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Abstract

Let T denote a rooted b-ary tree and let {Sv}v∈T denote a branching random walk indexed by the

vertices of the tree, where the increments are i.i.d. and possess a logarithmic moment generating

function Λ(·). Let mn denote the minimum of the variables Sv over all vertices at the nth genera-

tion, denoted by Dn. Under mild conditions, mn/n converges almost surely to a constant, which for

convenience may be taken to be 0. With S̄v =max{Sw : w is on the geodesic connecting the root to v},

define Ln = minv∈Dn
S̄v . We prove that Ln/n

1/3 converges almost surely to an explicit constant l0.

This answers a question of Hu and Shi.

1 Introduction

A branching random walk, as its name suggests, is a process describing a particle performing

random walk while branching. In this paper, we consider the 1-dimensional case as follows. At

time 0, there is one particle at location 0. At time 1, the particle splits into b particles (b ∈ Z+

deterministic and b ≥ 2 to avoid trivial cases), each of which moves independently to a new

position according to some distribution function F(x). Then at time 2, each of the b particles splits

again into b particles, which again move independently according to the distribution function

F(x). The splitting and moving continue at each integer time and are independent of each other.

This procedure produces a 1-dimensional branching random walk.

To describe the relation between particles, we associate to each particle a vertex in a b-ary rooted

tree T = {V, E} with root o, where each vertex has b children; V is the set of vertices in T and
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E is the set of edges in T. The root o is associated with the original particle. The b children of

a vertex v ∈ V correspond to the b particles from the splitting of the particle corresponding to

v. In particular, the vertices whose distance from o is n, denoted by Dn, correspond to particles

at time n. To describe the displacement between particles, we assign i.i.d. random variables X e

with common distribution F(x) to each edge e ∈ E. (Throughout, we let e = uv denote the edge e

connecting two vertices u, v ∈ V .) For each vertex v ∈ V , we use |v| to denote its distance from o

and use vk to denote the ancestor of v in Dk for any 0≤ k ≤ |v|. Then the positions of particles at

time n can be described by {Sv |v ∈ Dn}, where for v ∈ Dn, Sv =
∑n−1

i=0
X v i v i+1 .

The limiting behavior of the maximal displacement Mn = maxv∈Dn
Sv or the minimal displace-

ment mn = minv∈Dn
Sv as n→∞ has been extensively studied in the literature (See in particular

Bramson [2],[3], Addario-Berry and Reed [1], and references therein.) Throughout this paper,

we assume that

EeλX e <∞ for some λ < 0 and some λ > 0. (1)

Then the Fenchel-Legendre transform of the log-moment generating function Λ(λ) = log EeλX e ,

Λ∗(x) = sup
λ∈R

(λx −Λ(λ)), (2)

is the large deviation rate function (see [4, Ch. 1,2]) of a random walk with step distribution

F(x). In addition to (1), we also assume that, for some λ− < 0 and λ+ > 0 in the interior of

{λ : Λ(λ)<∞},

λ±Λ
′(λ±)−Λ(λ±) = log b, (3)

which implies that Λ∗(Λ′(λ±)) = log b. These assumptions imply that

M := lim
n→∞

Mn

n
= Λ′(λ+) and m := lim

n→∞

mn

n
= Λ′(λ−) a.s. . (4)

See [1] for more details on (4).

The offset of the branching random walk is defined as the minimal deviation of the path up to time

n from the line leading to mn (roughly, the minimal position at time n). Explicitly, set

Ln =min
v∈Dn

n
max
k=0
(Svk −mk). (5)

(see Figure 1 for a pictorial description of L3.) Without loss of generality, subtracting the deter-

ministic constant Λ′(λ−) from each increment {X e}, we can and will assume that

m= Λ′(λ−) = 0. (6)

Under this assumption, (3) and (5) simplify to

−Λ(λ−) = log b, (3′)

Ln =min
v∈Dn

n
max
k=0

Svk . (5′)

In the process of studying random walks in random environments on trees, Hu and Shi [5] (2007)

discovered that the offset has order n1/3 in the following sense: there exist constants c1, c2 > 0

such that

c1 ≤ lim inf
n→∞

Ln

n1/3
≤ lim sup

n→∞

Ln

n1/3
≤ c2. (7)

They raised and advertised the question as to whether the limit of Ln/n
1/3 exists. In this note, we

answer this affirmatively and prove the following.
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Figure 1: Figure for L3 when m=0 and b=2

Theorem 1. Under assumption (1) and (3) and with l0 =
3

q

3π2σ2
Q

−2λ−
, it holds that

lim
n→∞

Ln

n1/3
= l0 a.s. . (8)

In the expression for l0, λ− < 0 by the definition (3) and σ2
Q

is a certain variance defined in (10).

The proof of the theorem is divided into two parts - the lower bound (21) and the upper bound

(33). In Section 2, we review a result from Mogul’skii [7], which will be the key estimate in

our proof. In Section 3, we apply a first moment argument (with a twist) in order to study the

minimal positions for intermediate levels with the restriction that the walks do not exceed ln1/3

for some l > 0 at all time. This yields the lower bound for Ln. In section 4, we apply a second

moment argument to lower bound P(Ln ≤ ln1/3) for certain values of l. Compared with standard

applications of the second moment method in related problems, the analysis here requires the

control of second order terms in the large deviation estimates. Truncation of the tree is then used

to get independence and complete the proof of the upper bound.

The offset is determined by a competition between two terms: a displacement term (whose cost is

exponential in the displacement) and an entropy term (reflecting the difficulty in keeping the walk

confined in a narrow tube, and with cost proportional to the exponent of the time divided by width

squared; this is made precise in Theorem 2). Roughly speaking, in a time interval of length ∆t,

and displacement width∆l, the cost is of the form ec1∆l−c2∆t/(∆l)2 . One then sees that the optimum

is achieved at ∆l proportional to (∆t)1/3. This gives the scaling on n1/3 to the displacement. In

the actual proof, when optimizing the cost, a certain curve s(t), see (17), emerges. The curve s(t)

reflects the location of the minimal position of intermediate levels, and plays an important role

also in the second moment computation, see a discussion in Section 5.1.
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2 An Auxiliary Estimate: the absorption problem for random

walk

We derive in this section some estimates for random walk with i.i.d. increments {X i}i≥1 distributed

according to a law P with P((−∞, x]) = F(x) satisfying (1), (3) and (6). Define

Sn(t) =
X0 + X1 + · · ·+ Xk

n1/3
for

k

n
≤ t <

k+ 1

n
, k = 0,1, . . . , n− 1,

where X0 = 0. Note that due to (6), EX i > 0. Introduce the auxiliary law

dQ

dP
= eλ−X1−Λ(λ−). (9)

Under Q, EQX1 = 0. The variance of X1 under Q is denoted by

σ2
Q
= EQX 2

1
. (10)

In the following estimates, f1(t) and f2(t), which may take the value ±∞, are right-continuous

and piecewise constant functions on [0,1]. G = ∪0≤t≤1{( f1(t), f2(t))× t} is a region bounded by

f1(t) and f2(t). Assume also that G contains the graph of a continuous function.

Theorem 2. (Mogul’skii [7, Theorem 3]) Under the above assumptions,

Q(Sn(t) ∈ G, t ∈ [0,1]) = e−
π2σ2

Q

2
H2(G)n

1/3+o(n1/3), (11)

where

H2(G) =

∫ 1

0

1

( f1(t)− f2(t))
2

d t. (12)

In the following, we will need to control the dependence of the estimate (11) on the starting point.

Corollary 1. With notation and assumptions as in Theorem 2, for any ε > 0, there is a δ > 0 such

that, for any interval I ⊂ ( f1(0), f2(0)) with length |I | ≤ δ, we have

sup
x∈I

Q(x + Sn(·) ∈ G)≤ e−(
π2σ2

Q

2
H2(G)−ε)n

1/3+o(n1/3). (13)

Proof Let I = (a, b) and Gx := ∪0≤t≤1{( f1(t) − x , f2(t) − x) × t} be the shift of G by x . Set

G′ = Ga ∪ Gb. We have

sup
x∈I

Q(x + Sn(·) ∈ G) = sup
x∈I

Q(Sn(·) ∈ Gx)≤Q(Sn(·) ∈ G′) = e−
π2σ2

Q

2
H2(G

′)n1/3+o(n1/3) .

Since H2(G
′) =
∫ 1

0

1

( f2(t)− f1(t)+(b−a))2
d t ↑ H2(G) as |I | = (b− a)→ 0 uniformly in the position of I ,

the lemma is proved.
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3 Lower Bound

Consider the branching random walk up to level n. In this and the next section, we estimate the

number of particles that stay constantly below ln1/3, i.e.,

N l
n
=
∑

v∈Dn

1{S
vk≤ln1/3 for k=0,1,...,n}. (14)

In order to get a lower bound on the offset, we apply a first moment method with a small twist:

while it is natural to just calculate the first moment of N l
n
, such a computation ignores the con-

straint on the number of particles at level k imposed by the tree structure. In particular, EN l
n

for

branching random walks is the same as the one for bn independent random walks. An easy first

and second moment argument shows that the limit in (8) is 0 for bn independent random walks,

and thus no useful upper bound can be derived in this way.

To address this issue, we use a more delicate first moment argument. Namely, we look at the

vertices not only at level n but also at some intermediate levels. Divide the interval [0, n] into 1/ε

equidistant levels, with 1/ε an integer. Define recursively, for any δ > 0,

(

s0 = 0, w0 = l +δ;

sk = sk−1 −
π2σ2

Q

2λ−w2
k−1

ε, wk = l +δ− sk for k = 1, . . . , 1

ε
.

(15)

For particles staying below ln1/3, sk will be interpreted as values such that the walks between

times kεn and (k + 1)εn never go below (sk − δ)n
1/3, and wkn1/3 will correspond to the width

of the window Wk = ((sk − δ)n
1/3, ln1/3) that we allow between level kεn and (k + 1)εn, when

considering those walks that do not go below (sk −δ)n
1/3 or go above ln1/3.

Before calculating the first moment, consider the recursion (15) for sk. Rewrite it as

sk = sk−1 −
π2σ2

Q

2λ−(l +δ− sk−1)
2
ε. (16)

This is an Euler’s approximation sequence for the solution of the following differential equation

s′(t) = −
π2σ2

Q

2λ−(α− s(t))2
, s(0) = 0, (17)

where α = l + δ. The above initial value problem has the solution sα(t) = α+
3

q

−
3π2σ2

Q

2λ−
t −α3.

Here we find

l0 =
3

È

3π2σ2
Q

−2λ−
(18)

such that sl0(1) = l0. For any ł1 < l0, we can choose δ > 0 and l1 + δ < l0. In this case,

sl1+δ(1) > l1 + δ > l1. If we choose such l1 and δ in (15), it is easy to check that the sequence

{sk}
1

ε

k=0
will be greater than l1 somewhere in the sequence. Define

K =min{k : sk ≥ l1}. (19)

For fixed γ > 0 small enough, we can choose ε small such that

Kε < 1− γ. (20)
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Figure 2: The relation between Zk ’s and sk ’s.

For k < K − 1, let Zk denote the number of vertices v between level kεn and (k + 1)εn with

Sv < (sk − δ)n
1/3. Denote by ZK−1 the number of vertices w between level (K − 1)εn and n with

Sw < (sK−1 − δ)n
1/3. Denote by Z the number vertices v ∈ Dn whose associated walks stay in Wk

between level kεn and (k+ 1)εn for k < K and then stay in WK−1 up to level n. Explicitly,

Z0 =

⌊εn⌋
∑

i=1

∑

v∈Di

1{Sv<−δn1/3},

Zk =

⌊(k+1)εn⌋
∑

i=⌊kεn⌋+1

∑

v∈Di

1{Sv<(sk−δ)n
1/3, S

vd ∈Wj for jεn≤d≤( j+1)εn and j<k}, 0< k < K − 1,

ZK−1 =

n
∑

i=⌊Kεn⌋+1

∑

v∈Di

1{Sv<(sK−1−δ)n
1/3, S

vd ∈Wj for jεn≤d≤( j+1)εn and j<K−1},

Z =
∑

v∈Dn

1{S
vd ∈Wj for jεn≤d≤( j+1)εn and j<K , S

vd ∈WK−1 for Kεn≤d≤n}.

Observe that N l1
n
≤
∑K−1

k=0
Zk+ Z . Using Theorem 2, we provide upper bounds for the first moment

of the Zks and Z . Starting with Z0, we have

EZ0 =

⌊εn⌋
∑

i=1

bi E1{Si<−δn1/3} =

⌊εn⌋
∑

i=1

bi EQe−λ−Si+iΛ(λ−)1{Si<−δn1/3}

≤

⌊εn⌋
∑

i=1

eλ−δn1/3

EQ1{Si<−δn1/3} ≤

⌊εn⌋
∑

i=1

eλ−δn1/3

≤ eλ−δn1/3+o(n1/3),

where we used the change of measure (9) in the second equality, and (3′) and the fact that λ− < 0
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in the first inequality. For 0< k < K − 1, using again the change of measure (9), we get

EZk =

⌊(k+1)εn⌋
∑

i=⌊kεn⌋+1

bi E1{Si<(sk−δ)n
1/3, Sd∈Wj for jεn≤d≤( j+1)εn and j<k}

=

⌊(k+1)εn⌋
∑

i=⌊kεn⌋+1

EQe−λ−Si 1{Si<(sk−δ)n
1/3, Sd∈Wj for jεn≤d≤( j+1)εn and j<k}

≤ e−λ−(sk−δ)n
1/3

⌊(k+1)εn⌋
∑

i=⌊kεn⌋+1

EQ1{Si<(sk−δ)n
1/3, Sd∈Wj for jεn≤d≤( j+1)εn and j<k}.

Therefore,

EZk ≤ e−λ−(sk−δ)n
1/3

⌊(k+1)εni⌋
∑

i=⌊kεn⌋+1

Q(Sd ∈Wj for jεn≤ d ≤ ( j + 1)εn and j < k)

= e−λ−(sk−δ)n
1/3

⌊(k+1)εn⌋
∑

i=⌊kεn⌋+1

e
−
∑k−1

j=0

π2σ2
Q

2w2
j

εn1/3+o(n1/3)

≤ e
−λ−(sk−δ)n

1/3−
∑k−1

j=0

π2σ2
Q

2w2
j

εn1/3+o(n1/3)

= eλ−δn1/3+o(n1/3),

where (11) with the choice of G = {∪k−1
j=0

Wj/n
1/3×[ jε, ( j+1)ε)}∪{(−∞,∞)×[kε, 1]} is applied

in the first equality, and (15) in the second. The calculation of EZK−1 is almost the same as EZk

except that we replace the summation limits above by (K − 1)εn+ 1 and n and that we replace

the k in the summand by K − 1. Thus, we get the same upper bound for EZK−1,

EZK−1 ≤ eλ−δn1/3+o(n1/3).

We estimate EZ similarly as follows. First, use the change of measure (9) to get

EZ = bnE1{Sd∈Wj for jεn≤d≤( j+1)εn and j<K , Sd∈WK−1, for Kεn≤d≤n}

= EQe−λ−Sn 1{Sd∈Wj for jεn≤d≤( j+1)εn and j<K , Sd∈WK−1, for Kεn≤d≤n}

≤ e−λ− l1n1/3

EQ1{Sd∈Wj for jεn≤d≤( j+1)εn and j<K , Sd∈WK−1, for Kεn≤d≤n}.

Then, applying (11) with G = {∪K−1
j=0

Wj/n
1/3 × [ jε, ( j + 1)ε)} ∪ {WK−1/n

1/3 × [Kε, 1]} in the first

equality, we get

EZ ≤ e−λ− l1n1/3

EQ1{Sd∈Wj for jεn≤d≤( j+1)εn and j<K , Sd∈WK−1, for Kεn≤d≤n}

= e
−λ− l1n1/3−
∑K−1

i=0

π2σ2
Q

2w2
i

εn1/3−
π2σ2

Q

2w2
K−1

(1−Kε)n1/3+o(n1/3)

≤ e
−γ

π2σ2
Q

2l2
1

n1/3+o(n1/3)
,

where the last inequality is obtained by noting that l1 ≤ SK = −
∑K−1

i=0

π2σ2
Q

2λ−w2
i

ε by (19) and (15),

and then recalling (20) and wK−1 < l1.
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In conclusion, we proved that E(
∑K−1

k=0
Zk+Z)≤ e−c3n1/3+o(n1/3) for some 0< c3 <min{−λ−δ,γ

π2σ2
Q

2l2
1

}.

Since
∑K−1

k=0
Zk + Z is an integer valued random variable, we have

P(

K−1
∑

k=0

Zk + Z > 0) = P(

K−1
∑

k=0

Zk + Z ≥ 1)≤ E(

K−1
∑

k=0

Zk + Z)≤ e−c3n1/3+o(n1/3).

By the Borel-Cantelli lemma, we have
∑K−1

k=0
Zk + Z = 0 a.s. for all large n. So is N l1

n
= 0, which

means that Ln > l1n1/3 a.s. for all large n. Since l1 < l0 is arbitrary, we conclude that

lim inf
n→∞

Ln

n1/3
≥ l0 a.s.. (21)

This completes the proof of the lower bound in Theorem 1.

4 Upper Bound

4.1 A Second Moment Method Estimate

In this section, we consider any fixed l2 > l0. A second moment argument will provide a lower

bound for the probability that we can find at least one walk which stays in the interval Wk between

level kεn and (k+ 1)εn for all k. A truncation (of the tree) argument will complete the proof of

the upper bound.

As a first step, consider the sequence {sk} in (15) with l2 > l0. Then for any δ > 0, it is easy to see

that sl2+δ(t) is increasing and convex for 0≤ t ≤ 1. Thus in Euler’s approximation,

s 1

ε
< sl2+δ(1)< sl2(1)< l2. (22)

It follows from (15) that

wk ≥ δ for all 0≤ k ≤
1

ε
− 1. (23)

Define Ñ l2
n

as follows.

Ñ l2
n
=
∑

v∈Dn

1{S
v j∈Wk , for kεn≤ j≤(k+1)εn, k=0,..., 1

ε
−1}.

We will apply second moment method to Ñ l2
n

. EÑ l2
n

is calculated the same way as EZ in the

previous section. But this time we consider G = {∪
1

ε
−1

j=0
Wj/n

1/3×[ jε, ( j+1)ε)}∪{(l2−∆l2, l2)×{1}}

in (11) with ∆l2→ 0, so

EÑ l2
n
= bnE1{S j∈Wk , for kεn≤ j≤(k+1)εn, k=0,..., 1

ε
−1}

= EQe−λ−Sn 1{S j∈Wk , for kεn≤ j≤(k+1)εn, k=0,..., 1

ε
−1}

= e
(−λ− l2−
∑

1
ε −1

k=0

π2σ2
Q

2w2
k

ε)n1/3+o(n1/3)
. (24)

From (22) and the definition (15) of sk, −λ−l2−
∑

1

ε
−1

k=0

π2σ2
Q

2w2
k

ε > 0 and thus EÑ l2
n
→∞. Therefore,

we will be ready to apply the second moment method after the following calculations.
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E(Ñ l2
n
)2 = E
∑

u,v∈Dn

1{S
u j ,Sv j∈Wk , for kεn≤ j≤(k+1)εn, k=0,..., 1

ε
−1}

=

n−1
∑

h=0

E
∑

u,v∈Dn
u∧v∈Dh

1{S
u j ,Sv j∈Wk , for kεn≤ j≤(k+1)εn, k=0,..., 1

ε
−1} + EÑ l2

n
. (25)

In the last expression above, u ∧ v is the largest common ancestor of u and v. Write h = qεn+ r

for 0≤ q ≤ 1

ε
− 1 and 0≤ r < εn. There are b2n−h−1(b− 1) indices in the second sum in the right

side of (25). We estimate the probability for one such pair to stay in Wk ’s. In order to simplify the

notation, define

p1(0,h, x) = P(Sh ∈ d x , S j ∈Wk, for kεn≤ j ≤ (k+ 1)εn∧ h, k = 0, . . . ,q),

p2(h, x , n, y) = P(Sn ∈ d y, S j ∈Wk, for h∨ kεn≤ j ≤ (k+ 1)εn, k = q, . . . , n|Sh = x).

Similarly, define q1(0,h, x) and q2(h, x , n, y) to be the probability of the same events under Q.

Then we have

E(Ñ l2
n
)2 = EÑ l2

n
+

n−1
∑

h=0

b2n−h−1(b− 1)

∫

Wq

(

∫

Wn

p2(h, x , n, y)d y)2p1(0,h, x)d x

= EÑ l2
n
+

n−1
∑

h=0

b2n−h−1(b− 1)

∫

Wq

(

∫

Wn

e−λ−(y−x)+(n−h)Λ(λ−)q2(h, x , n, y)d y)2

·e−λ− x+hΛ(λ−)q1(0,h, x)d x

≤ EÑ l2
n
+

n−1
∑

h=0

b− 1

b
e(−2λ− l2+λ−(sq−δ))n

1/3

·

∫

Wq

(

∫

Wn

q2(h, x , n, y)d y)2q1(0,h, x)d x . (26)
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We now provide an upper bound for the integral term in the right side of (26). We have
∫

Wq

(

∫

Wn

q2(h, x , n, y)d y)2q1(0,h, x)d x

≤ ( sup
x∈Wq

∫

Wn

q2(h, x , n, y)d y)2
∫

Wq

q1(0,h, x)d x

≤ ( sup
x∈Wq

∫

Wn

∫

Wq+1

q2(h, x , (q+ 1)εn, z)q2((q+ 1)εn, z, n, y)dzd y)2
∫

Wq

q1(0,qεn, x)d x

≤ ( sup
x∈Wq

∫

Wq+1

q2(h, x , (q+ 1)εn, z)q2((q+ 1)εn, z, n,Wn)dz)2e
−
∑q−1

k=0

π2σ2
Q

2w2
k

n1/3+o(n1/3)

≤ ( sup
x∈Wq

∑

i

∫

Ii

q2(h, x , (q+ 1)εn, z)q2((q+ 1)εn, z, n,Wn)dz)2e
−
∑q−1

k=0

π2σ2
Q

2w2
k

n1/3+o(n1/3)

≤ (
∑

i

sup
z∈Ii

q2((q+ 1)εn, z, n,Wn))
2e
−
∑q−1

k=0

π2σ2
Q

2w2
k

εn1/3+o(n1/3)
. (27)

In the above, ∪i Ii =Wq+1. Due to (13), for any small ε1 > 0, we can choose a finite number of Iis

and |Ii | ≤ δ1n1/3 such that for each i,

sup
z∈Ii

(q2((q+ 1)εn, z, n,Wn)≤ e
−(
∑

1
ε −1

k=q+1

π2σ2
Q

2w2
k

ε−ε1)n
1/3+o(n1/3)

.

After splitting
∑n−1

h=0
to
∑

1

ε
−1

q=0

∑εn−1

r=0
in (26), we obtain the upper bound for E(Ñ l2

n
)2 as follows,

E(Ñ l2
n
)2 ≤ EÑ l2

n
+

1/ε−1
∑

q=0

e
(−2λ− l2+λ−(sq−δ))n

1/3−
∑q−1

k=0

π2σ2
Q

2w2
k

εn1/3−2(
∑

1
ε −1

k=q+1

π2σ2
Q

2w2
k

ε−ε1)n
1/3+o(n1/3)

≤

1/ε−1
∑

q=0

e
(−2λ− l2+λ−(sq−δ))n

1/3−
∑q−1

k=0

π2σ2
Q

2w2
k

εn1/3−2(
∑

1
ε −1

k=q+1

π2σ2
Q

2w2
k

ε−ε1)n
1/3+o(n1/3)

. (28)

With the bounds for EÑ l2
n

(24) and E(Ñ l2
n
)2 (28), we have

P(Ñ l2
n
> 0) ≥

(EÑ l2
n
)2

E(
˜

N
l2
n )

2

≥
1

∑1/ε−1

q=0
e
(λ−(sq−δ)+
∑q−1

k=0

π2σ2
Q

2w2
k

ε+2
π2σ2

Q

2w2
q
ε+2ε1)n

1/3+o(n1/3)

=
1

∑1/ε−1

q=0
e
(−λ−δ+

π2σ2
Q

w2
q
ε+2ε1)n

1/3+o(n1/3)

≥ e
(λ−δ−

π2σ2
Q

δ2 ε−2ε1)n
1/3+o(n1/3)

= e−ε2n1/3+o(n1/3), (29)

where ε2 := −λ−δ+
π2σ2

Q

δ2 ε+ 2ε1, and we use (15) in the first equality and wq ≥ δ (see (23)) in

the last inequality. We can make ε2 arbitrarily small by first choosing δ small then choosing ε and

ε1 small. Therefore, we get

P(Ln ≤ l2n1/3)≥ P(Ñ l2
n
> 0)≥ e−ε2n1/3+o(n1/3). (30)
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4.2 A Truncation Argument

In view of the lower bound (30), we truncate the tree at level ⌊ε3n1/3⌋ = ⌊2ε2n1/3/log b⌋ to get

b⌊ε3n1/3⌋ ≥ e2ε2n1/3

/b independent branching random walks. We take care of the path before and

after level ⌊ε3n1/3⌋ separately.

Define Lv
n

similarly as Ln for each branching random walk starting from v ∈ D⌊ε3n1/3⌋, i.e., letting

z = ⌊ε3n1/3⌋,

Lv
n
= min

u∈Dz+n,uz=v

z+n
max
k=z
(Suk − Sv).

Then

P(Lv
n
> l2n1/3 for every v) = (1− P(Ln ≤ l2n1/3))b

⌊ε3n1/3⌋

≤ (1− e−ε2n1/3+o(n1/3))e
2ε2n1/3

/b ≤ e−eε2n1/3+o(n1/3)

, (31)

when n is large. By the Borel-Cantelli lemma, the above double exponential guarantees that almost

surely for all large n, there exists a v ∈ D⌊ε3n1/3⌋ such that

Lv
n
≤ l2n1/3. (32)

This is an upper bound for the deviation of paths after level ⌊ε3n1/3⌋. We also need to control

the paths before that level, which is a standard large deviation computation. Indeed, for q integer

(later, we take q = ⌊ε3n1/3⌋), set

Z̃q =

q
∑

k=1

∑

v∈Dk

1{Sv≥2Mq}.

Recall the definition for M in (4). Let Q′ be defined by
dQ′

dP
= eλ+X e−Λ(λ+). We have

EZ̃q =

q
∑

k=1

bk E1{Sk≥2Mq} =

q
∑

k=1

bk EQ′ e
−λ+Sk+kΛ(λ+)1{Sk≥2Mq}

≤

q
∑

k=1

bke−2λ+Mq+kΛ(λ+)EQ′1{Sk≥2Mq}

≤

q
∑

k=1

bke−λ+Mk+kΛ(λ+)e−λ+Mq = e−λ+Mq+o(q),

where, in the last equality, we use the definitions of M and λ+ (see (3) and (4)). It follows that

P(Z̃q ≥ 1)≤ EZ̃q ≤ e−λ+Mq+o(q).

Again by the Borel-Cantelli lemma, Z̃q = 0 for all large q almost surely. Taking q = ⌊ε3n1/3⌋ and

combining with (32), we obtain that

Ln ≤ Ln+⌊ε3n1/3⌋ ≤ (l2 + 2Mε3)n
1/3

is true for all large n almost surely. That is,

lim sup
n→∞

Ln

n1/3
≤ l2 + 2Mε3 a.s..
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Since ε3 > 0 and l2 > l0 are arbitrary, we conclude that

lim sup
n→∞

Ln

n1/3
≤ l0 a.s.. (33)

Together with (21), this completes the proof of Theorem 1.

5 Concluding Remarks

5.1 The Curve s(t) of (17)

We comment in this subsection on the appearance of the curve s(t) of (17) as a solution to an

appropriate variational principle. By the computation in Section 2, s(t)n1/3 denotes the minimal

possible position for vertices at level tn. However, in Section 3, it is not apriori clear that s(t) will

be our best choice. To see why this must indeed be the best choice for the upper bound argument,

let us consider a general curve φ(t)≤ l2 as the lower bound for the region. Examining the second

moment computation, we need

max
t
{−φ(t) +

∫ t

0

c

(l2 −φ(u))
2

du} ≤ 0

to make the argument work, where c is some constant. Define w(t) = l2 −φ(t) ≥ 0. The above

condition is equivalent to

l2 ≥max
t
{w(t) +

∫ t

0

c

w(u)2
du}.

Therefore, the best (smallest) upper bound that we can hope is the result of the following opti-

mization problem

min
w:(0,1)→R+

max
t
{w(t) +

∫ t

0

c

w(u)2
du}. (34)

The solution to this variational problem, denoted by w∗(·), satisfies s(t) = l2 − w∗(t).

5.2 Generalizations

The approach in this note seems to apply, under natural assumptions, to the situation where the

b-ary tree is replaced by a Galton-Watson tree whose offspring distribution possesses high enough

exponential moments. We do not pursue such an extension here.
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