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Abstract
We consider a branching random walk on R with a killing barrier at zero. At criticality, the process
becomes eventually extinct, and the total progeny Z is therefore finite. We show that P(Z > n) is
of order (n ln2(n))−1, which confirms the prediction of Addario-Berry and Broutin [1].

1 Introduction

We look at the branching random walk on R+ killed below zero. Let b ≥ 2 be a deterministic
integer which represents the number of children of the branching random walk, and x ≥ 0 be the
position of the (unique) ancestor. We introduce the rooted b-ary tree T , and we attach at every
vertex u except the root an independent random variable Xu picked from a common distribution
(we denote by X a generic random variable having this distribution). We define the position of
the vertex u by

S(u) := x +
∑

v<u

X v

where v < u means that the vertex v is an ancestor of u. We say that a vertex (or particle) u is
alive if S(v)≥ 0 for any ancestor v of u including itself.

The process can be seen in the following way. At every time n, the living particles split into b
children. These children make independent and identically distributed steps. The children which
enter the negative half-line are immediately killed and have no descendance. We are interested
in the behaviour of the surviving population. At criticality (see below for the definition), the
population ultimately dies out. We define the total progeny Z of the killed branching random
walk by

Z := #{u ∈ T : S(v)≥ 0 ∀ v ≤ u} .

Aldous [2] conjectured that in the critical case, E[Z] <∞ and E[Z ln(Z)] =∞. In [1], Addario-
Berry and Broutin proved that conjecture (in a more general setting where the number of children
may be random). As stated there, this is a strong hint that P(Z = n) behaves asymptotically like
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1/(n2 ln2(n)), which is a typical behaviour of critical killed branching random walks. Here, we
look at the tail distribution P(Z ≥ n). We mention that the Branching Brownian Motion, which
can be seen as a continuous analogue of our model, already drew some interest. Kesten [6] and
Harris and Harris [5] studied the extinction time of the population, whereas Berestycki et al. [3]
showed a scaling limit of the process near criticality. Maillard [7] investigated the tail distribution
of Z , and proved that P(Z = n)∼ c

n2 ln2 n
as expected.

Before stating our result, we introduce the Laplace transform φ(t) := E[etX ] and we suppose that

• φ(t) reaches its infimum at a point t = ρ > 0 which belongs to the interior of {t : φ(t) <
∞},

• The distribution of X is non-lattice.

The second assumption is for convenience in the proof, but the theorem remains true in the lattice
case. The probability that the population lives forever is zero or positive depending on whether
E[eρX ] is less or greater than the critical value 1/b. In the present work, we consider the critical
branching random walk which corresponds to the case E[eρX ] = 1/b. For x ≥ 0, we call P x the
distribution of the killed branching random walk starting from x .

Theorem 1.1. There exist two positive constants C1 and C2 such that for any x ≥ 0, we have for n
large enough

C1
(1+ x)eρx

n ln2(n)
≤ P x(Z > n)≤ C2

(1+ x)eρx

n ln2(n)
.

Hence, the tail distribution has the expected order. Nevertheless, the question to find an equivalent
to P(Z = n) is still open. As observed in [1], in order to have a big population, a particle of the
branching random walk needs to go far to the right, so that its descendance will be greater than
n with probability large enough (roughly a positive constant). The theorem then comes from the
study of the tail distribution of the maximum of the killed branching random walk. By looking at
the branching random walk with two killing barriers, we are able to improve the estimates already
given in [1].

The paper is organised as follows. Section 2 gives some elementary results for one-dimensional
random walks on an interval. Section 3 gives estimates on the first and second moments of the
killed branching random walk, while Section 4 contains the asymptotics on the tail distribution
of the maximal position reached by the branching random walk before its extinction. Finally,
Theorem 1.1 is proved in Section 5.

2 Results for one-dimensional random walks

Let Rn = R0 + Y1 + . . .+ Yn be a one-dimensional random walk and P x be the distribution of the
random walk starting from x . For any k ∈ R, we define τ+k (resp. τ−k ) as the first time the walk
hits the domain (k,+∞) (resp. (−∞, k)),

τ+k := inf{n≥ 0 : Rn > k} ,
τ−k := inf{n≥ 0 : Rn < k} .
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We assume

(H) E[Y1] = 0, ∃θ , η > 0 such that E[e−(θ+η)Y1]<∞, E[e(1+η)Y1]<∞.

All the results of this section are stated under condition (H). The results remain naturally true
after renormalization as long as E[etY1] is finite on a neighborhood of zero (and E[Y1] = 0).
Throughout the paper, the variables C1, C2, . . . represent positive constants. We first look at the
moments of the overshoot Uk and undershoot Lk defined respectively by

Uk := Sτ+k − k ,

Lk := k− Sτ−k .

Lemma 2.1. There exists C3 > 0 such that E0[eUk] ∈ [C3, 1/C3] for any k ≥ 0 and E0[eθ Lk] ∈
[C3, 1/C3] for any k ≤ 0.

Proof. This is a consequence of Proposition 4.2 in Chang [4]. �

The following lemma concerns the well-known hitting probabilities of R.

Lemma 2.2. For any x ≥ 0,

P x(τ+k < τ
−
0 ) =

E[−Sτ−x ]

k
+ o(1/k) . (2.1)

as k→∞. Moreover, there exist two positive constants C4 and C5 such that, for any real k ≥ 0 and
any z ∈ [0, k], we have

C4
z+ 1

k+ 1
≤ Pz(τ+k < τ

−
0 )≤ C5

z+ 1

k+ 1
. (2.2)

Proof. Let k > 0 and x ∈ [0, k]. By Lemma 2.1, we are allowed to use the stopping time theorem
on (Rn, n≤min(τ−0 ,τ+k )), and we get

x = E x[Rτ+k , τ+k < τ
−
0 ] + E x[Rτ−0 , τ−0 < τ

+
k ] .

We can write it
x = kP x(τ+k < τ

−
0 ) + A1 − A2

where A1 and A2 are nonnegative and defined by A1 := E x[Uk, τ+k < τ
−
0 ] and A2 := E x[L0, τ−0 <

τ+k ]. Equivalently,

P x(τ+k < τ
−
0 ) =

x − A1 + A2

k
. (2.3)

By Cauchy-Schwartz inequality and Lemma 2.1, we observe that

(A1)
2 ≤ E x[U2

k ]P
x(τ+k < τ

−
0 )≤ C6P x(τ+k < τ

−
0 ) .

Since P x(τ+k < τ
−
0 ) goes to zero when k tends to infinity, we deduce that

lim
k→∞

A1 = 0 .

By dominated convergence, we have also

lim
k→∞

A2 = E x[L0]
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and E x[L0] ≤ C7 by Lemma 2.1. This leads to equation (2.1) since E[−Sτ−x ] = x + E x[L0].

Furthermore, we have 0≤ A1 ≤
p

C6 and 0≤ A2 ≤ C7. Therefore (2.3) implies that

P x(τ+k < τ
−
0 )≤

x + C7

k
≤ C8

x + 1

k+ 1
.

Similarly,

P x(τ+k < τ
−
0 )≥

x −
p

C6

k
.

We notice also that P x(τ+k < τ
−
0 ) ≥ P0(τ+k < τ

−
0 ). By (2.1), there exists a constant C9 > 0 such

that P0(τ+k < τ
−
0 )≥

C9

k+1
. We get

P x(τ+k < τ
−
0 )≥

¨ C9

k+1
if x <

p

C6 + 1
C10

x+1
k

otherwise

with C10 := 1p
C6+2

. It implies that

P x(τ+k < τ
−
0 )≥ C11

x + 1

k+ 1
.

Thus equation (2.2) holds with C5 := C8 and C4 := C11. �

Throughout the paper, we will write ∆k(1) for any function such that

0< D1 ≤∆k(1)≤ D2

for some constants D1 and D2 and k large enough. The following lemma provides us with estimates
used to compute the moments of the branching random walk in Sections 3 and 4.

Lemma 2.3. We have for any x > 0,

E0






eUk

τ+k
∑

`=0

e−R`(R` + 1), τ+k < τ
−
0






= ∆k(1)

1

k
, (2.4)

Ek−x






eUk

τ+k
∑

`=0

e−R`(R` + 1), τ+k < τ
−
0






= ∆k(1)

1+ x

k2 , (2.5)

Ek−x






e−L0

τ−0
∑

`=0

e−R`(k− R` + 1), τ−0 < τ
+
k






= ∆k(1)(1+ x) . (2.6)

Proof. First let us explain how we can find intuitively these estimates. The terms of the sum
within the expectation is big when R` is close to 0, and the time that the random walk spends in
the neighborhood of 0 before hitting level 0 is roughly a constant. Moreover, by Lemma 2.1, we
know that the overshoot Uk and the undershoot L0 behave like a constant. From here, we can
deduce the different estimates. In (2.4), the optimal path makes the particle stay a constant time
near zero then hit level k which is of cost 1/k. In (2.5), the particle first goes close to 0, which
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gives a term in (1+ x)/k, then go back to level k which gives a term in 1/k. Finally looking at
(2.6), we see that the particle goes directly to 0, which brings a term of order k because of the
sum, and a term of order (1+ x)/k because of the cost to hit 0 before k. The proofs of the three
equations being rather similar, we restrain our attention on the proof of (2.4) for sake of concision.

We introduce the function g(z) := e−z(1+ z) and we observe that g is decreasing. Let also

A := E0






eUk

τ+k
∑

`=0

e−R`(R` + 1), τ+k < τ
−
0






.

Let a > 0 be such that P(Y1 > a) > 0 and P(Y1 < −a) > 0. For ease of notation we suppose that
we can take a = 1. For any integer i such that 0 ≤ i < k, we denote by Ii the interval [i, i + 1),
and we define

Ti := inf{n≥ 1 : Rn ∈ Ii} ,
N(i) := #{n≤min{τ+k ,τ−0 } : Rn ∈ Ii}

which respectively stand for the first time the walk enters Ii and the number of visits to the interval
before hitting level k or level 0. We observe that

A≤
∑

0≤i<k

g(i+ 1)E0[eUk N(i), τ+k < τ
−
0 ] .

Let i be an integer between 1 and k− 1, and let z ∈ [i, i+ 1). We have

Pz(Ti >min(τ−0 ,τ+k ))≥ Pz(R` ≤ R1, ∀` ∈ [1,τ−0 ], R1 < i) .

We use the Markov property to get

Pz(Ti >min(τ−0 ,τ+k ))≥ Ez
�

Ph(τ+h > τ
−
0 )h=R1

, R1 < i
�

.

By Lemma 2.2 equation (2.1) (applied to −R), there exists a positive constant C12 such that
Ph(τ+h > τ

−
0 )≥ C12/(1+ h). This yields

Pz(Ti >min(τ−0 ,τ+k ))≥
C12

i+ 1
P(R1 <−1) =: C13

1

i+ 1
. (2.7)

When i ≤ k/2, (and z ∈ [i, i+ 1)), we notice that

Ez
�

eUk , τ+k < τ
−
0

�

≤ Ez
�

E
R
τ+

k/2 [eUk], τ+k/2 < τ
−
0

�

≤ C14Pz(τ+k/2 < τ
−
0 )

≤ C15
i+ 1

k

where the last two inequalities come from Lemmas 2.1 and 2.2. For i ≥ k/2, we simply write

Ez[eUk , τ+k < τ
−
0 ]≤ sup

k≥0
Ez[eUk].
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Therefore, we have for any i ≤ k,

Ez[eUk , τ+k < τ
−
0 ]≤ C16

1+ i

k
. (2.8)

We obtain that for any integer i between 1 and k− 1, and any z ∈ Ii ,

Ez
�

eUk N(i), τ+k < τ
−
0

�

≤
∑

n≥0

(1+ n)

�

sup
z∈Ii

Pz(Ti <min(τ+k ,τ−0 ))

�n

sup
z∈Ii

Ez
�

eUk , τ+k <min(τ−0 , Ti)
�

=

�

1− sup
z∈Ii

Pz(Ti <min(τ+k ,τ−0 ))

�−2

sup
z∈Ii

Ez
�

eUk , τ+k <min(τ−0 , Ti)
�

≤ C−2
13 (i+ 1)2C16

1+ i

k

≤ C17
(i+ 1)3

k
(2.9)

by (2.7) and (2.8). We have to deal with the extreme cases i = 0 and i > k− 1. For z ∈ I0, we see
that Pz(Ti >min(τ−0 ,τ+k ))≥ P(Y1 <−1), which yields by the same reasoning as before

Ez
�

eUk N(0), τ+k < τ
−
0

�

≤ C18
1

k
.

Similarly, (bkc is the biggest integer smaller than k),

Ez
�

eUk N(bkc), τ+k < τ
−
0

�

≤ C19 .

Therefore, (2.9) still holds for any integer i ∈ [0, k), as long as C17 is taken large enough. By the
strong Markov property, we deduce that

E0
�

eUk N(i), τ+k < τ
−
0

�

≤ C17P0(Ti < τ
−
0 ∧τ

+
k )
(i+ 1)3

k
.

This gives the following upper bound for A:

A≤ C17

∑

0≤i<k

g(i+ 1)P0(Ti < τ
−
0 ∧τ

+
k )
(i+ 1)3

k
. (2.10)

In particular,

A≤ C17
1

k

∑

0≤i<k

(i+ 1)3 g(i+ 1) = C20
1

k

with C20 := C17

∑

i≥0(i + 1)3 g(i + 1). This proves the upper bound of (2.4). For the lower bound,
we write (beware that Uk ≥ 0),

E0






eUk

τ+k
∑

`=0

e−R`(R` + 1), τ+k < τ
−
0






≥ P0(τ+k < τ

−
0 ).

We apply (2.1) to get the lower bound of (2.4). �
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3 Some moments of the killed branching random walk

For any a ≥ 0 and any integer n, we call Zn(a) the number of particles who hit level a for the first
time at time n,

Zn(a) := #{|u|= n : τ−0 (u)> n− 1, τ−a (u) = n}

where for any a, τ−a (u) is the hitting time of (−∞, a) of the particle u. We notice that particles in
Zn(a) can be dead at time n, but their father at time n− 1 is necessarily alive. Let also

Z(a) :=
∑

n≥0

Zn(a).

Similarly, for any k > a ≥ 0, and any integer n≥ 0, we introduce

Zn(a, k) := #{|u|= n : τ−0 (u)> n− 1, τ+k (u)> n, τ−a (u) = n} ,

Z(a, k) :=
∑

n≥0

Zn(a, k) .

In words, Zn(a, k) stands for the number of particles who hit level a at time n and did not touch
level k before.

We denote by Sn = X0 + X1 + . . .+ Xn the random walk whose steps are distributed like X . We
define the probability Q y as the probability which verifies for every n

dQ y

dP y |X0,..,Xn

:=
eρ(Sn−S0)

φ(ρ)n
. (3.1)

Under Q y , the random walk Sn is centered and starts at y .

Proposition 3.1. We have for any x ≥ 0, and any a ≥ 0,

Ek[Z(a, k)] = ∆k(1)
eρ(k−a)

k
, (3.2)

Ek[Z(a, k)2] = ∆k(1)
eρ(2k−2a)

k2 . (3.3)

Besides, if x > a ≥ 0,

E x[Z(a, k)2] = ∆k(1)(1+ x)
eρ(k+x−2a)

k3 . (3.4)

Proof. Let y be any real in [0, k] and let a ∈ [0, y]. We observe that

E y[Zn(a, k)] = bnP y(τ−0 > n− 1, τ+k > n, τ−a = n) .

The change of measure yields that

E y[Zn(a, k)] = eρ y E y
Q[e

−ρSn , τ−0 > n− 1, τ+k > n, τ−a = n]

= eρ(y−a)E y
Q[e

ρ(a−Sn), τ−0 > n− 1, τ+k > n, τ−a = n] .

Summing over n leads to

E y[Z(a, k)] = eρ(y−a)E y
Q[e

ρLa , τ−a < τ
+
k ] . (3.5)
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Suppose that y > k/2. We observe that

E y
Q

�

eρLa , τ−a < τ
+
k

�

≤ E y
Q



e
ρ

�

a−Sτ−
k/2

�

, Sτ−k/2 < a



+ E y
Q

�

Eh
Q[e

ρLa]h=Sτ−
k/2

, τ−k/2 < τ
+
k , Sτ−k/2 ≥ a

�

.

We know by Lemma 2.1 that sup`≤0 E0
Q[e

ρL`]≤ C22. We deduce that

E y
Q

�

eρLa , τ−a < τ
+
k

�

≤ C22

�

eρ(a−k/2) + P y
�

τ−k/2 < τ
+
k

��

.

We use Lemma 2.2 (applied to R` = k − S`) to see that for k greater than some constant K(a)
(whose value may change during the proof),

E y
Q

�

eρLa , τ−a < τ
+
k

�

≤ C23
1+ k− y

k
.

For y ≤ k/2, we see that

E y
Q

�

eρLa , τ−a < τ
+
k

�

≤ E y
Q

�

eρLa
�

≤ C22 .

We deduce the existence of a constant C24 such that for any 0 ≤ a ≤ y ≤ k and any k ≥ K(a), we
have E y

Q

�

eρLa , τ−a < τ
+
k

�

≤ C24
1+k−y

k
. It yields by (3.5) that

E y[Z(a, k)]≤ C24eρ(y−a) 1+ k− y

k
. (3.6)

Since La ≥ 0, we get E y
Q[e

ρLa , τ−a < τ
+
k ]≥Q y(τ−a < τ

+
k ). By Lemma 2.2,

Q y(τ−a < τ
+
k )≥ C25

1+ k− y

k− a
.

Therefore, using (3.5), we get that

E y[Z(a, k)]≥ C25 eρ(y−a) 1+ k− y

k
. (3.7)

Equations (3.6) and (3.7) give (3.2) by taking y = k. We turn to the proof of (3.3) and (3.4).

E y[Z(a, k)2] =
∑

n≥0

E y[Z(a, k)Zn(a, k)]

=
∑

n≥0

∑

|u|=n

E y[Z(a, k), n= τ−a (u)< τ
+
k (u)] . (3.8)

We decompose Z(a, k) along the particle u to get

Z(a, k) = 1+
n−1
∑

`=0

Zu`(a, k)
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where u` is the ancestor of u at time ` and Zu`(a, k) is the number of descendants v of u` at time
n which are not descendants of u`+1 and such that n= τ−a (v)< τ

+
k (v). In particular,

E[Zu`(a, k)] = (b− 1)
�

ES(u`)
�

ES1[Z(a, k)], S1 ∈ [a, k]
�

+ PS(u`)(S1 < a)
�

= (b− 1)
�

∆k(1)E
S(u`)

�

eρ(S1−a) 1+ k− S1

k
, S1 ∈ [a, k]

�

+ P(Y1 < a− S(u`))
�

= ∆k(1)e
ρ(S(u`)−a) 1+ k− S(u`)

k

if k ≥ K(a) and S(u`)≥ a. This decomposition leads to

E y
�

Z(a, k), n= τ−a (u)< τ
+
k (u)

�

= ∆k(1)
e−ρa

k

n
∑

`=0

E y
�

eρS(u`)(k− S(u`) + 1), n= τ−a (u)< τ
+
k (u)

�

.

Then equation (3.8) becomes

E y[Z(a, k)2] = ∆k(1)
e−ρa

k

∑

n≥0

bn
n
∑

`=0

E y
�

eρS`(k− S` + 1), n= τ−a < τ
+
k

�

= ∆k(1)
eρ(y−a)

k

∑

n≥0

n
∑

`=0

E y
Q

�

eρ(S`−Sn)(k− S` + 1), n= τ−a < τ
+
k

�

= ∆k(1)
eρ(y−a)

k
E y

Q






e−ρSτ−a

τ−a
∑

`=0

eρS`(k− S` + 1), τ−a < τ
+
k






(3.9)

where we used the change of measure from P y to Q y defined in (3.1). Take y = k. It implies that

Ek[Z(a, k)2]

= ∆k(1)
eρ(2k−2a)

k
Ek

Q






eρLa

τ−a
∑

`=0

e−ρ(k−S`)(k− S` + 1), τ−a < τ
+
k






.

We apply equation (2.4) of Lemma 2.3 for the walk R` := ρ(k−S`) to get (3.3). If we take y = x ,
we obtain

E x[Z(a, k)2] = ∆k(1)
eρ(x+k−2a)

k
E x

Q






eρLa

τ−a
∑

`=0

e−ρ(k−S`)(k− S` + 1), τ−a < τ
+
k







and we apply (2.5) of Lemma 2.3 to complete the proof of (3.4). �

4 Tail distribution of the maximum

We are interested in large deviations of the maximum M of the branching random walk before its
extinction

M := sup{S(u) : u ∈ T such that S(v)≥ 0 ∀ v ≤ u} .
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To this end, we introduce

Hn(k) := #{|u|= n : τ+k (u) = n,τ−0 (u)> n} ,

H(k) :=
∑

n≥1

Hn(k) .

The variable H(k) is the number of particles of the branching random walk on [0, k] with two
killing barriers which were absorbed at level k.

Proposition 4.1. We have

E x[Hk] = ∆k(1)e
ρ(x−k) 1+ x

k
, (4.1)

E x[H2
k] = ∆k(1)e

ρ(x−k) 1+ x

k
. (4.2)

It shows that Hk is strongly concentrated. Our result on the maximal position states as follows.

Corollary 4.2. The tail distribution of M verifies

P x(M ≥ k) = ∆k(1)(1+ x)
eρ(x−k)

k

Proof. The corollary easily follows from the following inequalities

P x(M ≥ k)≤ E x[Hk]

and

P(M ≥ k) = P(Hk ≥ 1)≥
E[Hk]2

E[H2
k]

. �

We turn to the proof of Proposition 4.1. Since it is really similar to the proof of Proposition 3.1,
we feel free to skip some of the details.

Proof of Proposition 4.1. We verify that

E x[Hk] = eρ(x−k)E x
Q[e

−ρUk , τ+k < τ
−
0 ] . (4.3)

Since Uk ≥ 0, we deduce that

E x[Hk]≤ eρ(x−k)Qx(τ+k < τ
−
0 ) = ∆k(1)e

ρ(x−k) 1+ x

k
. (4.4)

On the other hand, observe that

E x
Q[e

−ρUk , τ+k < τ
−
0 ]≥ e−ρMQx(Uk < M , τ+k < τ

−
0 )

We see that

Qx(Uk ≥ M , τ+k < τ
−
0 )

≤ Qx
�

Sτ+k/2 < k, τ+k/2 < τ
−
0

�

sup
`≥0

Q0 �U` ≥ M
�

+Qx
�

Uk/2 > k/2
�

≤
1+ x

k
ε(M) + o(1/k)
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for some ε(M) which goes to zero when M goes to infinity by Lemma 2.1. Therefore

Qx(Uk < M , τ+k < τ
−
0 )≥ C26

1+ x

k
(4.5)

for M large enough. Equations (4.3), (4.4) and (4.5) give (4.1). We look then at the second
moment of Hk. As before (see (3.9)), we can write

E x[H2
k] = ∆k(1)

eρ(x−k)

k
E x

Q






e−ρUk

τ+k
∑

`=0

eρ(S`−k)(1+ S`), τ
+
k < τ

−
0






.

We apply (2.6) of Lemma 2.3 to complete the proof. �

5 Proof of Theorem 1.1

Proof of Theorem 1.1: lower bound. Let a ∈ (0, x). We observe that

P x(Z > n)≥ P x(M ≥ k)Pk(Z(k, a)> n) .

By Proposition 3.1, there exists a constant µ > 0 such that Ek[Z(k, a)] ≤ µeρk/k when k is large
enough. Let k be such that µeρk/(2k) = n. Then k = 1

ρ
ln(n) + o(ln(n)), and we get by Corollary

4.2

P x(M ≥ k)≥ C27
(1+ x)eρx

n ln2(n)
.

By the choice of k, we notice that

Pk (Z(k, a)> n)≥ Pk
�

Z(k, a)>
E[Z(k, a)]

2

�

.

Thus Paley-Zygmund inequality leads to

Pk(Z(k, a)> n)≥
1

4

Ek[Z(k, a)]2

Ek[Z(k, a)2]
.

Proposition 3.1 shows then that Pk(Z(k, a)> n)≥ C28 > 0. Therefore,

P x(Z > n)≥ C29
(1+ x)eρx

n ln2(n)

with C29 = C27C28/4, which proves the lower bound of the theorem. �

We turn to the proof of the upper bound. We recall that Z(0) represents the number of particles
who hit the domain (−∞, 0).

Proof of Theorem : upper bound. First, we notice that Z(0) = 1+ (b − 1)Z . Indeed, Z(0) is the
number of leaves of a tree of size Z + Z(0), in which any vertex has either zero or b children.
Therefore

P x(Z > n) = P x
�

Z(0)>
n− 1

b− 1

�

.



Tail asymptotics in the critical BRW 533

Hence it is equivalent to find an upper bound for P x(Z(0)> n). For any k, we have that

P x(Z(0)> n) ≤ P x(M < k, Z(0, k)> n) + P x(M ≥ k)
≤ P x(Z(0, k)> n) + P x(M ≥ k) .

By Markov inequality, then Proposition 3.1, we have

P x(Z(0, k)> n)≤
E x[Z(0, k)2]

n2 ≤ C30(1+ x)eρx eρk

k3n2 .

Therefore, by Corollary 4.2, we have for k large enough

P x(Z(0)> n)≤ C31(1+ x)eρx

�

eρk

k3n2 +
e−ρk

k

�

.

Take k such that eρk/k = n. We verify that

eρk

k3n2 =
e−ρk

k
=

1

ρ2

1

n ln2(n)
(1+ o(1))

which gives the desired upper bound. �
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