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JEAN-FRANÇOIS LE GALL
DMA-ENS, 45 rue d’Ulm, 75005 PARIS, FRANCE
email: legall@dma.ens.fr

MATHIEU MERLE
Mathematics Department, UBC, VANCOUVER B.C. V6T1W5, CANADA
email: mathieu.merle@ens.fr

Submitted May 17 2006, accepted in final form July 21 2006

AMS 2000 Subject classification: 60J80
Keywords: super-Brownian motion, occupation measure, limit distribution.

Abstract
We derive the asymptotic behavior of the occupation measure Z(B1) of the unit ball for super-
Brownian motion started from the Dirac measure at a distant point x and conditioned to hit
the unit ball. In the critical dimension d = 4, we obtain a limiting exponential distribution for
the ratio Z(B1)/ log |x|.

1 Introduction

The results of the present work are motivated by the following simple problem about branching
random walk in Zd. Consider a population of branching particles in Zd, such that individuals
move independently in discrete time according to a random walk with zero mean and finite
second moments, and at each integer time individuals die and give rise independently to a
random number of offspring according to a critical offspring distribution. Suppose that the
population starts with a single individual sitting at a point x ∈ Zd located far away from the
origin, and condition on the event that the population will eventually hit the origin. Then
what will be the typical number of individuals that visit the origin, and is there a limiting
distribution for this number?
In the present work, we address a continuous version of the previous problem, and so we deal
with super-Brownian motion in Rd. We denote by MF (Rd) the space of all finite measures in
Rd. We also denote by X = (Xt)t≥0 a d-dimensional super-Brownian motion with branching
rate γ, that starts from µ under the probability measure Pµ, for every µ ∈ MF (Rd). We refer
to Perkins [Per] for a detailed presentation of super-Brownian motion. For every x ∈ Rd, we
also denote by Nx the excursion measure of super-Brownian motion from x. We may and will
assume that both Pµ and Nx are defined on the canonical space C(R+,MF (Rd)) of continuous
functions from R+ into MF (Rd) and that (Xt)t≥0 is the canonical process on this space. Recall
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from Theorem II.7.3 in Perkins [Per] that X started at the Dirac measure δx can be constructed
from the atoms of a Poisson measure with intensity Nx.
The total occupation measure of X is the finite random measure on Rd defined by

Z(A) =
∫ ∞

0

Xt(A) dt,

for every Borel subset A of Rd. We set R = supp(Z), where supp(µ) denotes the topological
support of the measure µ. Equivalently,

R = cl
( ⋃

t≥0

supp(Xt)
)
, (1)

where cl(A) denotes the closure of the set A. In dimension d ≥ 4, points are polar, meaning
that Nx(0 ∈ R) = 0 if x 6= 0, or equivalently Pµ(0 ∈ R) = 0 if 0 does not belong to the closed
support of µ. In dimension d ≤ 3, we have if x 6= 0,

Nx(0 ∈ R) =
8− 2d

γ
|x|−2 (2)

(see Theorem 1.3 in [DIP] or Chapter VI in [LG1]). It follows from the results in Sugitani
[Sug] that, again in dimension d ≤ 3, the measure Z has a continuous density under Pδx or
under Nx, for any x ∈ Rd. We write (`y, y ∈ Rd) for this continuous density.
For every x ∈ Rd and r > 0, B(x, r) denotes the open ball centered at x with radius r. To
simplify notation, we write Br = B(0, r) for the ball centered at 0 with radius r. By analogy
with the discrete problem mentioned above, we are interested in the conditional distribution of
Z(B1) under Pδx

(· | Z(B1) > 0) when |x| is large. As a simple consequence of (2) and scaling,
we have when d ≤ 3,

Pδx(Z(B1) > 0) ∼ Nx(Z(B1) > 0) ∼ 8− 2d

γ
|x|−2 as |x| → ∞. (3)

Here and later the notation f(x) ∼ g(x) as |x| → ∞ means that the ratio f(x)/g(x) tends to
1 as |x| → ∞. On the other hand, when d ≥ 4, it is proved in [DIP] that, as |x| → ∞,

Pδx(Z(B1) > 0) ∼ Nx(Z(B1) > 0) ∼


2
γ
|x|−2(log |x|)−1 if d = 4,

κd

γ
|x|2−d if d ≥ 5,

(4)

where κd > 0 is a constant depending only on d.
For d ≥ 3, the Green function of d-dimensional Brownian motion is

G(x, y) = cd|x− y|2−d,

where
cd = (2πd/2)−1Γ(

d

2
− 1).

If µ ∈ MF (Rd) and ϕ is a nonnegative measurable function on Rd, we use the notation
〈µ, ϕ〉 =

∫
ϕ dµ.

We can now state our main result.
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Theorem 1 Let ϕ be a bounded nonnegative measurable function supported on B1, and set
ϕ =

∫
ϕ(y)dy.

(i) If d ≤ 3, the law of |x|d−4〈Z, ϕ〉 under Pδx
(· | Z(B1) > 0) converges as |x| → ∞ towards

the distribution of ϕ `0 under Nx0(· | 0 ∈ R), where x0 is an arbitrary point in Rd such
that |x0| = 1.

(ii) If d = 4, the law of (log |x|)−1〈Z, ϕ〉 under Pδx
(· | Z(B1) > 0) converges as |x| → ∞ to

an exponential distribution with mean γϕ/(4π2).

(iii) If d ≥ 5, the law of 〈Z, ϕ〉 under Pδx(· | Z(B1) > 0) converges as |x| → ∞ to the
probability measure µϕ on R+ with moments mp,ϕ =

∫
rp µϕ(dr) given by

m1,ϕ =
cd

κd
γ ϕ,

and for every p ≥ 2,

mp,ϕ =
cd

κd

γ2

2

p−1∑
j=1

(
p

j

)∫
Nz(〈Z, ϕ〉j)Nz(〈Z, ϕ〉p−j)dz.

The scaling invariance properties of super-Brownian motion allow us to restate Theorem 1 in
terms of super-Brownian motion started with a fixed initial value and the occupation measure
of a small ball with radius ε tending to 0. Part (i) of Theorem 1 then becomes a straightforward
consequence of the fact that the measure Z has a continuous density in dimension d ≤ 3: See
Lee [Lee] and Merle [Mer] for more precise results along these lines. On the other hand, the
proof of part (iii) is relatively easy from the method of moments and known recursive formulas
for the moments of the random measure Z under Nx. For the sake of completeness, we include
proofs of the three cases in Theorem 1, but the most interesting part is really the critical
dimension d = 4, where it is remarkable that an explicit limiting distribution can be obtained.
Notice that dimension 4 is critical with respect to the polarity of points for super-Brownian
motion. Part (ii) of the theorem should therefore be compared with classical limit theorems for
additive functionals of planar Brownian (note that d = 2 is the critical dimension for polarity
of points for ordinary Brownian motion). The celebrated Kallianpur-Robbins law states that
the time spent by planar Brownian motion in a bounded set before time t behaves as t → ∞
like log t times an exponential variable (see e.g. section 7.17 in Itô and McKean [IM]). The
Kallianpur-Robbins law can be derived by “conceptual proofs”which explain the occurrence of
the exponential distribution. Our initial approach to part (ii) was based on a similar conceptual
argument based on the Brownian snake approach to super-Brownian motion. Informally, if
a > 0 is fixed, we may apply the strong Markov property of the Brownian snake at the first time
when the occupation time of the unit ball by the “tip” of the snake exceeds a, and infer that
any limiting distribution for the occupation time of the ball must satisfy the lack of memory
property which characterizes exponential distributions. Since it seems delicate to make this
argument completely rigorous, we rely below on a careful analysis of the moments of 〈Z, ϕ〉.
Let us finally comment on the branching random walk problem discussed at the beginning of
this introduction. Although we do not consider this problem here, it is very likely that a result
analogous to Theorem 1 holds in this discrete setting, just replacing 〈Z, ϕ〉 with the number
of particles that hit the origin. In particular, the limiting distributions obtained in (i) and (ii)
of Theorem 1 should also appear in the discrete setting.
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2 Preliminary remarks

Let us briefly recall some basic facts about super-Brownian motion and its excursion measures.
If x ∈ Rd and if

N =
∑
i∈I

δωi

is a Poisson point measure on C(R+,MF (Rd)) with intensity Nx(·), then the measure-valued
process Y defined by

Y0 = δx,

Yt =
∑
i∈I

Xt(ωi) , for every t > 0,

has law Pδx (see Theorem II.7.3 in [Per]).
We can use this Poisson decomposition to observe that it is enough to prove Theorem 1 with
the conditional measure Pδx

(· | Z(B1) > 0) replaced by Nx(· | Z(B1) > 0). Indeed, write
M = #{i ∈ I : R(ωi) ∩ B1 6= ∅} (where R(ωi) is defined as in (1)). Then, M is Poisson
with parameter Nx(Z(B1) > 0), and {M ≥ 1} is the event that the range of Y hits B1.
Furthermore, the preceding Poisson decomposition just shows that the law of 〈Z, ϕ〉 under Pδx

coincides with the law of Z1 + · · ·+ZM , where conditionally given M , the variables Z1, Z2, . . .
are independent and distributed according to the law of 〈Z, ϕ〉 under Nx(· | Z(B1) > 0). Since
P (M = 1 | M ≥ 1) tends to 1 as |x| → ∞ (by the estimates (3) and (4)), we see that the law
of 〈Z, ϕ〉 (or the law of f(x)〈Z, ϕ〉 for any deterministic function f) under Pδx(· | Z(B1) > 0)
will be arbitrarily close to the law of the same variable under Nx(· | Z(B1) > 0) when |x| is
large, which is what we wanted. Note that this argument is valid in any dimension.
Let us also discuss the dependence of our results on the branching rate γ. If (Yt)t≥0 is a
super-Brownian motion with branching rate γ started at µ, and λ > 0, then (λYt)t≥0 is a
super-Brownian motion with branching rate λγ started at λµ. A similar property then holds
for excursion measures. Write N(γ)

x instead of Nx to emphasize the dependence on γ. Then
the “law” of (λXt)t≥0 under N(γ)

x is λ−1N(λγ)
x . Thanks to these observations, it will be enough

to prove Theorem 1 for one particular value of γ.
In what follows, we take γ = 2, as this will simplify certain formulas. For any nonnegative
measurable function ϕ on Rd, the moments of 〈Z, ϕ〉 are determined by induction by the
formulas

Nx(〈Z, ϕ〉) =
∫

Rd

G(x, y)ϕ(y) dy (5)

and, for every p ≥ 2,

Nx(〈Z, ϕ〉p) =
p−1∑
j=1

(
p

j

)∫
Rd

G(x, z) Nz(〈Z, ϕ〉j)Nz(〈Z, ϕ〉p−j)dz. (6)

See e.g. formula (16.2.3) in [LG2], and note that the extra factor 2 there is due to the fact
that the the Brownian snake approach gives γ = 4.

3 Low dimensions

In this section, we prove part (i) of Theorem 1. Let ε > 0, and set ϕε(x) = ϕ(x/ε). By
scaling, the law of 〈Z, ϕ〉 under Nx(· | Z(B1) > 0) coincides with the law of ε−4〈Z, ϕε〉 under
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Nεx(· | Z(Bε) > 0). Taking ε = |x|−1, we see that the proof of part (i) reduces to checking
that the law of |x|d〈Z, ϕ|x|−1〉 under Nx/|x|(· | Z(B|x|−1) > 0) converges to the distribution of
ϕ`0 under Nx0(· | 0 ∈ R).
However, as |x| → ∞,

Nx/|x|(Z(B|x|−1) > 0) = Nx0(Z(B|x|−1) > 0) −→ Nx0(0 ∈ R) = 4− d.

On the other hand, since

|x|d〈Z, ϕ|x|−1〉 = |x|d
∫

dy `y ϕ|x|−1(y) =
∫

dy `y/|x| ϕ(y)

the continuity of the local times `y implies that, for every δ > 0,

Nx/|x|

(∣∣∣|x|d〈Z, ϕ|x|−1〉 − ϕ `0
∣∣∣ > δ

)
≤ Nx/|x|

(
sup

y∈B|x|−1

|`y − `0| > δ

ϕ

)
−→ 0

as |x| → ∞. By rotational invariance, the law of `0 under Nx/|x| coincides with the law of the
same variable under Nx0 . Part (i) of Theorem 1 now follows from the preceding observations.

4 High dimensions

We now turn to part (iii) of Theorem 1 and so we suppose that d ≥ 5. As noticed earlier, we
may replace Pδx(· | Z(B1) > 0) by Nx(· | Z(B1) > 0).
Without loss of generality, we assume in this part that ϕ ≤ 1.

Lemma 1 There exists a finite constant Kd depending only on d, such that, for every x ∈ Rd

and p ≥ 1,
Nx(〈Z, ϕ〉p) ≤ Kp

d p! (|x|2−d ∧ 1).

Proof. Obviously, it is enough to consider the case when ϕ = 1B1 . From (5), one immediately
verifies that

Nx(Z(B1)) ≤ C1,d (|x|2−d ∧ 1)

for some constant C1,d depending only on d. Straightforward estimates give the existence of a
constant ad such that, for every x ∈ Rd,∫

G(x, z) (|z|2−d ∧ 1)2 dz ≤ ad(|x|2−d ∧ 1).

We then claim that for every integer p ≥ 1,

Nx(Z(B1)p) ≤ Cp,d p! (|x|2−d ∧ 1) (7)

where the constants Cp,d, p ≥ 2 are determined by induction by

Cp,d = ad

p−1∑
j=1

Cj,dCp−j,d. (8)
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Indeed, let k ≥ 2 and suppose that (7) holds for every p ∈ {1, . . . , k − 1}. From (6), we get

Nx(Z(B1)k) ≤ k!
k−1∑
j=1

Cj,dCk−j,d

∫
G(x, z) (|z|2−d ∧ 1)2 dz,

and our choice of ad shows that (7) also holds for p = k. We have thus proved our claim (7)
for every p ≥ 1.
From (8) it is an elementary exercise to verify that Cp,d ≤ Kp

d for some constant Kd depending
only on d. This completes the proof. �

Let us now prove that for every p ≥ 1, Nx(〈Z, ϕ〉p | Z(B1) > 0) converges as |x| → ∞ to mp,ϕ.
If p = 1, this is an immediate consequence of (4), (5) and dominated convergence. If p ≥ 2,
we write

Nx(〈Z, ϕ〉p)
|x|2−d

=
p−1∑
j=1

(
p

j

)∫
G(x, z)
|x|2−d

Nz(〈Z, ϕ〉j)Nz(〈Z, ϕ〉p−j)dz.

In each of the integrals appearing in the previous display, the contribution of the set {z ∈ Rd :
|z − x| ≤ |x|/2} goes to 0 as |x| → ∞, by an easy application of the bounds of Lemma 1.
On the other hand, if we restrict our attention to the set {z ∈ Rd : |z − x| > |x|/2}, we can
again use the bounds of Lemma 1 together with the property

∫
(|z|2−d ∧ 1)2dz < ∞, in order

to justify dominated convergence and to get

lim
|x|→∞

Nx(〈Z, ϕ〉p)
|x|2−d

= cd

p−1∑
j=1

(
p

j

)∫
Nz(〈Z, ϕ〉j)Nz(〈Z, ϕ〉p−j)dz.

The convergence of Nx(〈Z, ϕ〉p | Z(B1) > 0) towards mp,ϕ now follows from (4).
Finally, Lemma 1 and (4) also imply that any limit distribution of the laws of 〈Z, ϕ〉 under
Nx(· | Z(B1) > 0) is characterized by its moments. Part (iii) of Theorem 1 now follows as a
standard application of the method of moments.

5 The critical dimension

In this section, we consider the critical dimension d = 4. Recall that in that case G(x, y) =
(2π2)−1|y−x|−2. As in the previous sections, we take γ = 2. We start by stating two lemmas.

Lemma 2 Let x ∈ R4 \ {0}. Then,

Nx[Z(Bε) > 0] ∼
ε→0

|x|−2

(
log

1
ε

)−1

.

Lemma 3 Let x ∈ R4 \ {0}, and p ≥ 1. Let ϕ be a bounded nonnegative measurable function
on B1, and for every ε > 0, put ϕε(y) = ϕ(y/ε). Then,

Nx[〈Z, ϕε〉)p] ∼
ε→0

p!
(

ϕ

2π2

)p

|x|−2 ε4p

(
log

1
ε

)p−1

,

uniformly when x varies over a compact subset of R4 \ {0}.
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Let us explain how part (ii) of Theorem 1 follows from these two lemmas. Notice that the
estimate of Lemma 2 also holds uniformly when x varies over a compact subset of R4 \ {0},
by scaling and rotational invariance. Combining the results of the lemmas gives

Nx

[(
〈Z, ϕε〉

ε4 log( 1
ε )

)p ∣∣∣∣Z(Bε) > 0
]
∼

ε→0
p!
(

ϕ

2π2

)p

,

uniformly when x varies over a compact subset of R4 \ {0}. By scaling, for any x ∈ R4 with
|x| > 1 the law of 〈Z, ϕ〉 under Nx(· | Z(B1) > 0) coincides with the law of |x|4〈Z, ϕ1/|x|〉
under Nx/|x|(· | Z(B1/|x|) > 0). Hence, we deduce from the preceding display that we have
also

Nx

[(
〈Z, ϕ〉
log |x|

)p ∣∣∣∣Z(B1) > 0
]

∼
|x|→∞

p!
(

ϕ

2π2

)p

.

The statement in part (ii) of Theorem 1 now follows from an application of the method of
moments.
It remains to prove Lemma 2 and Lemma 3.

5.1 Proof of Lemma 2

From well-known connections between super-Brownian motion and partial differential equa-
tions (see e.g. Chapter VI in [LG1]), the function uε(x) = Nx[Z(Bε) > 0] defined for |x| > ε
solves the singular boundary problem

∆u = 2u2, in the domain {|x| > ε}
u(x) −→∞, as |x| → ε+

u(x) −→ 0, as |x| → ∞.

As a consequence of a lemma due to Iscoe (see Lemma 3.4 in [DIP]), for every x ∈ R4\{0}, we
have uε(x) ∼ |x|−2(log(1/ε))−1 as ε → 0. Lemma 2 follows.

5.2 Proof of Lemma 3

5.2.1 Lower bound

Let us introduce the space of functions

F : =
{

f : R+ → R : lim
ε→0

f(ε) = 0 and lim
ε→0

f(ε)
ε

= ∞
}

.

Claim. For every integer p ≥ 1, for every f ∈ F , for every β > 0, there exists ε0 > 0 such
that, for every ε ∈ (0, ε0),

inf
y/∈Bf(ε)

|y|2
(

log
(
|y|
ε

))1−p

Ny [〈Z, ϕε〉p] ≥ (1− β) p!
(

ϕ

2π2

)p

ε4p. (9)

We prove the claim by induction on p. Let us first consider the case p = 1. We fix f ∈ F .
Using (5), for ε > 0 and y ∈ R4 such that |y| > f(ε), we have

Ny [〈Z, ϕε〉] =
∫

Bε

dzϕε(z)G(y, z) ≥ ε4ϕ inf
z∈Bε

G(y, z). (10)
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Since limε→0(f(ε)/ε) = ∞, we see that

inf
y/∈Bf(ε)

(
|y|2 inf

{
G(y, z), z ∈ Bε

})
→

ε→0

1
2π2

.

We thus deduce from (10) that for ε small enough,

inf
y/∈Bf(ε)

|y|2Ny [〈Z, ϕε〉] ≥
1− β

2π2
ϕ ε4,

which gives our claim for p = 1.
Let p ≥ 2 and suppose that the claim holds up to order p− 1. Fix f ∈ F and β ∈ (0, 1). Let
β′ ∈ (0, 1) be such that (1− β′)4 = 1− β, and let C > 0 be such that (1 + C−1)−2 = 1− β′.

Introduce the function f̂ defined by

f̂(ε) = ε log
(

f(ε)
ε

)
. (11)

Clearly, f̂ ∈ F . Furthermore, we have

lim
ε→0

log(f̂(ε)/ε)
log(f(ε)/ε)

= 0. (12)

Using (6), we obtain, for any y /∈ Bf(ε)

Ny [〈Z, ϕε〉p] ≥
p−1∑
j=1

(
p

j

)∫
B|y|/C\Bf̂(ε)

dz G(y, z) Nz

[
〈Z, ϕε〉j

]
Nz

[
〈Z, ϕε〉p−j

]
.

Using the induction hypothesis, we get, provided ε is small enough,

Ny [〈Z, ϕε〉p]

≥ (1− β′)2p!
(

ϕ

2π2

)p

(p− 1)ε4p

∫
B|y|/C\Bf̂(ε)

dzG(y, z)
1
|z|4

(
log

|z|
ε

)p−2

.

From the definition of C, for any z ∈ B|y|/C , we have G(y, z) ≥ (1−β′)G(0, y). Using the fact
that the area of the unit sphere S3 is 2π2, we obtain

(p− 1)
∫

B|y|/C\Bf̂(ε)

dzG(y, z)
1
|z|4

(
log

|z|
ε

)p−2

≥ 2π2(1− β′) G(0, y)(p− 1)
∫ |y|/C

f̂(ε)

dr

r

(
log

r

ε

)p−2

= (1− β′)|y|−2

(log
|y|
Cε

)p−1

−

(
log

f̂(ε)
ε

)p−1
 .

Moreover, using the property f ∈ F and (12), we see that, if ε is sufficiently small, for any
y /∈ Bf(ε) (

log
|y|
Cε

)p−1

−

(
log

f̂(ε)
ε

)p−1

≥ (1− β′)
(

log
|y|
ε

)p−1

.
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From the preceding bounds, we get that, if ε is sufficiently small,

inf
y/∈Bf(ε)

|y|2
(

log
|y|
ε

)1−p

Ny [〈Z, ϕε〉p] ≥ (1− β′)4p!
(

ϕ

2π2

)p

ε4p,

which is our claim at order p.

5.2.2 Upper bound

Without loss of generality we assume that ϕ ≤ 1. We need to get upper bounds on Ny [〈Z, ϕε〉p]
for y belonging to different subsets of R4.
We will prove that, for every p ≥ 1, for every f ∈ F and every β ∈ (0, 1) the following bounds
hold for ε > 0 sufficiently small:

(
H1

p

)
sup
|y|≤4ε

Ny [〈Z, ϕε〉p] ≤ p! ε4p−2

(
log

f(ε)
ε

)p−1

,

(
H2

p

)
sup

4ε≤|y|≤f(ε)

|y|2Ny [〈Z, ϕε〉p] ≤ p! ε4p

(
log

f(ε)
ε

)p−1

,

(
H3

p

)
sup

|y|≥f(ε)

|y|2
(

log
|y|
ε

)1−p

Ny [〈Z, ϕε〉p] ≤
(

ϕ + β

2π2

)p

p! ε4p.

Only (H3
p) is needed in our proof of Lemma 3. However, we will proceed by induction on p to

get (H3
p), and we will use (H1

p) and (H2
p) in our induction argument. The bounds (H1

p) and (H2
p)

are not sharp, but they will be sufficient for our purposes. Notice that (ϕ + β)/(2π2) < 1/3
because ϕ ≤ 1 and β < 1.
We first note that when p = 1 the bounds (H1

1), (H2
1) and (H3

1) are easy consequences of (5).
Let p ≥ 2 and assume that (H1

k), (H2
k) and (H3

k) hold for every 1 ≤ k ≤ p − 1, for any choice
of β and f . Let us fix f ∈ F and β0 ∈ (0, 1). In our induction argument we will use (H3

k), for
1 ≤ k ≤ p− 1, with β ∈ (0, 1) chosen small enough so that

(1 + β)2(ϕ + β)p < (ϕ + β0)p.

For every j ∈ {1, . . . , p− 1}, every y ∈ R4 and every Borel subset A of R4, we set

Iε
p,j(A, y) :=

1
j!(p− j)!

∫
A

dzG(y, z)Nz

[
〈Z, ϕε〉j

]
Nz

[
〈Z, ϕε〉p−j

]
.

We also set Iε
p,j(y) = Iε

p,j(R4, y).
We first verify (H1

p), and so we assume that |y| ≤ 4ε. We fix j ∈ {1, . . . , p − 1} and we split
the the integral in Iε

p,j(y) into three parts corresponding to the sets

A
(1)
1 = B8ε, A

(1)
2 = Bf(ε) \B8ε, A

(1)
3 = R4 \Bf(ε).

From (6), we have

Ny [〈Z, ϕε〉p] = p!
p−1∑
j=1

(
Iε
p,j(A

(1)
1 , y) + Iε

p,j(A
(1)
2 , y) + Iε

p,j(A
(1)
3 , y)

)
. (13)
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If ε is small enough, we deduce from the bounds (H1
k) and (H2

k), with 1 ≤ k ≤ p− 1, that

Iε
p,j(A

(1)
1 , y) ≤ ε4p−4

(
log

f(ε)
ε

)p−2 ∫
B8ε

dz

2π2|z − y|2
.

It follows that

lim
ε→0

(
sup
|y|≤4ε

ε2−4p

(
log

f(ε)
ε

)1−p

Iε
p,j(A

(1)
1 , y)

)
= 0.

If z ∈ A
(1)
2 ∪A

(1)
3 , we have G(y, z) ≤ 4G(0, z). Using (H2

k) with 1 ≤ k ≤ p− 1, we obtain, if ε
is small enough,

Iε
p,j(A

(1)
2 , y) ≤ 4 ε4p

(
log

f(ε)
ε

)p−2 ∫ f(ε)

8ε

dr

r3
,

and thus

lim
ε→0

(
sup
|y|≤4ε

ε2−4p

(
log

f(ε)
ε

)1−p

Iε
p,j(A

(1)
2 , y)

)
= 0.

Using finally (H3
k) with 1 ≤ k ≤ p− 1, we obtain, for ε sufficiently small,

Iε
p,j(A

(1)
3 , y) ≤ 4 ε4p

∫ ∞

f(ε)

dr

r3

(
log

r

ε

)p−2

.

Since ∫ ∞

f(ε)

dr

r3

(
log

r

ε

)p−2

∼
ε→0

1
2f(ε)2

(
log

f(ε)
ε

)p−2

we get

lim
ε→0

(
sup
|y|≤4ε

ε2−4p

(
log

f(ε)
ε

)1−p

Iε
p,j(A

(1)
3 , y)

)
= 0.

Combining the estimates we obtained for Iε
p,j(A

(1)
1 , y), Iε

p,j(A
(1)
2 , y) and Iε

p,j(A
(1)
3 , y), we arrive

at

lim
ε→0

(
sup
|y|≤4ε

ε2−4p

(
log

f(ε)
ε

)1−p

Iε
p,j(y)

)
= 0.

From (13), we obtain that (H1
p) holds.

We now turn to the proof of (H2
p), and so we assume that 4ε ≤ |y| ≤ f(ε). Again we fix

j ∈ {1, . . . , p− 1}. We split the integral in Iε
p,j(y) into five parts corresponding to the sets

• A
(2)
1 = B2ε,

• A
(2)
2 = B(y, |y|/2),

• A
(2)
3 = Bf̂(ε) \ (B2ε ∪B(y, |y|/2)),

• A
(2)
4 = B2f(ε) \

(
Bf̂(ε) ∪B(y, |y|/2)

)
,
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• A
(2)
5 = R4 \B2f(ε),

where f̂(ε) = ε log(f(ε)/ε) as in (11). We have thus

Ny [〈Z, ϕε〉p] = p!
p−1∑
j=1

5∑
i=1

Iε
p,j(A

(2)
i , y). (14)

Notice first that if z ∈ A
(2)
1 , we have |z| ≤ |y|/2 so that G(z − y) ≤ 4G(y). Using (H1

k) with
1 ≤ k ≤ p− 1, we obtain, provided ε is small enough

Iε
p,j(A

(2)
1 , y) ≤ ε4p−4

(
log

f(ε)
ε

)p−2 2
π2|y|2

∫
{|z|≤2ε}

dz,

so that

lim
ε→0

(
sup

4ε<|y|<f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(2)
1 , y)

)
= 0.

If z ∈ A
(2)
2 , using the bound |z|−2 ≤ 4|y|−2, we deduce from (H1

k) and (H2
k) for 1 ≤ k ≤ p− 1

that for sufficiently small ε,

Iε
p,j(A

(2)
2 , y) ≤ ε4p

(
log

f(ε)
ε

)p−2 163

|y|4

∫
B(y,|y|/2)

G(y, z)dz.

It follows that

lim
ε→0

(
sup

4ε<|y|<f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(2)
2 , y)

)
= 0.

If z ∈ A
(2)
3 , G(y, z) ≤ 4G(0, y). Since f̂ ∈ F , we can use (H1

k) and (H2
k) with 1 ≤ k ≤ p− 1 to

get that, for ε small enough,

Iε
p,j(A

(2)
3 , y) ≤ ε4p

(
log

f̂(ε)
ε

)p−2
4× 162

|y|2

∫ f̂(ε)

ε

r−1dr.

It then follows from (12) that

lim
ε→0

(
sup

4ε<|y|<f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(2)
3 , y)

)
= 0.

If z ∈ A
(3)
4 , we still have G(y, z) ≤ 4G(0, y). Again, f̂ ∈ F , and we can use (H3

k) with
1 ≤ k ≤ p− 1, recalling that (ϕ + β)/(2π2) < 1/3, to obtain for ε small

Iε
p,j(A

(2)
4 , y) ≤ 3−p ε4p 4

|y|2

∫ 2f(ε)

f̂(ε)

dr

r

(
log

r

ε

)p−2

=
4× 3−p

p− 1
ε4p 1

|y|2

(
log

2f(ε)

f̂(ε)

)p−1

.
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It follows that

lim sup
ε→0

(
sup

4ε<|y|<f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(2)
4 , y)

)
≤ 4× 3−p

p− 1
<

1
p− 1

.

Finally, if |z| ≥ 2f(ε), we have G(y, z) ≤ 4(2π2)−1|z|−2 and using again (H3
k) with 1 ≤ k ≤

p− 1, we get for ε sufficiently small,

Iε
p,j(A

(2)
5 , y) ≤ 4 ε4p

∫ ∞

2f(ε)

dr

r3

(
log

r

ε

)p−2

,

and as before in the estimate for Iε
p,j(A

(1)
3 , y), it follows that

lim
ε→0

(
sup

4ε<|y|<f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(2)
5 , y)

)
= 0.

We get (H2
p) by combining the preceding estimates on Iε

p,j(A
(2)
i , y) for 1 ≤ i ≤ 5, and using

(14).

We now prove (H3
p), and we thus assume that |y| ≥ f(ε). Let C ′ > 1 be such that 1−(C ′)−1 =

(1 + β)−1. For ε > 0 sufficiently small, we can split the integral in Iε
p,j(y) into five parts

corresponding to the sets

• A
(3)
1 = B4ε ,

• A
(3)
2 = Bf̂(ε) \B4ε ,

• A
(3)
3 = B|y|/C′ \Bf̂(ε) ,

• A
(3)
4 = B2|y| \B|y|/C′ ,

• A
(3)
5 = R4 \B2|y| .

We have then

Ny [〈Z, ϕε〉p] = p!
p−1∑
j=1

5∑
i=1

Iε
p,j(A

(3)
i , y). (15)

Using (H1
k) with 1 ≤ k ≤ p− 1, we get for ε small that

Iε
p,j(A

(3)
1 , y) ≤ ε4p−4

(
log

f(ε)
ε

)p−2 4
|y|2

∫ 4ε

0

r3dr,

so that

lim
ε→0

(
sup

|y|≥f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(3)
1 , y)

)
= 0.

Then, using (H2
k) with 1 ≤ k ≤ p− 1, we obtain for ε small enough,

Iε
p,j(A

(3)
2 , y) ≤ ε4p

(
log

f(ε)
ε

)p−2 4
|y|2

∫ f̂(ε)

4ε

r−1dr.
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Thus, using (12), we have

lim
ε→0

(
sup

|y|≥f(ε)

ε−4p|y|2
(

log
f(ε)

ε

)1−p

Iε
p,j(A

(3)
2 , y)

)
= 0.

If z ∈ A
(3)
3 , we have G(y, z) ≤ (1 − (C ′)−1)−2G(0, y) = (1 + β)2G(0, y). Since f̂ ∈ F , we can

use (H3
k) with 1 ≤ k ≤ p− 1 to get for ε sufficiently small,

Iε
p,j(A

(3)
3 , y) ≤ (1 + β)2

(
ϕ + β

2π2

)p

ε4p 1
|y|2

∫ |y|/C′

f̂(ε)

dr

r

(
log

r

ε

)p−2

=
(1 + β)2

p− 1

(
ϕ + β

2π2

)p

ε4p 1
|y|2

(
log

|y|
C ′f̂(ε)

)p−1

,

Recalling (12), we obtain that

lim sup
ε→0

(
sup

|y|≥f(ε)

ε−4p|y|2
(

log
|y|
ε

)1−p

Iε
p,j(A

(3)
3 , y)

)

≤ (1 + β)2

p− 1

(
ϕ + β

2π2

)p

<
1

p− 1

(
ϕ + β0

2π2

)p

,

using our choice of β. If z ∈ A
(3)
4 , we have |z|−2 ≤ C ′2|y|−2. Since f̂ ∈ F , we obtain from

(H3
k) with 1 ≤ k ≤ p− 1 that for sufficiently small ε,

Iε
p,j(A

(3)
4 , y) ≤ ε4p C ′4

|y|4

∫
{|y|/C′≤|z|≤2|y|}

dzG(y, z)
(

log
|z|
ε

)p−2

≤ ε4p C ′4

|y|4

∫
{|z|≤3|y|}

dz

2π2|z|2

(
log+

(
|z + y|

ε

))p−2

≤ ε4p 9C ′4

2|y|2

(
log

4|y|
ε

)p−2

.

It follows that

lim
ε→0

(
sup

|y|≥f(ε)

ε−4p|y|2
(

log
|y|
ε

)1−p

Iε
p,j(A

(3)
4 , y)

)
= 0.

Finally, using (H3
k) with 1 ≤ k ≤ p− 1, we get for ε small,

Iε
p,j(A

(3)
5 , y) ≤ 4 ε4p

∫ ∞

2|y|

dr

r3

(
log

r

ε

)p−2

≤ K ε4p 1
|y|2

(
log

2|y|
ε

)p−2

,

for some constant K depending only on p. Thus,

lim
ε→0

(
sup

|y|≥f(ε)

ε−4p|y|2
(

log
|y|
ε

)1−p

Iε
p,j(A

(3)
5 , y)

)
= 0.
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Combining our estimates on Iε
p,j(A

(3)
i , y) for 1 ≤ i ≤ 5 and then summing over j using (15),

we get that (H3
p) holds for the given f and β0. This completes the proof of the bounds (H1

p),
(H2

p) and (H3
p), for every p ≥ 1.

It now follows from (9) and (H3
p) that, for every p ≥ 1,

lim
ε→0

ε−4p

(
log

|x|
ε

)1−p

Nx [〈Z, ϕε〉p] = p!
(

ϕ

2π2

)p

|x|−2,

uniformly when x varies over a compact subset of R4\{0}. This completes the proof of Lemma
3. �

References

[DIP] Dawson D.A., Iscoe I., Perkins E.A., Super-Brownian motion: Path properties and
hitting probabilities. Probab. Th. Rel. Fields 83, 135-205 (1989) MR1012498
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