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Abstract

Fractional Brownian motion belongs to a class of long memory Gaussian processes that can
be represented as linear functionals of an infinite dimensional Markov process. This leads
naturally to :

• An efficient algorithm to approximate the process.

• An ergodic theorem which applies to functionals of the type
∫ t

0
φ(Vh(s)) ds where Vh(s) =∫ s

0 h(s− u) dBu . and B is a real Brownian motion.

1 Introduction

Fractional Brownian motion of Hurst parameter H ∈ (0, 1) is a real centered Gaussian process
(WH

t ; t ≥ 0 ) of covariance

E
[
WH
t W

H
s

]
=
c(H)

2
(s2H + t2H − |t− s|2H) (s, t ≥ 0) . (1)

One easily sees that it starts from zero, WH
0 = 0 almost surely , it has stationary increments

(WH
t+s −WH

s ; t ≥ 0 )
d
= (WH

t ; t ≥ 0 ) since

E
[
(WH

t −WH
s )2

]
= c(H)|t − s|2H (s, t ≥ 0) . (2)

Fractional Brownian motion enjoys the following scaling (self-similarity) property
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(
1

aH
WH
at ; t ≥ 0 )

d
= (WH

t ; t ≥ 0 ) (a > 0) . (3)

The increments are independent if and only if H = 1
2 (Brownian motion ). If H < 1

2 , they are
negatively correlated, and if H > 1

2 they are positively correlated. Furthermore it is a long
memory process, since, for H 6= 1

2 , the covariance between far apart increments decrease to
zero as a power law:

Cov(WH(t)−WH(0),WH(t+ u)−WH(u)) ∼u→+∞ constant× u2H−2 .

Fractional Brownian motion has been used as a model of signal or noise in various domains:
geophysical data [10, 3], communication processes [12, 11], see also the references therein.
Therefore it is important to provide good numerical approximating schemes.

Problem I: approximation of fractional Brownian motion

We shall not linger on the first (naive) idea that may cross our mind. We simulate an n-
dimensional Gaussian random vector with the same disribution as (WH

s1 , . . . ,W
H
sn) and we

perform a linear or spline interpolation. This amounts to computing the square root of the
n× n covariance matrix and is computationally inefficient.
A second solution is to use the representation introduced by Mandelbrot and Van Ness [13]:
if α = H + 1

2 ,

WH
t =

1

Γ(α)

∫ t

−∞
((t − u)α−1 − (−u)α−1

+ ) dBu

where B is a standard Brownian motion on the real line. Without any loss in generality, we
can say that the problem is to approximate the finite, but long, memory part:

V (t) = Vh(t) =

∫ t

0

h(t− s) dBs

where (Bt ; t ≥ 0 ) is a standard Brownian motion . The naive way to do this is to fix a small
step |∆n| = 1

n for the partitions we use

∆n = 0 < s1 =
1

n
< s2 =

2

n
< · · · .

Hence, if t = r/n, then V (t) is approximated by

V (t) '
∑

h(t− si) (Bsi+1 − Bsi)

=
1√
n

∑
h(t− si) ξi

=
1√
n

(h(
1

n
)ξr + h(2/n)ξr−1 + · · · )

where ξi =
√
n(Bsi+1 −Bsi ) are independent identically distributed standard normal random

variables.
For the next step, t+ ∆t = t + 1

n = (r + 1)/n, we have
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t

h(t-s)

1/n0

Figure 1: The function s→ h(t− s) when h(u) = 1
Γ(α)u

α−11(u>0)

V (t+ ∆t) ' 1√
n

(h(1/n)ξr+1 + h(2/n)ξr + · · · )

Therefore, all we have to do is to compute the h(i/n), generate the ξi, and keep them all in
memory for the next step.

Unfortunately, if we want to keep the approximation error low (that is n big), this amounts
to a lot of data to keep in memory.

The natural idea is to impose a threshold, that is to compute h(i/n) and generate ξ only for
1 ≤ i ≤Mn. This may work well for smooth functions h, but not for

h(u) =
1

Γ(α)
uα−11(u>0)

where 1
2 < α < 1, since h explodes near zero, and thus our partition is not dense enough near

t !

Unfortunately this example is important since it is in essence fractional Brownian motion of
index H = α− 1

2
.

In [7],Carmona, Coutin and Montseny derived an approximation scheme from a representation
formula inspired by the diffusive input-output model of fractional integration developed by
Audounet, Montseny and Mbodje [1, 2].

More precisely Fubini’s stochastic theorem implies that if h has the “spectral” representation

h(u) =

∫
e−uxµ(dx) (u > 0)



98 Electronic Communications in Probability

where µ is a positive measure on (0,+∞), finite on compact sets, and such that
∫

(1 ∧
x−

1
2 )µ(dx) < +∞, then

Vh(t) =

∫ ∞
0

Y xt µ(dx)

where

Y xt =

∫ t

0

e−x(t−s) dBs .

Observe that for fixed x ≥ 0, (Y xt ; t ≥ 0 ) is an Ornstein-Uhlenbeck process of parameter
x, that is a Gaussian semi-martingale Markov process solution of the stochastic differential
equation

dY xt = dBt − xY xt dt .
Therefore, Vh = 〈Y〉µ is a linear functional of the infinite dimensional Markov process

Y = (Yt ; t ≥ 0 ) , Yt = (Y xt , x ≥ 0) .

The idea behind the approximation scheme is to first do a spatial approximation

Vh(t) ' V πh (t) =
∑
π

ci Y
ηi
t ,

where π = {ηi}i is a chosen finite partition converging to identity, and ci are coefficients
depending only on h. This approximation is uniformly good with respect to time, that is
supt≤T |Vh(t) − V πh (t)| goes to zero when π grows.
The second step is the time discretization, which can be performed in the following way :

Y ηi (t+ ∆t) = Y ηi(t) + ∆Bt − ηiY ηi(t) . (4)

This second step is a classical one : see e.g. the book of Bouleau and Lepingle [5], chapter V,
section B, pages 271–278, where it is stated that to get a precision of ε, one has to consider
at most a constant C times N = log(1/ε) time points. Nevertheless, when one needs to do
the whole family of approximations (4), one needs to control precisely the dependence of the
constant C = C(ηi, T ) with respect to the space and time variables. The classical method,
combined with Gronwall’s lemma, gives an exponential upper bound for the Lp-norm of the
approximation error C(η, T ) ≤ c1(T, p)η exp(c2(T, p)ηp). Therefore, we have to use another
time discretization scheme for which we have polynomial constants (see e.g. [6] or [8]).
The first step amounts to approximate a linear functional of an infinite dimensional Markov
process by a linear functional of a finite dimensional Markov process. The secret of the success
of this method is that for a large class of functions h, this dimension can be kept low : for a
precision of ε, the cardinal of the partition π(ε) is roughly

N (ε) = |π(ε)| ∼ c
√

1

ε
log(

1

ε
) .

We do not say that this approximation method is the best, but we want to stress the fact that
the Markov property of the underlying process Y allows an algorithm that is very economic
in memory allocation. You only have to store N (ε) values at each time step, then simulate
one Gaussian random variable, and then update these values for the next step (according to
rule (4)).
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The example of fractional Brownian motion

We can take advantage not only of the Gaussian nature of the processes Y x, but also of their
semi-martingale nature (via Itô’s formula). We have been able to give exact L2 and almost
sure convergence rates for fractional Brownian motion of index H = α− 1

2
∈ (0, 1

2
).

Indeed, to obtain the precision

sup
t≤T
‖Vh(t)− V πh (t)‖L2 ≤ ε ,

we may choose the compact

K(ε) '
[
ε

1
1−α , (

1

ε
)

2
2α+3

]
and a geometric partition

π(ε) =
{
r−m, r−m+1, . . . , rn

}
of ratio r = r(ε) = 1 + c(α)

√
ε.

Furthermore, if εn decreases fast enough to 0,

εn = o
(

(logn)−
2α+3

8(2−α)

)
(5)

then, we have the uniform almost sure convergence

sup
t≤T

∣∣∣Vh(t)− V π(εn)
h (t)

∣∣∣ 7−→
n→∞

0 almost surely .

Theoretical results (see [7] or [8]) show then that to obtain a precision of ε = 10−3, we
need to consider a few hundred points. Practical results show that forty points are enough.
Furthermore, we have been able to check that (almost surely) the numerical approximations
stick exponentially fast to the actual random process (and this happens uniformly on compact
sets), when εn goes faster to 0 than indicated in (5).

Problem II : an ergodic theorem

It is well known (Birkhoff’s ergodic theorem) that for a stationary process U , we have the
convergence, almost sure and in L1,

1

t

∫ t

0

φ(U(s)) ds 7−→
t→∞

E [φ(U(0))] , (6)

as soon as φ is an integrable Borel function: E [|φ(U(0))|] < +∞.
Of course, we first have to check the ergodicity, that is that the invariant σ-field is almost surely
trivial, which is not so easy to do in general (see e.g. Rozanov [14], page 25, Theorem 6.1).
But what we actually want to do is to answer the following question. Given (V (t) ; t ≥ 0 ) a
real Gaussian process, a priori non stationary, such that V r = (V (t + r) ; t ≥ 0 ) converges in
distribution to the stationary process U . We want to show that, as soon as φ is an integrable
Borel function: E [|φ(U(0))|] < +∞, we have the convergence, almost sure and in L1,

1

t

∫ t

0

φ(V (s)) ds 7−→
t→∞

E [φ(U(0))] . (7)
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To be more precise, given h ∈ L2(R+) and (Bt, t ∈ R) a standard Brownian motion, we let

V (t) =

∫ t

0

h(t− s) dBs , and U(t) =

∫ t

−∞
h(t− s) dBs . (8)

We shall show in Proposition 5 that (7) holds if φ is Lipschitz and h is the Laplace transform

h(u) =

∫
e−ux µ(dx) , (9)

of a positive measure µ, finite on compact sets and such that∫
1√
x
µ(dx) < +∞ . (10)

2 The Markov and ergodic properties of the underlying
infinite dimensional process

Let B = (Bt ; t ≥ 0 ) be a standard Brownian motion . Given x ≥ 0, Y x = (Y xt ; t ≥ 0 ) is the
Ornstein-Uhlenbeck process driven by B of parameter x (starting from 0):

Y xt =

∫ t

0

e−x(t−s) dBs .

It is also the solution of the stochastic differential equation

dY xt = dBt − xY xt dt .

For every t ≥ 0, we consider Yt = (Y xt , x > 0); it is a centered Gaussian process of covariance

ΓYt(x, y) =
1− e−t(x+y)

x+ y
(x, y > 0) .

The natural candidate for a limiting process is Y∞ the centered Gaussian process of covariance

ΓY∞(x, y) =
1

x+ y
(x, y > 0) .

Proposition 1. Suppose that
∫
x−

1
2 dµ(x) < +∞. Then, the process Y = (Yt ; t ≥ 0 ) is an

infinite dimensional Markov process with values in L1(µ); Y∞ is a random variable with values
in L1(µ).

Proof. Since E = L1(µ) is a separable Banach space, the Borel sigma-fields of weak and strong
topologies on E coincide with

E = σ(χ : χ ∈ L1(µ)∗) = σ(χ : χ ∈ L∞(µ)) ,

(see e.g. Borkar [4], Lemma 2.5.2).
Therefore we first have to check that Yt takes its values in L1(µ). This is the case since

E
[∫
|Y xt |dµ(x)

]
= c

∫
dµ(x)

(
1− e−2xt

2x

) 1
2

< +∞ .
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Similarly, Y∞ takes its values in L1(µ) since

E
[∫
|Y x∞| dµ(x)

]
= c

∫
dµ(x)

(
1

2x

) 1
2

< +∞ .

Now we have to check that for every χ ∈ L∞(µ), 〈Yt, χ〉 is a random variable. This is indeed
the case since it is a centered Gaussian random variable living in the Gaussian space generated
by the Brownian motion B, with covariance, given by an application of Fubini’s Theorem,

E

[(∫
χ(x)Y xt µ(dx)

)2
]

=

∫ ∫
χ(x)χ(y)µ(dx)µ(dy)E [Y xt Y

y
t ]

=

∫ ∫
χ(x)χ(y)µ(dx)µ(dy)

1 − e−t(x+y)

x+ y

7−→
t→∞

∫ ∫
χ(x)χ(y)

µ(dx)µ(dy)

x+ y

This last integral is finite, Indeed, since ab ≤ 1
2
(a2 + b2),we can majorize it by

. . . ≤ ‖χ‖2L∞
∫ ∫

1

2

µ(dx)µ(dy)√
x
√
y

=
1

2
‖χ‖2L∞

(∫
µ(dx)√

x

)2

< +∞ .

Therefore, 〈χ,Yt〉 converges in distribution to a centered Gaussian variable with variance∫ ∫
χ(x)χ(y)

µ(dx)µ(dy)

x+ y
,

and this is easily seen to be the variance of 〈χ,Y∞〉.
The strong Markov property is quite easy to prove. Indeed, let T be an almost surely finite
stopping time (with respect to (Ft ; t ≥ 0 ) the completed, hence right-continuous, filtration
generated by the Brownian motionB). Then, B̄ = (B̄t = Bt+T − BT ; t ≥ 0 ) is a stan-
dard Brownian motion independent of (Bu, u ≤ T ), and (Y xt+T , ; t ≥ 0 ) is the solution of the
stochastic differential equation

dY xt+T = dB̄t − xY xt+T dt .

Therefore,

Y xt+T = e−xtY xT +

∫ t

0

e−x(t−s) dB̄s .

Hence, for any bounded measurable function ψ,

E [ψ(Yt+T ; t ≥ 0 ) | FT ] = EYT [ψ(Yt ; t ≥ 0 )] ,

with the family (Py, y ∈ L1(µ)) of probabilities defined by

Ey[ψ(Yt ; t ≥ 0 )] = E
[
ψ((Y x,y(x), x ≥ 0) ; t ≥ 0 )

]
,

where (Y x,yt ; t ≥ 0 ) denotes the Ornstein-Uhlenbeck process driven by B, of parameter x,
starting from y:

Y x,yt = e−xty +

∫ t

0

e−x(t−u) dBu .
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Proposition 2. Suppose that µ is a sigma-finite measure on (0,+∞) such that,∫
µ(dx)x−

1
2 < +∞ .

Then, for every y ∈ L1(µ), under Py, we have the convergence in distribution

Yt
d7−→

t→∞
Y∞ .

Proof. We shall first prove the convergence of characteristic functions, since this will charac-
terize the distribution of a possible limit (see [4]), and then prove the tightness of the family
of distributions of (Yt ; t ≥ 0 ).
The characteristic function is defined by

φYt(χ) = Ey
[
ei〈χ,Yt〉

]
(χ ∈ L∞) .

Observe that 〈χ,Yt〉 is, under Py , a Gaussian random variable of mean∫
χ(x)y(x)e−xt µ(dx) 7−→

t→∞
0 by dominated convergence

and of variance

E

[(∫
χ(x)Y xt µ(dx)

)2
]

=

∫ ∫
χ(x)χ(y)µ(dx)µ(dy)E [Y xt Y

y
t ]

=

∫ ∫
χ(x)χ(y)µ(dx)µ(dy)

1 − e−t(x+y)

x+ y

7−→
t→∞

∫ ∫
χ(x)χ(y)

µ(dx)µ(dy)

x+ y

Therefore, 〈χ,Yt〉 converges in distribution to a centered Gaussian variable with variance∫ ∫
χ(x)χ(y)

µ(dx)µ(dy)

x+ y
,

and this is easily seen to be the variance of 〈χ,Y∞〉.
We shall now prove the tightness of the family of laws of the processes (Yt, t ≥ 0). We need to
introduce a little topology: we consider that for every t > 0, Yt is a random variable taking
its values in L1(µ) endowed with the weak topology σ(L1, L∞); this is the coarsest topology
for which the functions

y → 〈χ, y〉 (χ ∈ L∞(µ))

are continuous.
Let φ(x) = 1√

x
. Given M > 0, Lemma 4 implies that, given p > 1, if 1 = 1/p+ 1/q, then

K =

{
y ∈ L1 :

∫ |y|p
φp/q

dµ ≤M
}

is a relatively compact set.
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Let us notice that, by construction, under Py the law of Yt is the law , under P0 of Yt + (x→
e−xty(x)). Since this last function converges weakly to the null function, we can suppose y = 0,
without any loss in generality. We have the sequence of inequalities,

P0(Yt /∈ K) = P0

(∫
|Y xt |

p 1

φ(x)p/q
µ(dx) > M

)
≤ 1

M
E0

[∫
|Y xt |

p 1

φ(x)p/q
µ(dx)

]
≤ c

M

∫ (
1− e−2xt

2x

)p/2
1

φ(x)p/q
µ(dx)

≤ c

M

∫ (
1

2x

)p/2
1

φ(x)p/q
µ(dx) .

This last quantity goes uniformly to zero as M →∞ , since the integral is finite.

Proposition 3. Assume that µ is a sigma finite measure on (0,+∞) such that
∫
x−

1
2 dµ(x) <

+∞, and let ν∞ denote the law of Y∞. Let f be a function depending only on a finite number
of coordinates. Then

1. If t > 0, then y → Ptf(y) is continuous for the weak topology.

2. for every y ∈ L1(µ), limt→∞ Ptf(y) = ν∞(f).

Consequently, ν∞ is an invariant probability measure for the semi group (Pt ; t ≥ 0 ) of (Yt ; t ≥ 0 );
that is, for every bounded (or positive) measurable function g, ν∞(Ptg) = ν∞(g).

Proof. Indeed, we have, for a bounded measurable function g : Rn → R, and {χi, 1 ≤ i ≤ n} ⊂
L∞(µ)

f(y) = g(〈χi, y〉, 1 ≤ i ≤ n) .

Hence,

Ptf(y) = Ey[g(〈χi,Yt〉, 1 ≤ i ≤ n)]

= E0

[
g(
〈
χi, y(.)e

−t.〉+ 〈χi,Yt〉, 1 ≤ i ≤ n)
]
.

But we know that if X = (X1, . . . , Xn) is a non degenerate centered Gaussian vector, then we
have the absolute continuity relationship

E [g(z +X)] = E [Λ(z)g(X)] (z ∈ Rn) ,

with Λ a continuous bounded function. Applying this to (〈χi,Yt〉, 1 ≤ i ≤ n), for t > 0, yields

Ptf(y) = E
[
Λ(
〈
χi, y(.)e

−t.〉, 1 ≤ i ≤ n)g(〈χi,Yt〉, 1 ≤ i ≤ n)
]
.

Now if then net yp → y weakly in L1(µ), then, for each i,〈
χi, yp(.)e

−t.〉→ 〈
χi, y(.)e

−t.〉
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and Ptf(yp)→ Ptf(y). Therefore, if t > 0, then Ptf is a continuous bounded function. Since,

under Py, Yt
d7−→

t→∞
Y∞, (see Proposition 2), we have

ν∞(Ptf) = lim
s→∞

Ps(Ptf)(y) = lim
u→∞

Puf(y) = ν∞(f) .

We let H be the space of bounded measurable functions g : L1(µ) → R such that ν∞(Ptg) =
ν∞(g). H is obviously a vector space; it is a monotone space since if (gn)n is a sequence of
functions in H, 0 ≤ gn ≤ 1, and gn increase to g, then, by monotone convergence, g is an
element of H. Since H contains constants and the class C of bounded functions depending
only on a finite number of coordinates, then, by the monotone class theorem, H contains every
bounded function measurable with respect to the sigma field σ(C) = E .

Lemma 4. Let µ be a sigma-finite measure, and φ be a strictly positive (φ > 0), integrable
function. Then, for every M ≥ 0, p, q > 1 such that 1 = 1/p+ 1/q,

K =

{
f :

∫ |f |p
φp/q

dµ ≤M
}

is a relatively compact set of L1(µ) endowed with the weak topology σ(L1, L∞).

Proof. Following Theorem IV.8.9 of Dunford–Schwarz [9] we have to prove that

1. K is a bounded subset of L1 .

2. If En is a sequence of measurable sets that decreases to ∅, then supf∈K

∣∣∣∫En f dµ∣∣∣ 7−→n→∞ 0.

By Hölder’s inequality, for f in K∫
1En |f | dµ ≤

∥∥∥∥ f

φ1/q

∥∥∥∥
Lp(µ)

∥∥∥1Enφ
1/q
∥∥∥
Lq(µ)

≤M1/p

(∫
1Enφdµ

)1/q

.

Taking E0 = Ω the whole space, we see that K is bounded in L1. The dominated convergence
theorem gives that

∫
1Enφ dµ 7−→n→∞ 0, so the convergence is uniform for f in K.

Proposition 5. Suppose that

1. µ is a sigma-finite measure on (0,+∞) such that∫
µ(dx)x−1/2 < +∞ .

2.

Vh(t) =

∫ t

0

h(t− u) dBu ,

where (Bu, u ∈ R) is a standard Brownian motion, and h is the Laplace transform

h(u) =

∫
e−ux dµ(x) (u > 0) .
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3. φ is a Lipschitz continuous function such that E [|φ(N)|] < +∞ where N denotes a
standard Gaussian random variable.

Then, h is a square integrable function on (0,+∞), and if A2 =
∫∞

0
h2(u) du, then, we have

the almost sure convergence

1

t

∫ t

0

φ

(
1

A
Vh(s)

)
ds 7−→

t→∞
E [φ(N)] .

Proof. By Fubini–Tonelli’s theorem∫ ∞
0

h(u)2 du =

∫ ∞
0

du

(∫
e−xu dµ(x)

)(∫
e−yudµ(y)

)
=

∫ ∫
dµ(x) dµ(y)

∫ ∞
0

e−(x+y)u du

=

∫ ∫
dµ(x)dµ(y)

1

x+ y
= E

[
(〈1,Y∞〉)2

]
< +∞ .

Without any loss in generality, we may assume that
∫∞

0 h2(u) du = 1.
It is not very hard to use Kolmogorov’s continuity criterion to construct, up to a null set,
a bicontinuous version of the process (Y xt , x > 0 ; t ≥ 0 ). Therefore, the law Py may be
considered as a probability measure on the canonical space of continuous functions w : R+ →
(L1(µ), σ(L1, L∞). Since ν∞ is an invariant measure for the semi group (Pt ; t ≥ 0 ), we may
consider the probability measure

Pν∞(•) =

∫
ν∞(dy)Py(•) .

Birkhoff’s ergodic theorem states then that if F is a measurable function in L1(Pν∞) and
if G(w) = E [F | I](w) is a version of the conditional expectation of F with respect to the
sigma-field of shift-invariant sets, then

1

t

∫ t

0

F (w(s+ u), u ≥ 0) ds→ G(w)

Pν∞ almost surely and in L1(Pν∞). We let F (w(u), u ≥ 0) = φ(〈w(o)〉) to obtain that, for ν∞
almost every y ∈ L1(µ), almost surely, under Py,

1

t

∫ t

0

φ(Vh(s)) ds→ G(Yt ; t ≥ 0 ) .

Therefore, there exists y ∈ L1(µ) and a bounded random variableZ(ω) = G(Yt+y(.)e−t. ; t ≥ 0 ),
such that, under P0, almost surely,

1

t

∫ t

0

φ(Vh(s) +
〈
y(.)e−s.

〉
) ds→ Z .

To conclude our proof, we only have to prove that Z is almost surely constant. We shall do
this by establishing that Z is a.s. equal to a random variable in the asymptotic sigma-field of
the Brownian motion B.
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Observe first that

1

t

∫ t

0

φ(Vh(s)) ds→ Z .

Indeed, since φ is Lipschitz continuous with, say, constant c,

1

t

∫ t

0

∣∣φ(Vh(s) +
〈
y(.)e−s.

〉
)− φ(Vh(s))

∣∣ ds ≤ 1

t
c

∫
|y(x)|

∫ t

0

e−sx dx

= c

∫
dµ(x)|y(x)|1− e

−tx

tx

and, as t goes to +∞, this converges to 0, by dominated convergence, since 1 − e−z ≤ z for
z ≥ 0.

We now fix a > 0, and observe that

1

t

∫ t

a

φ(Vh(s)) ds→ Z .

Let us introduce the random variables, for t ≥ a,

Xt =

∫ t

a

φ(Vh(s)) ds

Xa
t =

∫ t

a

φ(

∫ s

a

h(s− u) dBu) ds .

Then, φ being Lipschitz with constant c,

E [|Xt −Xa
t |] ≤ c

∫ t

a

E
[∣∣∣∣∫ a

0

h(s− u) dBu

∣∣∣∣] ds
≤ c′

∫ t

a

(∫ a

0

h(s− u)2 du

) 1
2

ds

≤ c′
∫ t

a

(∫ a

0

h(s− u)2 du

) 1
2

ds

≤ c′
(

(t− a)

∫ t

0

dvh(v)2

∫
ds1(s−a<v<s)

) 1
2

≤ c′
√
a(t− a)

(∫ ∞
0

h(v)2 dv

) 1
2

= c′′
√
a(t− a) .

Therefore, 1
t
(Xt −Xa

t ) converges in L1 to 0, and we can find a sequence tn increasing to +∞
such that 1

tn
(Xa

tn −Xtn) converges almost surely to 0.

Hence, Z(ω) = lim 1
tn
Xa
tn a.s., is equal, almost surely, to a random variable which is measurable

with respect to the sigma field σ(Bu, u ≥ a). Since a > 0 is arbitrary, we obtain that Z is
a.s. equal to a random measurable measurable with respect to the tail sigma field T =
∩a>0σ(Bu, u ≥ a). Since this sigma field is a.s. trivial, we get that Z is a.s. constant.
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de systèmes à mémoire longue, April 1995, Journes d’etude: les systemes non entiers en
automatique, Bordeaux, France.

[2] J. Audounet, G. Montseny, and B. Mbodje, Optimal models of fractional integrators
and application to systems with fading memory, 1993, IEEE SMC’s conference, Le Touquet
(France).

[3] J. Beran and N. Terrin, Testing for a change of the long-memory parameter, Biometrika
83 (1996), no. 3, 627–638.

[4] V.S. Borkar, Probability theory: an advanced course, Universitext, Springer, 1995.
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