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Université Claude Bernard- Lyon 1, LaPCS - 50, avenue Tony Garnier, 69366 LYON Cedex
07, France
email: nadine.guillotin@univ-lyon1.fr

Submitted 23 September 2002, accepted in final form 31 March 2003

AMS 2000 Subject classification: 15A52, 60G50, 60J10, 60J15, 60F05
Keywords: Random Walk, Random Matrix, Random Scenery, Functional limit theorem

Abstract

The purpose of the present paper is to study the asymptotic behaviour of the products of
random matrices indexed by a random walk following the results obtained by Furstenberg and
Kesten [4] and by Ishitani [6].

1 Introduction and the main result

Let G be a countable group and p be a probability measure on G. The right random walk
on G defined by p is the canonical Markov chain (Sn)n≥0 with state space G and transition
matrix

p(1)(x, y) = p(x−1y) , x, y ∈ G.

For x, y ∈ G, we denote by p(n)(x, y) the probability to go from x to y in n steps. We denote
by (Ω,F , P ) the probability space associated to the random walk (Sn)n≥0 starting from the
identity element e of the group G. Let (Ax)x∈G be a sequence of independent and identically
distributed random m × m-matrices with strictly positive elements defined on a probability
space (Ω̃,A, µ). We are interested in the asymptotic behaviour of the product

MN = AS0
AS1

. . . ASN ,

or more precisely in the terms

α
(N)
i,j =

1

N
log(MN )i,j for i, j = 1, . . . ,m.
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((MN )i,j means the entry in row i of column j of the matrix MN ).
This question is motivated by the study of random walks evolving in a disordered media and
has real similarities with the model of random walks in random sceneries (see section 1.4).
The results presented in this paper should have some applications in the study of very long
molecules represented by the random walk (Sk)k≥0 evolving in a disordered media which for
instance randomly acts on each atom.
Let us fix some notation: the expectation with respect to the probability measure µ (resp. P )
will be denoted by Ẽ (resp. E). On the space (Ω× Ω̃,F ⊗A), the probability P ⊗µ is denoted
by P and expectation with respect to P is denoted by E.
Firstly, the sequence (ASk)k≥0 is stationary and ergodic, then by a direct application of

Liggett’s version of Kingman’s Theorem (see [2] p. 319), for every i, j = 1, . . . ,m, α
(N)
i,j

converges P-almost surely as N→∞ to the real γi,j = lim
N→∞

E(log(MN )i,j)/N if for all (k, l),

Ẽ(log(Ae)k,l) is finite. We define for every n ≥ 1, the sequence

βn =
∞
∑

j=0

∞
∑

l=j

p(n+l)(e, e).

Let (H) be the hypothesis:
there exists some δ > 0 such that

∞
∑

n=1

β
δ

2+δ
n <∞.

Theorem 1 Let us assume that the random matrices (Ax)x∈G satisfy both conditions:
i) there exists a positive constant C such that

1 ≤ maxi,j(Ae)i,j
mini,j(Ae)i,j

≤ C µ− a.e.

ii) Ẽ(| log(Ae)1,1|2+δ) <∞.
Then, under (H), γi,j ≡ γ is independent of (i, j) and there exists a nonnegative constant σ2

such that for all 1 ≤ i, j ≤ m,
log(MN )i,j −Nγ√

N

converges in distribution to the Normal distribution N (0, σ2) (where N (0, σ2) = δ0 when
σ2 = 0).

2 Proof of Theorem 1

The proof of Theorem 1 is essentially based on the following result of Ishitani (see Theorem
2 page 571 and Remark 4 page 575 in [6]). In order to state this result, we shall introduce
some notation. Let (Ãk)k≥0 be a stationary sequence of m×m-random matrices with strictly
positive elements defined on a probability space (Ω′,F ′,P). By the stationarity, there exists
a measure preserving transformation T such that for all k ≥ 0,

Ãk+1(ω) = Ãk(Tω).
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Let {Mb
a; a ≤ b, a = 0, 1, ...; b = 0, 1, ...} be a family of sub-σ-fields of F ′ satisfying the

conditions:
P1) If a ≤ c ≤ d ≤ b, then Md

c ⊂Mb
a.

P2) For all a ≤ b, T−1Mb
a =Mb+1

a+1.
We define for n ≥ 1

α(n) = sup
k≥0

sup
{

|P(A ∩B)− P(A)P(B)|;A ∈Mk
0 , B ∈M∞

k+n

}

.

Theorem 2 Suppose that the sequence (Ãk)k≥0 satisfies both conditions:
i) there exists a positive constant C such that

1 ≤ maxi,j(Ã0)i,j

mini,j(Ã0)i,j
≤ C a.e.

ii) there exists δ′ > 0 such that
∞
∑

n=1

[α(n)]
δ′

2+δ′ <∞

iii) E(| log(Ã0)1,1|2+δ
′

) <∞.
Then, there exists a nonnegative constant σ2 such that for all 1 ≤ i, j ≤ m,

log(ÃN ÃN−1 . . . Ã0)i,j −Nγ√
N

converges in distribution to the Normal distribution N (0, σ2) (with N (0, σ2) = δ0 when σ2 =
0).

Proof of Theorem 1

Let us define Ω′ = Ω × Ω̃, F ′ = F ⊗ A, P = P ⊗ µ and Mb
a = σ(ASa , . . . , ASb), a, b ≥ 0.

These σ-fields clearly satisfy the conditions P1 and P2. The random matrices (ASk)k≥0 form
a stationary sequence of m×m-random matrices with strictly positive elements defined on the
probability space (Ω′,F ′,P), so proving Theorem 1 is equivalent to showing that the conditions
i), ii) and iii) of Ishitani’s theorem hold. Conditions i) and iii) are verified since by hypothesis,
there exists a positive constant C such that

1 ≤ maxi,j(Ae)i,j
mini,j(Ae)i,j

≤ C µ− a.e.

and

Ẽ(| log(Ae)1,1|2+δ) <∞.

Let us establish that the condition ii) of Ishitani’s Theorem is satisfied for the sequence
(ASk)k≥0. Let A ∈ Mk

0 and B ∈ M∞
k+n. Denote by Rk

0 the range of the random walk
(Sk)k≥0, that is to say

Rk
0 = {S0, . . . , Sk}

and

R∞k+n = {Sk+n, . . .}.
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We will use the notation R̃k,n = Rk
0 ∩R∞k+n.

P(A ∩B) =

∫

Ω′

1A1B dP dµ

=

∫

Ω

1{R̃k,n=∅}

(
∫

Ω̃

1A1B dµ

)

dP +

∫

Ω′

1{R̃k,n 6=∅}
1A1B dP dµ

=

∫

Ω

1{R̃k,n=∅}
Ẽ(1A)Ẽ(1B) dP +

∫

Ω′

1{R̃k,n 6=∅}
1A1B dP dµ

=

∫

Ω

Ẽ(1A)E(Ẽ(1B)1{R̃k,n=∅}
|S0, . . . , Sk) dP +

∫

Ω′

1{R̃k,n 6=∅}
1A1B dP dµ

=

∫

Ω

Ẽ(1A)E(Ẽ(1B)|S0, . . . , Sk) dP

−
∫

Ω

Ẽ(1A)E(Ẽ(1B)1{R̃k,n 6=∅}
|S0, . . . , Sk) dP +

∫

Ω′

1{R̃k,n 6=∅}
1A1B dP dµ

Now, let us prove that for every B ∈M∞
k+n,

E(Ẽ(1B)|S0, . . . , Sk) = P(B).

It is enough to prove this equality for the particular sets B = {ASk+p
∈ C1, ASk+p+1

∈ C2, . . .}
where p ≥ n and Ci, i ≥ 1 are Borel sets of matrices. Using the Markov property for (Sn)n,
we can write

E(Ẽ(1B)|S0, . . . , Sk) = ESk(Ẽ(1{ASp∈C1,ASp+1
∈C2,...})).

The sequence of random matrices (Ax)x∈G being stationary, we have that, for any x ∈ G,

Ex(Ẽ(1{ASp∈C1,ASp+1
∈C2,...})) = Ee(Ẽ(1{ASp∈C1,ASp+1

∈C2,...}))

= P(ASp ∈ C1, ASp+1
∈ C2, . . .) = P(ASp+k

∈ C1, ASp+k+1
∈ C2, . . .) = P(B)

and consequently,
∫

Ω

Ẽ(1A)E(Ẽ(1B)|S0, . . . , Sk) dP = P(A)P(B).

Then,

|P(A ∩B)− P(A)P(B)| ≤ 2P (R̃k,n 6= ∅)

Let us estimate P (R̃k,n 6= ∅). This probability is bounded above by

k
∑

j=0

∞
∑

l=n+k

P (Sj = Sl) =
∑

x∈G

k
∑

j=0

∞
∑

l=n+k

P (Sl = x|Sj = x)P (Sj = x)

=
k
∑

j=0

∞
∑

l=n+k

p(l−j)(e, e)

=

k
∑

j=0

∞
∑

l=n+j

p(l)(e, e)
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Then, for every n ≥ 1,

α(n) ≤ 2

∞
∑

j=0

∞
∑

l=n+j

p(l)(e, e)

Under the hypothesis (H): there exists δ > 0 such that

∞
∑

n=1

[α(n)]
δ

2+δ <∞,

so condition ii) follows.

3 Examples

• The centered random walk on Zd
.

In the case of the abelian group G = (Zd
,+), (Sn)n≥1 can be written as a sum of

independent and identically distributed random vectors (Xi)i≥1 with values in Zd
and

S0 = 0. Under the hypothesis that the random vectors (Xi)i≥1 are centered, with finite
covariance matrix and that the random walk is strongly aperiodic, there exists a constant
Cd > 0 such that

p(n)(0, 0) ∼ Cdn
−d/2

as n→∞ (see Spitzer [9]). The hypothesis (H) is clearly satisfied as soon as d ≥ 7.
Notice however that the method used for proving Theorem 1 is not applicable in the
case when the dimension d of the space is between 3 and 6. The probability of self-

intersection of a Zd
-random walk (3 ≤ d ≤ 6) between the first k steps and after the

step k + n is too large (see Lemma 7 in [3]) to conclude.

Consider the particular case d = 1, when the random variables Xi are centered, indepen-
dent, identically distributed, strongly aperiodic and in the attraction domain of a stable
distribution of index α ∈ ]0, 2[, a local limit theorem (see Stone ([10])) can be obtained:
there exists a constant C ′d > 0 such that

p(n)(0, 0) ∼ C ′dn
−1/α

as n→∞. The hypothesis (Hδ) for δ > 2α/(1− 3α) and thus Theorem 1 holds as soon
as α < 1

3 .

• The non-centered random walk on Zd
.

Let (Sn)n≥1 be a sum of independent and identically distributed random vectors (Xi)i≥1

with values in Zd
and S0 = 0. Assume that the mean vector of X1 exists and is not equal

to the null vector. Let us solve the case d = 1. Without losing generality, we assume
that m = E(X1) > 0. We denote by φ the Laplace transform of the random variable
X1. For λ ≥ 0,

φ(λ) = E(e−λX1).

As E(|X1|) <∞, we have
φ(λ) = 1−mλ+ o(λ),
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and, for any λ ≥ 0,
p(n)(0, 0) = P (Sn = 0) ≤ φ(λ)n.

The condition (H) is satisfied when we choose λ > 0 small enough and then Theorem 1
holds. This reasoning can obviously be adapted to dimension larger than 1.

• The random walk on the homogeneous tree.

We consider the case where G is the free product of q ≥ 3 copies of Z2 i.e. G has
generators {a1, . . . , aq} and a2i = e, ∀i = 1, . . . , q. The random walk on this group G
corresponds to the nearest-neighbours random walk on the homogeneous tree with degree
q. It is well-known that this random walk is transient and a local limit theorem can even
be obtained (see [5]): there exists a strictly positive constant C such that

p(n)(e, e) ∼ CR−nn−3/2

as n→∞ whereR is the spectral radius of the random walk defined byR = (lim sup
n

p(n)(e, e)1/n)−1

strictly greater than one. The condition (H) is clearly satisfied for every q and Theorem
1 follows.

Remark: The hypothesis (H) is satisfied if lim supn p
n(e, e)1/n < 1. This condition applies

when the group G is non amenable by an old result of Kesten [7].

4 Further results and open problems

It is quite natural to extend Theorem 1 to recurrent random walks. Let (Ax)x∈G be a sequence
of matrices with strictly positive elements, independent and identically distributed. When they
commute, the product MN can be rewritten using properties of formal series as

logMN =

N
∑

k=0

log(ASk).

So, for every i, j = 1, . . . ,m, (log(MN ))i,j is a random walk in a random scenery, the random
scenery being given here by (log Ax)i,j , x ∈ G. Functional limit theorems for the random

walks in random sceneries were well studied when G = Zd
, d ≥ 1 (see [1],[8]). So we can

deduce functional limit theorems for the sequence of random variables (logMN )i,j where i, j =
1, . . . ,m, it gives us the asymptotic behaviour in distribution of the element (i, j) of the matrix
logMN , not the one of (MN )i,j . Let (Ax)x∈Z

d be a sequence of m×m-random matrices with
strictly positive elements; the matrices are assumed independent and identically distributed.
We assume that they commute.
In the case d = 1, using Kesten and Spitzer’s Theorem (see [8]), we obtain the following

Proposition 3 Let Sn = X1 + . . . + Xn be a random walk on Z such that the increments
Xi, i ≥ 1 be independent and identically distributed random variables belonging to the domain
of attraction of a stable law of index α ∈ ]0, 2[ then, for every 1 ≤ i, j ≤ m,

(

(logM[Nt])i,j − [Nt]Ẽ ((logA0)i,j)

Nβ

)

t≥0

converges weakly in D[0,∞) (the set of right continuous real-valued functions with left limits)
to a self-similar process with index β = 1− 1

2α , with stationary increments.
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When d = 2, Bolthausen’s Theorem (see [1]) allows us to deduce

Proposition 4 Let Sn = X1+ . . .+Xn be a strongly aperiodic random walk on Z2
such that

the increments Xi, i ≥ 1 be independent and identically distributed random variables, centered,
with finite covariance matrix Σ, then for every 1 ≤ i, j ≤ m,

√
2π(detΣ)1/4

(

(logM[Nt])i,j − [Nt]Ẽ ((logA0)i,j)√
N logN

)

t≥0

converges weakly in D[0,∞) to a standard Brownian motion.

The previous link established between the products of random matrices sampled by a random
walk and the random walks in random sceneries suggest us the following conjectures. Both
these results are trivial in the case when all matrices are diagonal with positive elements, but
for general matrices these are not at all trivial problems.
Conjecture 1

Let (Ax)x∈Z be a sequence of m×m-random matrices with strictly positive elements, assumed
independent and identically distributed. Let Sn = X1 + . . . + Xn be a Z-random walk such
that the increments Xi, i ≥ 1, are random variables belonging to the domain of attraction of a
stable law of index α ∈ ]0, 2[. Then, under the conditions i) and ii) of Theorem 1, for every
1 ≤ i, j ≤ m,

log(MN )i,j −E log(MN )i,j

N1− 1
2α

converges in distribution to a non-degenerate distribution.
Conjecture 2

Let (Ax)x∈Z
2 be a sequence of m×m-random matrices with strictly positive elements, assumed

to be independent and identically distributed. Let Sn = X1 + . . .+Xn be a strongly aperiodic

random walk on Z2
such that the increments Xi, i ≥ 1, are independent and identically dis-

tributed random variables, centered, with finite covariance matrix. Then, under the conditions
i) and ii) of Theorem 1, for every 1 ≤ i, j ≤ m,

log(MN )i,j −E log(MN )i,j√
N logN

converges in distribution to a Normal distribution.
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