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Abstract
We give a new, elementary proof of a key inequality used by Rudelson in the derivation of his
well-known bound for random sums of rank-one operators. Our approach is based on Ahlswede
and Winter’s technique for proving operator Chernoff bounds. We also prove a concentration
inequality for sums of random matrices of rank one with explicit constants.

1 Introduction

This note mainly deals with estimates for the operator norm ‖Zn‖ of random sums

Zn ≡
n
∑

i=1

εiAi (1)

of deterministic Hermitian matrices A1, . . . , An multiplied by random coefficients. Recall that
a Rademacher sequence is a sequence {εi}ni=1 of i.i.d. random variables with ε1 uniform over
{−1,+1}. A standard Gaussian sequence is a sequence i.i.d. standard Gaussian random variables.
Our main goal is to prove the following result.

Theorem 1 (proven in Section 3). Given positive integers d, n ∈ N, let A1, . . . , An be deterministic
d × d Hermitian matrices and {εi}ni=1 be either a Rademacher sequence or a standard Gaussian
sequence. Define Zn as in (1). Then for all p ∈ [1,+∞),

(E
�

‖Zn‖p�)1/p ≤ (
p

2 ln(2d) + Cp)











n
∑

i=1

A2
i











1/2

where

Cp ≡

 

p

∫ +∞

0

t p−1e−
t2

2 d t

!1/p

(≤ c
p

p for some universal c > 0).
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For d = 1, this result corresponds to the classical Khintchine inequalities, which give sub-Guassian
bounds for the moments of

∑n
i=1 εiai (a1, . . . , an ∈ R). Theorem 1 is implicit in Section 3 of

Rudelson’s paper [12], albeit with non-explicit constants. The main Theorem in that paper is
the following inequality, which is a simple corollary of Theorem 1: if Y1, . . . , Yn are i.i.d. random
(column) vectors in Cd which are isotropic (i.e E

�

Y1Y ∗1
�

= I , the d × d identity matrix), then:

E















1

n

n
∑

i=1

YiY
∗
i − I













≤ C (E
�

|Y1|log n
�

)1/ log n

r

log d

n
(2)

for some universal C > 0, whenever the RHS of the above inequality is at most 1. This im-
portant result has been applied to several different problems, such as bringing a convex body
to near-isotropic position [12]; the analysis of low-rank approximations of matrices [13, 7] and
graph sparsification [14]; estimating of singular values of matrices with independent rows [11];
analysing compressive sensing [4]; and related problems in Harmonic Analysis [17, 16].
The key ingredient of the original proof of Theorem 1 is a non-commutative Khintchine inequality
by Lust-Picard and Pisier [10]. This states that there exists a universal c > 0 such that for all Zn as
in the Theorem, all p ≥ 1 and all d × d matrices {Bi , Di}ni=1 with Bi + Di = Ai , 1≤ i ≤ n,
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�
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p
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D∗i Di











1/2
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,

where ‖ · ‖Sp denotes the p-th Schatten norm: ‖A‖p
Sp ≡ Tr[(A∗A)p/2]. Better estimates for c, and

thus for the constant in Rudelson’s bound, can be obtained from the work of Buchholz [3]. Un-
fortunately, the proofs of the Lust-Picard/Pisier inequality employs language and tools from non-
commutative probability that are rather foreign to most potential users of (2), and Buchholz’s
bound additionally relies on delicate combinatorics.
This note presents a more direct proof of Theorem 1. Our argument is based on an improvement
of the methodology created by Ahlswede and Winter [2] in order to prove their operator Chernoff
bound, which also has many applications e.g. [8] (the improvement is discussed in Section 3.1).
This approach only requires elementary facts from Linear Algebra and Matrix Analysis. The most
complicated result that we use is the Golden-Thompson inequality [6, 15]:

∀d ∈ N, ∀ d × d Hermitian matrices A, B, Tr(eA+B)≤ Tr(eAeB). (3)

The elementary proof of this classical inequality is sketched in Section 5 below.
We have already noted that Rudelson’s bound (2) follows simply from Theorem 1; see [12, Sec-
tion 3] for detais. Here we prove a concentration lemma corresponding to that result under the
stronger assumption that |Y1| is a.s. bounded. While similar results have appeared in other papers
[11, 13, 17], our proof is simpler and gives explicit constants.

Lemma 1 (Proven in Section 4). Let Y1, . . . , Yn be i.i.d. random column vectors in Cd with |Y1| ≤ M
almost surely and ‖E

�

Y1Y ∗1
�

‖ ≤ 1. Then:

∀t ≥ 0, P

 










1

n

n
∑

i=1

YiY
∗
i −E

�

Y1Y ∗1
�











≥ t

!

≤ (2min{d, n})2e−
n

16M2 min{t2,4t−4}.
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In particular, a calculation shows that, for any n, d ∈ N, M > 0 and δ ∈ (0,1) such that:

4M

r

2 ln(min{d, n}) + 2 ln 2+ ln(1/δ)
n

≤ 2,

we have:

P

 










1

n

n
∑

i=1

YiY
∗
i −E

�

Y1Y ∗1
�











< 4M

r

2 ln(min{d, n}) + 2 ln 2+ ln(1/δ)
n

!

≥ 1−δ.

A key feature of this Lemma is that it gives meaningful results even when the ambient dimension
d is arbitrarily large. In fact, the same result holds (with d =∞) for Yi taking values in a separable
Hilbert space, and this form of the result may be used to simplify the proofs in [11] (especially in
the last section of that paper).
To conclude the introduction, we present an open problem: is it possible to improve upon Rudel-
son’s bound under further assumptions? There is some evidence that the dependence on ln(d)
in the Theorem, while necessary in general [13, Remark 3.4], can sometimes be removed. For
instance, Adamczak et al. [1] have improved upon Rudelson’s original application of Theorem 1
to convex bodies, obtaining exactly what one would expect in the absence of the

p

log(2d) term.
Another setting where our bound is a Θ

�p
ln d
�

factor away from optimality is that of more clas-
sical random matrices (cf. the end of Section 3.1 below). It would be interesting if one could
sharpen the proof of Theorem 1 in order to reobtain these results. [Related issues are raised by
Vershynin [18].]

Acknowledgement: we thank the anonymous referees for providing extra references, pointing out
several typos and suggesting a number of small improvements to this note.

2 Preliminaries

We let Cd×d
Herm denote the set of d × d Hermitian matrices, which is a subset of the set Cd×d of

all d × d matrices with complex entries. The spectral theorem states that all A ∈ Cd×d
Herm have d

real eigenvalues (possibly with repetitions) that correspond to an orthonormal set of eigenvectors.
λmax(A) is the largest eigenvalue of A. The spectrum of A, denoted by spec(A), is the multiset of all
eigenvalues, where each eigenvalue appears a number of times equal to its multiplicity. We let

‖C‖ ≡ max
v∈Cd |v|=1

|C v|

denote the operator norm of C ∈ Cd×d (| · | is the Euclidean norm). By the spectral theorem,

∀A∈ Cd×d
Herm, ‖A‖=max{λmax(A),λmax(−A)}.

Moreover, Tr(A) (the trace of A) is the sum of the eigenvalues of A.

2.1 Spectral mapping

Let f : C→ C be an entire analytic function with a power-series representation f (z)≡
∑

n≥0 cn zn

(z ∈ C). If all cn are real, the expression:

f (A)≡
∑

n≥0

cnAn (A∈ Cd×d
Herm)
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corresponds to a map from Cd×d
Herm to itself. We will sometimes use the so-called spectral mapping

property:
spec f (A) = f (spec(A)). (4)

By this we mean that the eigenvalues of f (A) are the numbers f (λ) with λ ∈ spec(A). Moreover,
the multiplicity of ξ ∈ spec f (A) is the sum of the multiplicities of all preimages of ξ under f that
lie in spec(A).

2.2 The positive-semidefinite order

We will use the notation A� 0 to say that A is positive-semidefinite, i.e. A∈ Cd×d
Herm and its eigenval-

ues are non-negative. This is equivalent to saying that (v, Av)≥ 0 for all v ∈ Cd , where (·, ··) is the
standard Euclidean inner product.
If A, B ∈ Cd×d

Herm, we write A � B or B � A to say that A− B � 0. Notice that “�" is a partial order
and that:

∀A, B, A′, B′ ∈ Cd×d
Herm, (A� A′)∧ (B � B′)⇒ A+ A′ � B+ B′. (5)

Moreover, spectral mapping (4) implies that:

∀A∈ Cd×d
Herm, A2 � 0. (6)

We will also need the following simple fact.

Proposition 1. For all A, B, C ∈ Cd×d
Herm :

(C � 0)∧ (A� B)⇒ Tr(CA)≤ Tr(CB). (7)

Proof: To prove this, assume the LHS and observe that the RHS is equivalent to Tr(C∆)≥ 0 where
∆ ≡ B− A. By assumption, ∆ � 0, hence it has a Hermitian square root ∆1/2. The cyclic property
of the trace implies:

Tr(C∆) = Tr(∆1/2C∆1/2).

Since the trace is the sum of the eigenvalues, we will be done once we show that ∆1/2C∆1/2 � 0.
But, since ∆1/2 is Hermitian and C � 0,

∀v ∈ Cd , (v,∆1/2C∆1/2v) = ((∆1/2v), C(∆1/2v)) = (w, Cw)≥ 0 (with w =∆1/2v),

which shows that ∆1/2C∆1/2 � 0, as desired. �

2.3 Probability with matrices

Assume (Ω,F ,P) is a probability space and Z : Ω→ Cd×d
Herm is measurable with respect to F and

the Borel σ-field on Cd×d
Herm (this is equivalent to requiring that all entries of Z be complex-valued

random variables). Cd×d
Herm is a metrically complete vector space and one can naturally define an

expected value E [Z] ∈ Cd×d
Herm. This turns out to be the matrix E [Z] ∈ Cd×d

Herm whose (i, j)-entry is
the expected value of the (i, j)-th entry of Z . [Of course, E [Z] is only defined if all entries of Z
are integrable, but this will always be the case in this paper.]
The definition of expectations implies that traces and expectations commute:

Tr(E [Z]) = E [Tr(Z)] . (8)
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Moreover, one can check that the usual product rule is satisfied:

If Z , W : Ω→ Cd×d
Herm are measurable and independent, E [ZW] = E [Z]E [W] . (9)

Finally, the inequality:

If Z : Ω→ Cd×d
Herm satisfies Z � 0 a.s.,E [Z]� 0 (10)

is an easy consequence of another easily checked fact: (v,E [Z] v) = E [(v, Z v)], v ∈ Cd .

3 Proof of Theorem 1

Proof: [of Theorem 1] The usual Bernstein trick implies that for all t ≥ 0,

∀t ≥ 0, P
�

‖Zn‖)≥ t
�

≤ inf
s>0

e−stE
�

es‖Zn‖
�

.

Notice that
E
�

es‖Zn‖
�

≤ E
�

esλmax(Zn)
�

+E
�

esλmax(−Zn)
�

= 2E
�

esλmax(Zn)
�

(11)

since ‖Zn‖=max{λmax(Zn),λmax(−Zn)} and −Zn has the same law as Zn.
The function “x 7→ esx " is monotone non-decreasing and positive for all s ≥ 0. It follows from the
spectral mapping property (4) that for all s ≥ 0, the largest eigenvalue of esZn is esλmax(Zn) and all
eigenvalues of esZn are non-negative. Using the equality “trace = sum of eigenvalues" implies that
for all s ≥ 0,

E
�

esλmax(Zn)
�

= E
�

λmax

�

esZn
��

≤ E
�

Tr
�

esZn
��

.

As a result, we have the inequality:

∀t ≥ 0, P
�

‖Zn‖ ≥ t
�

≤ 2 inf
s≥0

e−stE
�

Tr
�

esZn
��

. (12)

Up to now, our proof has followed Ahlswede and Winter’s argument. The next lemma, however,
will require new ideas.

Lemma 2. For all s ∈ R,

E
�

Tr(esZn)
�

≤ Tr
�

e
s2
∑n

i=1 A2
i

2

�

.

This lemma is proven below. We will now show how it implies Rudelson’s bound. Let

σ2 ≡











n
∑

i=1

A2
i











= λmax

 

n
∑

i=1

A2
i

!

.

[The second inequality follows from
∑n

i=1 A2
i � 0, which holds because of (5) and (6).] We note

that:

Tr
�

e
s2
∑n

i=1 A2
i

2

�

≤ d λmax

�

e
s2
∑n

i=1 A2
i

2

�

= d e
s2σ2

2

where the equality is yet another application of spectral mapping (4) and the fact that “x 7→ es2 x/2"
is monotone non-decreasing. We deduce from the Lemma and (12) that:

∀t ≥ 0, P
�

‖Zn‖ ≥ t
�

≤ 2d inf
s≥0

e−st+ s2σ2

2 = 2d e−
t2

2σ2 . (13)
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This implies that for any p ≥ 1,

1

σpE
h

(‖Zn‖−
p

2 ln(2d)σ)p+
i

= p

∫ +∞

0

t p−1P
�

‖Zn‖ ≥ (
p

2 ln(2d) + t)σ
�

d t

(use(13)) ≤ 2pd

∫ +∞

0

t p−1e−
(t+
p

2 ln(2d))2

2 d t

≤ 2pd

∫ +∞

0

t p−1e−
t2+2 ln(2d)

2 d t = C p
p

Since 0 ≤ ‖Zn‖ ≤
p

2 ln(2d)σ+ (‖Zn‖ −
p

2 ln(2d)σ)+, this implies the Lp estimate in the Theo-
rem. The bound “Cp ≤ c

p
p" is standard and we omit its proof. �

To finish, we now prove Lemma 2.
Proof: [of Lemma 2] Define D0 ≡

∑n
i=1 s2A2

i /2 and

D j ≡ D0 +
j
∑

i=1

�

sεiAi −
s2A2

i

2

�

(1≤ j ≤ n).

We will prove that for all 1≤ j ≤ n:

E
�

Tr
�

exp
�

D j

���

≤ E
�

Tr
�

exp
�

D j−1

���

. (14)

Notice that this implies E
�

Tr(eDn)
�

≤ E
�

Tr(eD0)
�

, which is the precisely the Lemma. To prove
(14), fix 1 ≤ j ≤ n. Notice that D j−1 is independent from sε jA j − s2A2

j/2 since the {εi}ni=1 are
independent. This implies that:

E
�

Tr
�

exp
�

D j

���

= E



Tr

 

exp

 

D j−1 + sε jA j −
s2A2

j

2

!!



(use Golden-Thompson (3)) ≤ E



Tr

 

exp
�

D j−1

�

exp

 

sε jA j −
s2A2

j

2

!!



(Tr(·) and E [·] commute, (8)) = Tr

 

E



exp
�

D j−1

�

exp

 

sε jA j −
s2A2

j

2

!



!

.

(use product rule, (9)) = Tr

 

E
�

exp
�

D j−1

��

E



exp

 

sε jA j −
s2A2

j

2

!



!

.

By the monotonicity of the trace (7) and the fact that exp
�

D j−1

�

� 0 (cf. (4)) implies E
�

exp
�

D j−1

��

�
0 (cf. (10)), we will be done once we show that:

E



exp

 

sε jA j −
s2A2

j

2

!

� I . (15)

The key fact is that sε jA j and −s2A2
j/2 always commute, hence the exponential of the sum is the

product of the exponentials. Applying (9) and noting that e−s2A2
j/2 is constant, we see that:

E



exp

 

sε jA j −
s2A2

j

2

!

= E
�

exp
�

sε jA j

��

e−
s2A2

j
2 .
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In the Gaussian case, an explicit calculation shows that E
�

exp
�

sε jA j

��

= es2A2
j/2, hence (15)

holds. In the Rademacher case, we have:

E
�

exp
�

sε jA j

��

e−
s2A2

j
2 = f (A j)

where f (z) = cosh(sz)e−s2z2/2. It is a classical fact that 0 ≤ cosh(x) ≤ ex2/2 for all x ∈ R (just
compare the Taylor expansions); this implies that 0 ≤ f (λ) ≤ 1 for all eigenvalues of A j . Using
spectral mapping (4), we see that:

spec f (A j) = f (spec(A j))⊂ [0,1],

which implies that f (A j) � I . This proves (15) in this case and finishes the proof of (14) and of
the Lemma. �

3.1 Remarks on the original AW approach

A direct adaptation of the original argument of Ahlswede and Winter [2] would lead to an in-
equality of the form:

E
�

Tr(esZn)
�

≤ Tr
�

E
�

esεnAn
�

E
�

esZn−1
��

.

One sees that:

E
�

esεnAn
�

� e
s2A2

n
2 � e

s2‖A2
n‖

2 I .

However, only the second equality seems to be useful, as there is no obvious relationship between

Tr
�

e
s2A2

n
2 E
�

esZn−1
�

�

and

Tr
�

E
�

esεn−1An−1
�

E
�

esZn−2+
s2A2

n
2

��

,

which is what we would need to proceed with induction. [Note that Golden-Thompson (3) cannot
be undone and fails for three summands, [15].] The best one can do with the second inequality
is:

E
�

Tr(esZn)
�

≤ d e
s2
∑n

i=1 ‖Ai ‖
2

2 .

This would give a version of Theorem 1 with
∑n

i=1 ‖Ai‖2 replacing ‖
∑n

i=1 A2
i ‖. This modified result

is always worse than the actual Theorem, and can be dramatically so. For instance, consider the
case of a Wigner matrix where:

Zn ≡
∑

1≤i≤ j≤m

εi jAi j

with the εi j i.i.d. standard Gaussian and each Ai j has ones at positions (i, j) and ( j, i) and zeros
elsewhere (we take d = m and n=

�m
2

�

in this case). Direct calculation reveals:










∑

i j

A2
i j











= ‖(m− 1)I‖= m− 1�
�

m

2

�

=
∑

i j

‖Ai j‖2.

We note in passing that neither approach is sharp in this case, as ‖
∑

i j εi jAi j‖ concentrates around
2
p

m. The same holds when the εi j are Rademacher [5].
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4 Concentration for rank-one operators

In this section we prove Lemma 1.
Proof: [of Lemma 1] Let

φ(s)≡ E



exp

 

s











1

n

n
∑

i=1

YiY
∗
i −E

�

Y1Y ∗1
�











!

 .

We will show below that:

∀s ≥ 0, φ(s)≤ 2min{d, n} e2M2s2/nφ(2M2s2/n). (16)

By Jensen’s inequality, φ(2M2s2/n)≤ φ(s)2M2s/n whenever 2M2s/n≤ 1, hence (16) implies:

∀0≤ s ≤ n/2M2, φ(s)≤ (2 min{d, n})
1

1−2M2s/n e
2M2s2

n−2M2s .

Since

∀s ≥ 0, P

 










1

n

n
∑

i=1

YiY
∗
i −E

�

Y1Y ∗1
�











≥ t

!

≤ e−stφ(s),

the Lemma then follows from the choice

s ≡
n

8M2 min{2, t}

and a few simple calculations. [Notice that 2M2s ≤ n/2 with this choice, hence 1/(1−2M2s/n)≤
2 and 2M2s2/(n− 2M2s)≤ 4M2s2/n.]
To prove (16), we begin with symmetrization (see e.g. Lemma 6.3 in Chapter 6 of [9]):

φ(s)≤ E



exp

 

2s











1

n

n
∑

i=1

εiYiY
∗
i











!

 ,

where {εi}ni=1 is a Rademacher sequence independent of Y1, . . . , Yn. Let S be the (random) span
of Y1, . . . , Yn and TrS denote the trace operation on linear operators mapping S to itself. Using
the same argument as in (11), we notice that:

E



exp

 

2s











1

n

n
∑

i=1

εiYiY
∗
i











!

| Y1, . . . , Yn



≤ 2E



TrS

(

exp

 

2s

n

n
∑

i=1

εiYiY
∗
i

!)

| Y1, . . . , Yn



 .

Lemma 2 implies:

E



TrS

(

exp

 

2s

n

n
∑

i=1

εiYiY
∗
i

!)

| Y1, . . . , Yn



 ≤ 2TrS

(

exp

 

2s2

n2

n
∑

i=1

(YiY
∗
i )

2

!)

≤ 2 min{d, n}exp

 










2s2

n2

n
∑

i=1

(YiY
∗
i )

2











!

a.s.,

using spectral mapping (4), the equality “trace = sum of eigenvalues" and the fact that S has
dimension ≤min{d, n}. A quick calculation shows that 0 � (YiY

∗
i )

2 = |Yi |2 YiY
∗
i � M2YiY

∗
i , hence

(5) implies:

0�
2s2

n2

n
∑

i=1

(YiY
∗
i )

2 �
2M2s2

n

 

1

n

n
∑

i=1

YiY
∗
i

!

.
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Therefore:










2s2

n2

n
∑

i=1

(YiY
∗
i )

2











≤
2M2s2

n











1

n

n
∑

i=1

YiY
∗
i











≤
2M2s2

n











1

n

n
∑

i=1

YiY
∗
i −E

�

Y1Y ∗1
�











+
2M2s2

n
.

[We used ‖E
�

Y1Y ∗1
�

‖ ≤ 1 in the last inequality.] Plugging this into the conditional expectation
above and integrating, we obtain (16):

φ(s) ≤ 2 min{d, n}E



exp

 

2M2s2

n











1

n

n
∑

i=1

YiY
∗
i −E

�

Y1Y ∗1
�











+
2M2s2

n

!



= 2 min{d, n} e2M2s2/nφ(2M2s2/n).

�

5 Proof sketch for Golden-Thompson inequality

As promised in the Introduction, we sketch an elementary proof of inequality (3). We will need
the Trotter-Lie formula, a simple consequence of the Taylor formula for eX :

∀A, B ∈ Cd×d
Herm, lim

n→+∞
(eA/neB/n)n = eA+B. (17)

The second ingredient is the inequality:

∀k ∈ N,∀X , Y ∈ Cd×d
Herm : X , Y � 0⇒ Tr((X Y )2

k+1
)≤ Tr((X 2Y 2)2

k
). (18)

This is proven in [6] via an argument using the existence of positive-semidefinite square-roots for
positive-semidefinite matrices, and the Cauchy-Schwartz inequality for the standard inner product
over Cd×d . Iterating (18) implies:

∀X , Y ∈ Cd×d
Herm : X , Y � 0⇒ Tr((X Y )2

k
)≤ Tr(X 2k

Y 2k
).

Apply this to X = eA/2k
and Y = eB/2k

with A, B ∈ Cd×d
Herm. Spectral mapping (4) implies X , Y � 0

and we deduce:
Tr((eA/2k

eB/2k
)2

k
)≤ Tr(eAeB).

Inequality (3) follows from letting k→+∞, using (17) and noticing that Tr(·) is continuous.
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