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Abstract:
We study a class of Borel probability measures, called correlation measures. Our results are of
two types: first, we give explicit constructions of non-trivial correlation measures; second, we
examine some of the properties of the set of correlation measures. In particular, we show that
this set of measures has a convexity property. Our work is related to the so-called Gaussian
correlation conjecture.

1 Introduction

In this article, we study a class of Borel probability measures on Rd , which we call correlation
measures. Our work is related to the so-called Gaussian correlation conjecture; to place our
results in context, we will review this important conjecture.
Given x, y ∈ R

d , let (x, y) and ‖x‖ denote the canonical inner product and norm on R
d ,

respectively. As is customary, given A, B ⊂ R
d and t ∈ R, we will write tA = {ta : a ∈ A} and

A + B = {a + b : a ∈ A, b ∈ B}; the set A is said to be symmetric provided that −A = A and
convex provided that tA + (1 − t)A ⊂ A for each t ∈ [0, 1]. Let Cd denote the set of all closed,

77



Correlation Measures 78

convex, symmetric subsets of Rd , and let γd be the standard Gaussian measure on Rd , that is,

γd(A) =
1

(2π)
d
2

∫
A

exp
(−‖x‖2/2

)
dx.

The Gaussian correlation conjecture states that

γd(A ∩ B) ≥ γd(A)γd(B) (1.1)

for each pair of sets A, B ∈ Cd, d ≥ 1. For d = 1, this conjecture is trivially true, and Pitt [5]
has shown that it is true for d = 2. For d ≥ 3, the conjecture remains unsettled, but a variety
of partial results are known. Borell [1] establishes (1.1) for sets A and B in a certain class of
(not necessarily convex) sets in Rd , which for d = 2 includes all symmetric, convex sets. The
conjecture can be reformulated as follows: if (X1, · · · , Xn) is a centered, Gaussian random
vector, then

P

(
max

1≤i≤n
|Xi| ≤ 1

)
≥ P

(
max
1≤i≤k

|Xi| ≤ 1
)

P

(
max

k+1≤i≤n
|Xi| ≤ 1

)
(1.2)

for each 1 ≤ k < n. Khatri [4] and Šidák [7, 8] have shown that (1.2) is true for k = 1. In part,
the paper of Das Gupta, Eaton, Olkin, Perlman, Savage, and Sobel [2] generalizes the results
of Khatri and Šidák for elliptically contoured distributions.
The recent paper of Schechtman, Schlumprecht and Zinn [6] sheds new light on the Gaussian
correlation conjecture. Their results are of two types: first, they show that the conjecture is
true whenever the sets satisfy additional geometric restrictions (additional symmetry, centered
ellipsoids); second, they show that the conjecture is true provided that the sets are not too
large.
Here is the central question of this article: to what extent is the correlation inequality (1.1)
a Gaussian result? In other words, are there any non-trivial probability measures on R

d

satisfying (1.1)? We answer the question in the affirmative.
We will call a Borel probability measure λ on Rd a correlation measure provided that

λ(A ∩ B) ≥ λ(A)λ(B)

for each pair of sets A, B ∈ Cd; we will denote the set of all correlation measures on Rd by Md.
In section 2 we give sufficient conditions for membership in Md and show that Md contains
non-trivial elements for each d ≥ 2. In section 3, we examine some properties of correla-
tion measures. In particular, we show that non-trivial correlation measures have unbounded
support, and that Md has a certain convexity property. Using this convexity property, we
construct an element of M2 based on a model introduced by Kesten and Spitzer [3]. Our
results can thus be roughly summarized as:

Measures Correlation property
bounded support no (except in dimension 1)
exponential tail (including Gaussian) unknown
heavy tail some examples known

The correlation measures that we construct in section 2 are heavy-tailed, with the measure of
the complement of the ball of radius r decaying only as a power of r. As our result of section
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3 demonstrates, the measure of the complement of the ball of radius r must be positive for
each r ≥ 0. Thus it is natural to ask whether there is a minimal rate with which the measure
of the complement of the ball of radius r approaches 0. Perhaps the Gaussian measures lie
close to, or on, the “boundary” of Md, which may account for the difficulty of the Gaussian
correlation conjecture.

2 The construction of correlation measures

For d ≥ 2, let B[0, 1] denote the closed unit ball of Rd ; for r ≥ 0, let B[0, r] = rB[0, 1].
Throughout this section, µ will denote a spherically-symmetric, Borel probability measure on
R

d . For r ≥ 0, let

F (r) = µ (B[0, r]) .

The main result of this section is Theorem 2.2, which gives sufficient conditions on F for µ
to be a correlation measure; through this result, we produce explicit, nontrivial correlation
measures.
The proof of Theorem 2.2 rests on a geometric fact, which we describe presently. Let Sd−1

denote the unit sphere of Rd . A subset S of Rd is called a symmetric slab if there exists a
number h ∈ [0, +∞] and a v ∈ Sd−1 such that

S =
{
x ∈ Rd : |(v, x)| ≤ h

}
The number h = h(S) is called the half-width of S; when h = 0, S is a hyperplane of dimension
d − 1. Let Sd denote the set of all symmetric slabs in Rd , and, for A ∈ Cd, let

ρ(A) = sup{r ≥ 0 : B[0, r] ⊂ A}
h(A) = inf{h(S) : S ∈ Sd, S ⊃ A}

It is immediate that ρ(A) ≤ h(A); in fact, since A is convex and symmetric, ρ(A) = h(A).
Since A is closed, A ⊃ B[0, ρ(A)]; since Sd−1 is compact, there exists a symmetric slab of
half-width h(A) containing A. We can summarize these findings as follows:

Lemma 2.1 For each A ∈ Cd, there exists a symmetric slab S of half-width ρ(A) such that
B[0, ρ(A)] ⊂ A ⊂ S.

Let σ be uniform surface measure on Sd−1, normalized so that σ(Sd−1) = 1. Since µ is
spherically symmetric, we can represent µ in polar form: for any Borel subset A of Rd ,

µ(A) =
∫ ∞

0

σ(t−1A ∩ Sd−1)dF (t). (2.3)

For 0 ≤ t ≤ 1, let

gd(t) = σ{x ∈ Sd−1 : |x1| ≤ t}.

This special function may be expressed as

gd(t) = Kd

∫ t

0

(1 − s2)(d−3)/2ds,
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where

Kd = 2π−1/2

(
Γ(d/2)

Γ((d − 1)/2)

)
.

Let S be a symmetric slab of finite half-width h, and let p ≥ h (p > 0). Then, by symmetry
and scaling,

σ(p−1S ∩ Sd−1) = σ{x ∈ Sd−1 : |x1| ≤ h/p} = gd(h/p). (2.4)

Here is the main result of this section.

Theorem 2.2 If F (a) > 0 for a > 0 and

F (b) +
∫ ∞

b

[
gd

(
b

t

)
+

1
F (a)

gd

(a

t

)]
dF (t) ≤ 1 (2.5)

for each pair of real numbers a and b with 0 < a ≤ b < +∞, then µ ∈ Md.

Proof Let A, B ∈ Cd and let a = ρ(A) and b = ρ(B). We will assume, without loss of generality,
that a ≤ b.
We need to treat the cases a = 0 and b = +∞ separately. If a = 0, then, by Lemma 2.1, A
is contained within a symmetric slab S of half-width 0. By (2.3) and (2.4), µ(A) ≤ µ(S) = 0;
thus, µ(A∩B) ≥ µ(A)µ(B). If b = +∞, then B = R

d and, once again, µ(A∩B) ≥ µ(A)µ(B).
Hereafter let 0 < a ≤ b < +∞. By Lemma 2.1, let S1 be a symmetric slab of half-width b,
satisfying B[0, b] ⊂ B ⊂ S1. Then, by (2.3) and (2.4),

µ(B) ≤ µ(B[0, b]) + µ(S1 ∩ B[0, b]c) ≤ F (b) +
∫ ∞

b

gd

(
b

t

)
dF (t). (2.6)

By Lemma 2.1, let S2 be a symmetric slab of half-width a, satisfying B[0, a] ⊂ A ⊂ S2. Then,
by (2.3) and (2.4),

µ(A) = µ(A ∩ B[0, b]) + µ(A ∩ B[0, b]c)
≤ µ(A ∩ B) + µ(S2 ∩ B[0, b]c)

= µ(A ∩ B) +
∫ ∞

b

gd

(a

t

)
dF (t).

Since 0 < F (a) ≤ µ(A),

µ(A ∩ B)
µ(A)

≥ 1 − 1
F (a)

∫ ∞

b

gd

(a

t

)
dF (t). (2.7)

Combining (2.6) and (2.7),

µ(A ∩ B)
µ(A)

− µ(B)

≥ 1 − F (b) −
∫ ∞

b

[
gd

(
b

t

)
+

1
F (a)

gd

(a

t

)]
dF (t),

which, according to (2.5), is nonnegative. As such, µ(A ∩ B) ≥ µ(A)µ(B), as was to be
shown. �
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A simpler form of this result can be obtained by strengthening the conditions on F . Let L2 = 1
and, for d ≥ 3, let Ld = Kd. With this convention,

gd(t) ≤ Ldt (2.8)

for d ≥ 2 and t ∈ [0, 1].

Corollary 2.3 If F is concave and

F (b) + Ldb

(
1 +

1
F (b)

) ∫ ∞

b

t−1dF (t) ≤ 1 (2.9)

for each b ∈ (0,∞), then µ ∈ Md.

Proof We will show that the conditions of Theorem 2.2 are satisfied. Since F is concave,

F (a)
a

≥ F (b)
b

(2.10)

for 0 < a ≤ b. Since F is ultimately positive, this shows that F (a) > 0 for a > 0.
Let 0 < a ≤ b < ∞. Then

F (b) +
∫ ∞

b

[
gd

(
b

t

)
+

1
F (a)

gd

(a

t

)]
dF (t)

≤ F (b) + Ld

(
b +

a

F (a)

) ∫ ∞

b

t−1dF (t) (by (2.8))

≤ F (b) + Ldb

(
1 +

1
F (b)

) ∫ ∞

b

t−1dF (t), (by (2.10))

which shows that (2.9) implies (2.5). �

Our next result uses Corollary 2.3 to demonstrate the existence of non-trivial correlation
measures in each dimension d ≥ 2.

Theorem 2.4 For each L ≥ 1, there exists a differentiable, concave, increasing function
F : [0,∞) → [0, 1] satisfying

F (r) + Lr

(
1 +

1
F (r)

) ∫ ∞

r

F ′(t)
t

dt ≤ 1 (2.11)

for each r ∈ (0,∞).

Proof Let

F (r) =

{
1
2r1/4L, for r ≤ 1;
1 − 1

2r−1/4L, for r ≥ 1.
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This makes F differentiable, concave, and increasing on [0,∞). For r ≥ 1, the left-hand side
of (2.11) is

1 − 1
2
r−1/4L + Lr

(
4 − r−1/4L

2 − r−1/4L

)
1

8L

∫ ∞

r

t−2−1/4L dt

≤ 1 − 1
2
r−1/4L + 4r

1
8

∫ ∞

r

t−2−1/4L dt

= 1 − 1
2

(
1

4L + 1

)
r−1/4L

≤ 1.

For r ≤ 1, the left-hand side of (2.11) is

1
2
r1/4L + Lr

(
1 + 2r−1/4L

){∫ 1

r

1
8L

t−2+1/4L dt +
∫ ∞

1

1
8L

t−2−1/4L dt

}

=
1
2
r1/4L + Lr

(
1 + 2r−1/4L

){
1

2(4L − 1)

(
r−1+1/4L − 1

)
+

1
2(4L + 1)

}

≤ 1
2
r1/4L + Lr

(
1 + 2r−1/4L

) 1
2(4L − 1)

r−1+1/4L

=
1
2
r1/4L +

(
L

4L − 1

) (
1
2
r1/4L + 1

)

≤ 1
2

+
1
3

(
1
2

+ 1
)

= 1,

as was to be shown. �

When L = 1, another solution to (2.11) is given by F (r) = (r/(1 + r))1/2, for which the
inequality (2.11) becomes an equality. This function F is thus the best possible solution to
(2.11) in that sense.

3 Some properties of correlation measures

Let µ denote a Borel probability measure on Rd . As is customary, let the support of µ (denoted
by supp(µ)) be the intersection of the closed subsets of Rd having full measure.

Theorem 3.1 If µ has compact support and dim (supp(µ)) > 1, then µ /∈ Md.

In other words, unless a correlation measure is supported on a one-dimensional subspace, it
must have unbounded support.

Proof Let x0 ∈ supp(µ) have maximal distance from 0. Without loss of generality we may
assume that x0 = e1 = (1, 0, . . . , 0). For ε ∈ (0, 1), let

Aε = {x ∈ Rd : x2
2 + · · · + x2

d ≤ ε2}
Bε = {x ∈ Rd : |x1| ≤

√
1 − ε2}
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Observe that Aε ∪Bε ⊃ B[0, 1] ⊃ supp(µ); thus, µ(Ac
ε ∩Bc

ε ) = 0. Since dim (supp(µ)) > 1, we
can choose ε > 0 such that µ(Ac

ε ∩ Bε) = µ(Ac
ε) > 0. Since e1 ∈ Bc

ε , µ(Aε ∩ Bc
ε ) = µ(Bc

ε ) > 0.
Finally,

µ(Aε ∩ Bε) − µ(Aε)µ(Bε)
= µ(Aε ∩ Bε)µ(Ac

ε ∩ Bc
ε ) − µ(Aε ∩ Bc

ε )µ(Ac
ε ∩ Bε) < 0,

which shows that µ /∈ Md. �

Our next result shows that Md remains closed under certain convex combinations. Let µ
and λ be Borel probability measures on Rd . We will say that µ dominates λ (written µ � λ)
provided that µ(A) ≥ λ(A) for each A ∈ Cd.

Theorem 3.2 Let µ, λ ∈ Md with µ � λ, and let a, b be nonnegative real numbers with
a + b = 1. Then aµ + bλ ∈ Md.

Proof Let m = aµ + bλ, and let A, B ∈ Cd. Then

m(A)m(B) = a2µ(A)µ(B) + abµ(A)λ(B) + abµ(B)λ(A) + b2λ(A)λ(B).

Since a + b = 1 and µ and λ are correlation measures,

m(A ∩ B) = (a + b)m(A ∩ B)

= a2µ(A ∩ B) + abµ(A ∩ B) + abλ(A ∩ B) + b2λ(A ∩ B)

≥ a2µ(A)µ(B) + abµ(A)µ(B) + abλ(A)λ(B) + b2λ(A)λ(B).

Recalling that µ � λ, we have

m(A ∩ B) − m(A)m(B)
≥ ab (µ(A)µ(B) + λ(A)λ(B) − µ(A)λ(B) − µ(B)λ(A))
= ab (µ(A) − λ(A)) (µ(B) − λ(B)) ≥ 0,

which shows that m ∈ Md, completing our proof. �

In general, a linear combination of correlation measures need not be a correlation measure.
For example, let µ and λ be the centered Gaussian measures on R2 with covariance matrices

Qµ =
[
1 0
0 2

]
and Qλ =

[
2 0
0 1

]
,

respectively. By the theorem of Pitt [5], µ and λ are correlation measures; however, the
measure m = (µ + λ)/2 is not a correlation measure. To see this, let

A = {(x1, x2) ∈ R2 : |x1| ≤ 1}
B = {(x1, x2) ∈ R2 : |x2| ≤ 1}.

Then, by a calculation as in the proof of Theorem 3.2, m(A ∩ B) − m(A)m(B) < 0, which
shows that m /∈ M2.
Theorem 3.2 be extended by induction:
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Corollary 3.3 Let {µi : 1 ≤ i ≤ n} ⊂ Md with µ1 � µ2 � · · · � µn−1 � µn, and let
{ai : 1 ≤ i ≤ n} be a set of nonnegative real numbers with

∑n
i=1 ai = 1. Then

∑n
i=1 aiµi ∈ Md.

Dominating measures can be constructed through scaling. Given µ ∈ Md and s > 0, let
µs(A) = µ(sA) for each Borel subset of Rd . If r ≥ s, then rA ⊃ sA for each A ∈ Cd;
thus, µr � µs. We will use this notion of domination through scaling in conjunction with
Corollary 3.3 to construct elements of M2.
Let {Sn : n ≥ 0} (S0 = 0) be simple random walk on Z, and let {Y (k) : k ∈ Z} be a sequence of
independent and identically distributed, two-dimensional, standard Gaussian random vectors.
We will assume that the random walk and the Gaussian vectors are defined on a common
probability space and generate independent independent σ-algebras. For n ≥ 0, let

Zn =
n∑

k=0

Y (Sk).

The process {Zn : n ≥ 0}, called random walk in random scenery, was introduced by Kesten
and Spitzer [3], who investigated its weak limits.

Theorem 3.4 For each n ≥ 0, the law of Zn is an element of M2.

Proof For n ≥ 0, let ζn denote the law of Zn. For j ∈ Z and n ≥ 0, let

`j
n =

n∑
k=0

I(Sk = j)

and observe that Zn =
∑

j∈Z`j
nY (j). For n ≥ 0, let

Vn =
∑
j∈Z

(
`j
n

)2
.

The process {Vn : n ≥ 0} is called the self-intersection local time of the random walk. Con-
ditional on the σ-field generated by the random walk, Zn is a Gaussian random vector with
covariance matrix Vn times the identity matrix. Thus, for each Borel set A ∈ R2 ,

ζn(A) =
∞∑

k=0

P (Zn ∈ A |Vn = k)P (Vn = k)

=
∞∑

k=0

γ2(k−1/2A)P (Vn = k).

By the theorem of Pitt [5], the measures {γ2(k−1/2 · ) : k ≥ 1} are in M2, and, by scaling,
the measures can be ordered by domination; thus, by Corollary 3.3, ζn is in M2, as was to be
shown. �
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