ(j),τ(j+1)]

∣

∣

∣

∣

∣

1
√

ln τ(j)
− 1√

ln s

∣

∣

∣

∣

∣

∼ 1

2Lj
·
√

L2j

jLj
(j →∞). (2.8)

On the other hand, according to (1.1) and (2.4), almost surely,

Mj = O
(

√

ln τ(j + 1)
)

= O
(

√

Lj
)

(j →∞). (2.9)

The lemma follows from a little algebra.

Lemma 2.1, and monotonicity, together prove that Theorem 1.1 is equivalent to the following:
For all x ∈ R,

lim
n→∞

P

{

2Ln

(

sup
j≥n

Mj√
2Lj

− 1

)

− 3

2
L2n+ L3n+ L

(

3√
2

)

≤ x

}

= Λ(x). (2.10)
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We can derive this because: (i) By the strong Markov property of the OU process X, {Mj}∞j=1

is an i.i.d. sequence; and (ii) the distribution of M1 can be found by a combining a little bit of
stochastic calculus with an iota of excursion theory. In fact, one has a slightly more general
result for Itô diffusions (i.e., diffusions that solve smooth s.d.e.’s) at no extra cost.

Proposition 2.2. Assume that σ, a ∈ C∞(R), σ is bounded away from zero, and {Wt}t≥0 is

a Brownian motion. Let {Zt}t≥0 denote the regular Itô diffusion on (−∞,∞) which solves the

s.d.e.,

dZt = σ(Zt) dWt + a(Zt)dt. (2.11)

Write {θt}t≥0 for the inverse local-time of {Zt}t≥0 at zero, and define f to be a scale function

for Z. Then for all λ > 0,

P

(

sup
t∈[0,θ1]

Zt ≤ λ

∣

∣

∣

∣

∣

Z0 = 0

)

= exp

(

− f ′(0)

2 {f(λ)− f(0)}

)

. (2.12)

Proof. The scale function of a diffusion is defined only up to an affine transformation. There-
fore, we can assume, without loss of generality, that f ′(0) = 1 and f(0) = 0; else, we choose
the scale function x 7→ {f(x)− f(0)}/f ′(0) instead. Explicitly, {Zt}t≥0 has the scale function
(Revuz and Yor, 1999, Exercise VII.3.20)

f(x) =

∫ x

0

exp

(

−2
∫ y

0

a(u)

σ2(u)
du

)

dy. (2.13)

Owing to Itô’s formula, Nt := f(Zt) satisfies

dNt = f ′(Zt)σ(Zt) dWt = f ′
(

f−1(Nt)
)

σ
(

f−1(Nt)
)

dWt , (2.14)

and so N is a local martingale. According to the Dambis, Dubins, Schwartz representation
theorem (Revuz and Yor, 1999, Theorem V.1.6, p. 181), there exists a Brownian motion
{b(t)}t≥0 such that

Nt = b(αt) , where

αt = α(t) = 〈N〉t =
∫ t

0

[

f ′
(

f−1(Nr)
)]2

σ2
(

f−1(Nr)
)

dr ∀t ≥ 0.
(2.15)

The process N is manifestly a diffusion; therefore, it has continuous local-time processes
{`xt (N)}t≥0,x∈R which satisfy the occupation density formula (Revuz and Yor, 1999, Corollary
VI.1.6, p. 224 and time-change). By (2.13), f ′ > 0, and because σ is bounded away from zero,
σ2f ′ > 0. Therefore, the inverse process {α−1(t)}t≥0 exists a.s., and is uniquely defined by
α(α−1(t)) = t for all t ≥ 0.

Let {`xt (b)}t≥0,x∈R denote the local-time processes of the Brownian motion b. It is well known
(Rogers and Williams, 2000, Theorem V.49.1) that

`0t (N) = `0α(t)(b)
∀t ≥ 0. (2.16)

By (2.11) and (2.14), d〈Z〉t =
[

f ′
(

f−1(Nt)
)]−2

d〈N〉t. Thus, if L(Z) denotes the local times
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of Z, then almost surely,

∫ ∞

−∞
h(x)Lx

t (Z) dx =

∫ t

0

h(Zr) d〈Z〉r =

∫ t

0

h
(

f−1(Nr)
)

[f ′ (f−1(Nr))]
2 d〈N〉r

=

∫ ∞

−∞
h
(

f−1(y)
) `yt (N)

f ′ (f−1(y))
d
[

f−1(y)
]

=

∫ ∞

−∞
h(x)

`
f(x)
t (N)

f ′(x)
dx [x := f−1(y)].

(2.17)

This proves that f ′(x)Lx
t (Z) = `

f(x)
t (N) a.s. In particular, L0

t (Z) = `0t (N) for all t ≥ 0, a.s.
It follows from (2.16) that a.s.,

L0
t (Z) = `0α(t)(b)

∀t ≥ 0. (2.18)

Define ϕt := inf
{

s > 0 : `0s(b) > t
}

to be the inverse local time of the Brownian motion b.
According to (2.18), ϕt = α(θt) for all t ≥ 0, a.s. Thus,

P

(

sup
s∈[0,θ1]

Zs ≤ λ

∣

∣

∣

∣

∣

Z0 = 0

)

= P

(

sup
s∈[0,θ1]

Ns ≤ f(λ)

∣

∣

∣

∣

∣

N0 = 0

)

= P

(

sup
s∈[0,ϕ1]

bs ≤ f(λ)

∣

∣

∣

∣

∣

b0 = 0

)

.

(2.19)

The last identity follows from (2.15) and the fact that α and α−1 are both continuous and
strictly increasing a.s.
Define Nβ to be the total number of excursion of the Brownian motion b that exceed β by
local-time 1. Then,

P

(

sup
s∈[0,ϕ1]

bs ≤ f(λ)

∣

∣

∣

∣

∣

b0 = 0

)

= P
(

Nf(λ) = 0
∣

∣ b0 = 0
)

= exp
{

−E
[

Nf(λ)

∣

∣ b0 = 0
]}

,

(2.20)

because Nβ is a Poisson random variable (Itô, 1970). According to Proposition 3.6 of Revuz
and Yor (1999, p. 492), E[Nβ | b0 = 0] = (2β)−1 for all β > 0. See also Revuz and Yor
(1999, Exercise XII.4.11). The result follows.

Remark 2.3. Also, the following equality holds:

P

(

sup
t∈[0,θ1]

|Zt| ≤ λ

∣

∣

∣

∣

∣

Z0 = 0

)

= exp

(

− f ′(0)

f(λ)− f(0)

)

. (2.21)

This follows as above after noting that f(−x) = −f(x), and that E[N ′
β | b0 = 0] = β−1, where

N ′β denotes the number of excursions of the Brownian motion b that exceed β in absolute value
by local-time 1.

Proof of Theorem 1.1. If we apply the preceding computation to the diffusion X itself, then
we find that P{M1 ≤ λ} = exp{−1/(2S(λ))}, where S is the scale function of X which satisfies
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S′(0) = 1 and S(0) = 0. According to (2.2) and (2.13), S(x) =
∫ x

0
exp(y2/2) dy, whence it

follows that for all λ > 0,

P{M1 ≤ λ} = exp

(

− 1

2
∫ λ

0
exp(y2/2) dy

)

= exp

(

− λ+ δ(λ)

2 exp(λ2/2)

)

, (2.22)

where δ(λ) = o(λ) as λ→∞.
Let {βn(x)}∞n=1 be a sequence which, for x fixed, satisfies βn(x)→∞ as n→∞. We assume,
in addition, that αn(x) := βn(x)/Ln goes to zero as n → ∞. We will suppress x in the
notation and write αn and βn for αn(x) and βn(x), respectively.
A little calculus shows that if αn > 0, then

P

{

sup
j≥n

Mj√
2Lj

≤ 1 +
1

2
αn

}

=
∞
∏

j=n

exp

(

− 1

2S
(

(1 + 1
2αn)

√
2Lj

)

)

= exp



− [1 + o(1)](1 + 1
2αn)√

2

∞
∑

j=n

√
Lj

j(1+ 1
2
αn)2





= exp

(

− [1 + o(1)]
(

1 + 1
2αn

)

√
2

In
)

= exp

(

− [1 + o(1)]
(

1 + 1
2αn

)√
Ln√

2αn

(

1 + 1
4αn

)

αnnαn(1+αn/4)

)

= exp

(

− [1 + o(1)]qn(x)(Ln)3/2e−βn

√
2βn

)

.

(2.23)

Here,

qn(x) :=

(

2Ln+ βn

2Ln+ 1
2βn

)

exp

(

− β2
n

4Ln

)

, and In :=

∫ ∞

n

√
Lz

z(1+ 1
2
αn)2

dz. (2.24)

If αn ≤ 0, then the probability on the right-hand side of (2.23) is 0. Define

ϕn := ϕn(x) :=
3

2
L2n− L3n− ln

(

3/
√
2
)

+ x, (2.25)

and set βn := ϕn in (2.23). This yields

lnP

{

sup
j≥n

Mj√
2Lj

≤ 1 +
ϕn

2Ln

}

∼
{

−cne
−x if ϕn > 0,

0 if ϕn ≤ 0,
(2.26)

where cn := cn(x) is defined as

cn :=

(

2Ln+ ϕn

2Ln+ 1
2ϕn

)

exp

(

− ϕ2
n

4Ln

)

[

1 +
−L3n− ln(3/

√
2) + x

3
2L2n

]−1

. (2.27)

Note that the rate of convergence in (2.26) is independent of x. If x ∈ R is fixed, then by
letting n→∞ in (2.26) we find that

lim
n→∞

P

{

2Ln

(

sup
j≥n

Mj√
2Lj

− 1

)

≤ ϕn

}

= Λ(x). (2.28)
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This proves (2.10), whence equation (1.3) of Theorem 1.1 follows.

By using (2.21), we obtain also that as n→∞,

ln P

{

sup
j≥n

|Mj |√
2Lj

≤ 1 +
αn

2

}

∼ −
√
2β−1

n e−βn (Ln)
3/2

. (2.29)

Because βn = ϕn = 3
2L2n− L3n− ln

(

3
2
√

2

)

+ x, (1.4) follows.

3 Proof of Theorem 1.2

In light of (1.6) it suffices to prove that

lim inf
t→∞

L2t

L3t

(

sup
s≥t

B(s)√
2sL2s

− 1

)

≥ 3

4
a.s. (3.1)

We aim to prove that

sup
j≥n

Mj√
2Lj

>

√

1 + c
L2n

Ln
eventually a.s. if c <

3

2
. (3.2)

Theorem 1.2 follows from this by the similar reasons that yielded Theorem 1.1 from (2.10).
But (3.2) follows from (2.23):

P

{

sup
j≥n

Mj√
2Lj

≤
√

1 + c
L2n

Ln

}

= exp

{

−1 + o(1)

2c
√
2
· (Ln)(3/2)−c

L2n

}

. (3.3)

Replace n by ρn where ρ > 1 is fixed. We find that if c < (3/2) then the probabilities sum in
n. Thus, by the Borel–Cantelli lemma, for all ρ > 1 and c < (3/2) fixed,

sup
j≥ρn

Mj√
2Lj

>

√

1 + c
L2(ρn)

L(ρn)
eventually a.s. (3.4)

Equation (3.2) follows from this and monotonicity.

4 An Expectation Bound

We can use our results to improve on the bounds of Dobric and Marano (2003) for the rate of
convergence of E[sups≥t Bs(2sL2s)

−1/2] to 1.

Proposition 4.1. As t→∞,

E

[

sup
s≥t

B(s)√
2sL2s

]

= 1 +
3

4

L3t

L2t
− 1

2

L4t

L2t
+

1

2

γ − ln
(

3/
√
2
)

L2t
+ o

(

1

L2t

)

, (4.1)

where γ ≈ 0.5772 denotes Euler’s constant.
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Proof. Define

Un := 2Ln

(

sup
j≥n

Mj√
2Lj

− 1

)

− 3

2
L2n+ L3n+ ln

(

3/
√
2
)

. (4.2)

We have shown that Un converges weakly to Λ. We now establish that supn E
[

U2
n

]

<∞. This
implies uniform integrability, whence we can deduce that E[Un]→

∫

x dΛ(x).

Let ϕn(x) be as defined in (2.25), and note that x?
n := (3/2)L2n − L3n − ln(3/

√
2) solves

ϕn(−x?
n) = 0.

We recall the definition of cn(x) in (2.27) and rewrite (2.26) to find that for all x > −x?
n,

ln P {Un ≤ x} = −cn(x)(1 + o(1))e−x. (4.3)

Consequently, for n large enough,
∫ ∞

0

xP {Un ≤ −x} ≤
∫ x?

n

0

x exp

(

−1

2
cn(−x)ex

)

dx. (4.4)

For n sufficiently large and 0 ≤ x < x?
n, cn(−x) ≥ e−2/(3/2) ≥ (1/12). Thus, for n sufficiently

large,
∫ ∞

0

xP {Un ≤ −x} ≤
∫ x?

n

0

xe−
1
24

ex

dx ≤
∫ ∞

0

xe−
1
24

ex

dx <∞ . (4.5)

Also for n sufficiently large,
∫ ∞

0

xP {Un > x} ≤
∫ ∞

0

x
(

1− e−
3
2
cn(x)e−x

)

dx ≤
∫ ∞

0

3

2
xcn(x)e

−x dx. (4.6)

We can get the easy bound cn(x) ≤ (3/2+ x)/(1/4) = (6+ 4x), valid for x > 0. This, in turn,
yields the following:

∫ ∞

0

xP{Un > x} dx ≤
∫ ∞

0

3

2
x (6 + 4x) e−x dx <∞. (4.7)

The preceding, (4.5), and integration by parts, together prove that supn E[U
2
n] < ∞; this

proves that {Un}∞n=1 is uniformly integrable. From Lemma 2.1, it follows that as t→∞,

2L2t

(

E

[

sup
s≥t

Bs√
2sL2s

]

− 1

)

− 3

2
L3t+ L4t+ ln

(

3√
2

)

→
∫ ∞

−∞
x dΛ(x). (4.8)

It remains to prove that
∫

R
x dΛ(x) = γ; but

∫

R
x d[e−e−x

] is manifestly equal to

−
∫ ∞

0

L(t)e−t dt = − d

dz

∫ ∞

0

tz−1e−t dt

∣

∣

∣

∣

z=1

= − Γ′(z)

Γ(z)

∣

∣

∣

∣

z=1

= γ. (4.9)

Confer with Davis (1965, Eq. 6.3.2) for the final identity.

5 Miscellany

This final section is concerned with some remarks about random walks. Throughout let
X1, X2, . . . be i.i.d. random variables with

E[X1] = 0, E[X2
1 ] = 1, and E

[

X2
1L2 (|X1| ∨ ee)

]

<∞. (5.1)

Let Sn := X1 + · · ·+Xn (n ≥ 1) denote the corresponding random walk.
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5.1 An Application to Random Walks

According to Theorem 2 of Einmahl (1987), there exists a probability space on which one can
construct {Sn}∞n=1 together with a Brownian motion B such that |Sn−B(n)|2 = o(n/L2n) a.s.
On the other hand, by the reflection principle and the Borel–Cantelli lemma, |B(t)−B(n)|2 =
o(n/L2n) uniformly for all t ∈ [n, n + 1] a.s., and with room to spare. These remarks, and a
few more lines of elementary computations, together yield the following.

Theorem 5.1. If (5.1) holds and x ∈ R, then as n→∞,

P

{

2L2n

(

sup
k≥n

Sk√
2kL2k

− 1

)

− 3

2
L3n+ L4n+ L

(

3√
2

)

≤ x

}

→ Λ(x), (5.2)

P

{

2L2n

(

sup
k≥n

|Sk|√
2kL2k

− 1

)

− 3

2
L3n+ L4n+ L

(

3

2
√
2

)

≤ x

}

→ Λ(x). (5.3)

It would be interesting to know if the preceding remains valid if only E[X1] = 0 and E[X2
1 ] = 1.

The answer may well be, “No”; see Einmahl (1989) for a related result. We owe this observation
to an anonymous referee.

5.2 On the Darling–Erdős Theorem

An anonymous referee has suggested that our Theorem 1.1 is similar to the Darling–Erdős
theorem. Here, we show this is true at the technical level. We do so by presenting a simplified
version of our proof of Theorem 1.1 which yields also the following “Darling–Erdős (1956)
theorem.” Similar ideas appeared earlier in Bertoin (1998).

Theorem 5.2. For all x ∈ R, as n→∞,

P

{

2L2n

(

max1≤k≤n(Sk/
√
k)√

2L2n
− 1

)

− L3n

2
+

L(4π)

2
≤ x

}

→ Λ(x). (5.4)

There is also a related result about |Sk| that is proved by similar means. We will restrict
attention to the statement of Theorem 5.2 only.

In their original paper, Darling and Erdős (1956) proved this under the more restrictive condi-
tion that E{|X1|3} <∞. They proceed by first working on the Gaussian case and then using a
“weak invariance principle.” The present formulation requires only that E{X2

1L2(|X1|∨ee)} <
∞; it can be shown to follow directly from the Darling–Erdős theorem, in the Gaussian case,
and the strong invariance principle of Einmahl (1987) in place of the said weak invariance prin-
ciple. Einmahl (1989, p. 242) attributes this observation to David M. Mason; see also Einmahl
and Mason (1989). Furthermore, Einmahl proves that the P-integrability of X2

1L2(|X2| ∨ ee)
is optimal. For other related results see, for example, the works of Bertoin (1998), Oodaira
(1976), and Shorack (1979).

Proof. We will use the notation of the proof of Theorem 1.1 throughout.

By (2.22) and independence,

lim
n→∞

P

{

max
1≤j≤n

Mj ≤
√

2Ln+ L2n− 2Lγ

}

= e−γ/
√

2, (5.5)
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valid for all γ > 0. But maxj≤n Mj = X∗(τ(n)), where X∗(t) := sups≤t X(s). This, (2.4),
and monotonicity together imply that for all x ∈ R,

lim
n→∞

P

{

Ln

(

X∗ (n
√
2π
)

√
2Ln

− 1

)

− L2n

4
≤ x

}

= exp

(

−e−2x

√
2

)

. (5.6)

Yet another appeal to monotonicity yields that for all x ∈ R,

lim
t→∞

P







Lt





X∗(t)
√

2L
(

t/
√
2π
)

− 1



− L2t

4
≤ x







= exp

(

−e−2x

√
2

)

. (5.7)

We have used also the well-known fact that X∗(t) ∼
√
2Lt a.s. But

Lt





X∗(t)
√

2L
(

t/
√
2π
)

− 1



 = o(1) + Lt

(

X∗(t)√
2Lt

− 1

)

+
ln(2π)

4
a.s. (5.8)

Hence, for all x ∈ R,

lim
t→∞

P

{

Lt

(

X∗(t)√
2Lt

− 1

)

− L2t

4
≤ x

}

= exp

(

−e−2x

2
√
π

)

. (5.9)

The preceding is the “Darling–Erdős theorem for Brownian motion.” The remainder of the
theorem follows from strong approximations.

Remark 5.3. Several times in the previous proof we used the classical fact that X∗(t) ∼
√
2Lt

a.s. This too follows from the methods of the paper. We include a proof in order to illustrate
the power of these techniques. Firstly, we note that X∗(t) ≤ (1 + o(1))

√
2Lt by the LIL.

Secondly, in accord with (2.22), P{maxj≤n Mj ≤ (1 − ε)
√
2Ln} ≤ exp(−cnε) for some c > 0

which does not depend on (n, ε). This and the Borel–Cantelli lemma together prove that
maxj≤n Mj ≥ (1 + o(1))

√
2Ln. Equation (2.4) and monotonicity together prove that X∗(t) ≥

(1 + o(1))
√
2Lt, which has the desired effect.

References

Anderson, C. W. 1970. Extreme value theory for a class of discrete distributions with applications to some
stochastic processes, J. Appl. Probability 7, 99–113.

Berman, Simeon M. 1988. Extreme sojourns of diffusion processes, Ann. Probab. 16(1), 361–374.

. 1986. Extreme sojourns for random walks and birth-and-death processes, Comm. Statist. Stochastic
Models 2(3), 393–408.

. 1964. Limiting distribution of the maximum of a diffusion process, Ann. Math. Statist 35, 319–329.
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Einmahl, Uwe and David M. Mason. 1989. Darling-Erdős theorems for martingales, J. Theoret. Probab. 2(4),
437–460.
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