Elect. Comm. in Probab. 13 (2008), 422-434

ELECTRONIC COMMUNICATIONS in PROBABILITY

MOMENT ESTIMATES FOR LÉVY PROCESSES

HARALD LUSCHGY

Universität Trier, FB IV-Mathematik, D-54286 Trier, Germany. email: luschgy@uni-trier.de

GILLES PAGÈS

Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5. email: gilles.pages@upmc.fr

Submitted September 13, 2007, accepted in final form June 9, 2008

AMS 2000 Subject classification: 60G51, 60G18.

Keywords: Lévy process increment, Lévy measure, α -stable process, Normal Inverse Gaussian process, tempered stable process, Meixner process.

Abstract

For real Lévy processes $(X_t)_{t\geq 0}$ having no Brownian component with Blumenthal-Getoor index β , the estimate $\mathbb{E} \sup_{s\leq t} |X_s - a_p s|^p \leq C_p t$ for every $t \in [0, 1]$ and suitable $a_p \in \mathbb{R}$ has been established by Millar [6] for $\beta provided <math>X_1 \in L^p$. We derive extensions of these estimates to the cases p > 2 and $p \leq \beta$.

1 Introduction and results

We investigate the L^p -norm (or quasi-norm) of the maximum process of real Lévy processes having no Brownian component. A (càdlàg) Lévy process $X = (X_t)_{t\geq 0}$ is characterized by its so-called local characteristics in the Lévy-Khintchine formula. They depend on the way the "big" jumps are truncated. We will adopt in the following the convention that the truncation occurs at size 1. So that

$$\mathbb{E} e^{iuX_t} = e^{-t\Psi(u)} \text{ with } \Psi(u) = -iua + \frac{1}{2}\sigma^2 u^2 - \int (e^{iux} - 1 - iux\mathbf{1}_{\{|x| \le 1\}})d\nu(x)$$
(1.1)

where $u, a \in \mathbb{R}, \sigma^2 \ge 0$ and ν is a measure on \mathbb{R} such that $\nu(\{0\}) = 0$ and $\int x^2 \wedge 1 d\nu(x) < +\infty$. The measure ν is called the Lévy measure of X and the quantities (a, σ^2, ν) are referred to as the characteristics of X. One shows that for $p > 0, \mathbb{E} |X_1|^p < +\infty$ if and only if $\mathbb{E} |X_t|^p < +\infty$ for every $t \ge 0$ and this in turn is equivalent to $\mathbb{E} \sup_{s \le t} |X_s|^p < +\infty$ for every $t \ge 0$. Furthermore,

$$\mathbb{E} |X_1|^p < +\infty \text{ if and only if } \int_{\{x|>1\}} |x|^p d\nu(x) < +\infty$$
(1.2)

(see [7]). The index β of the process X introduced in [2] is defined by

$$\beta = \inf\{p > 0 : \int_{\{|x| \le 1\}} |x|^p d\nu(x) < +\infty\}.$$
(1.3)

Necessarily, $\beta \in [0, 2]$. This index is often called Blumenthal-Getoor index of X. In the sequel we will assume that $\sigma^2 = 0$, *i.e.* that X has no Brownian component. Then the Lévy-Itô decomposition of X reads

$$X_t = at + \int_0^t \int_{\{|x| \le 1\}} x(\mu - \lambda \otimes \nu)(ds, dx) + \int_0^t \int_{\{|x| > 1\}} x\mu(ds, dx)$$
(1.4)

where λ denotes the Lebesgue measure and μ is the Poisson random measure on $\mathbb{R}_+ \times \mathbb{R}$ associated with the jumps of X by

$$\mu = \sum_{t \ge 0} \varepsilon_{(t, \triangle X_t)} \mathbf{1}_{\{\triangle X_t \neq 0\}},$$

 $\Delta X_t = X_t - X_{t-}, \Delta X_0 = 0$ and where ε_z denotes the Dirac measure at z (see [4], [7]).

Theorem 1. Let $(X_t)_{t>0}$ be a Lévy process with characteristics $(a, 0, \nu)$ and Blumenthal-Getoor index β . Assume either

 $-p \in (\beta, \infty)$ such that $\mathbb{E}|X_1|^p < +\infty$ or

 $-p = \beta \text{ provided } \beta > 0 \text{ and } \int_{\{|x| \le 1\}} |x|^{\beta} d\nu(x) < +\infty. \text{ Then, for every } t \ge 0$
$$\begin{split} \mathbb{E} \sup_{s \le t} |Y_s|^p &\le C_p t \qquad \text{if } p < 1, \\ \mathbb{E} \sup_{s \le t} |X_s - s \mathbb{E} X_1|^p &\le C_p t \qquad \text{if } 1 \le p \le 2 \end{split}$$

for a finite real constant C_p , where $Y_t = X_t - t \left(a - \int_{\{|x| \le 1\}} x d\nu(x) \right)$. Furthermore, for every p > 2, F

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t) \qquad as \qquad t \to 0.$$

If X_1 is symmetric one observes that Y = X since the symmetry of X_1 implies a = 0 and the symmetry of ν (see [7]). We emphasize that in view of the Kolmogorov criterion for continuous modifications, the above bounds are best possible as concerns powers of t. In case $p > \beta$ and $p \leq 2$, these estimates are due to Millar [6]. However, the Laplace-transform approach in [6] does not work for p > 2. Our proof is based on the Burkholder-Davis-Gundy inequality. For the case $p < \beta$ we need some assumptions on X. Recall that a measurable function $\varphi:(0,c]\to (0,\infty)$ (c>0) is said to be regularly varying at zero with index $b\in\mathbb{R}$ if, for every t > 0,

$$\lim_{x \to 0} \frac{\varphi(tx)}{\varphi(x)} = t^b.$$

This means that $\varphi(1/x)$ is regularly varying at infinity with index -b. Slow variation corresponds to b = 0. One defines on $(0, \infty)$ the tail function ν of the Lévy measure ν by $\underline{\nu}(x) := \nu([-x, x]^c).$

Theorem 2. Let $(X_t)_{t\geq 0}$ be a Lévy process with characteristics $(a, 0, \nu)$ and index β such that $\beta > 0$ and $\mathbb{E} |X_1|^p < +\infty$ for some $p \in (0, \beta)$. Assume that the tail function of the Lévy measure satisfies

$$\exists c \in (0,1], \qquad \underline{\nu} \le \varphi \quad on \quad (0,c] \tag{1.5}$$

where $\varphi: (0, c] \to (0, \infty)$ is a regularly varying function at zero of index $-\beta$. Let $l(x) = x^{\beta}\varphi(x)$ and assume that $l(1/x), x \ge 1/c$ is locally bounded. Let $\underline{l}(x) = \underline{l}_{\beta}(x) = l(x^{1/\beta})$.

(a) Assume $\beta > 1$. Then as $t \to 0$, for every $r \in (\beta, 2]$, $q \in [p \lor 1, \beta)$,

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^{p/\beta}[\underline{l}(t)^{p/r} + \underline{l}(t)^{p/q}]) \quad if \quad \beta < 2$$
$$\mathbb{E} \sup_{s < t} |X_s|^p = O(t^{p/\beta}[1 + \underline{l}(t)^{p/q}]) \quad if \quad \beta = 2.$$

If ν is symmetric then this holds for every $q \in [p, \beta)$.

(b) Assume $\beta < 1$. Then as $t \to 0$, for every $r \in (\beta, 1], q \in [p, \beta)$

$$\mathbb{E} \sup_{s \le t} |Y_s|^p = O(t^{p/\beta}[\underline{l}(t)^{p/r} + \underline{l}(t)^{p/q}])$$

where $Y_t = X_t - t \left(a - \int_{\{|x| \le 1\}} x d\nu(x) \right)$. If ν is symmetric this holds for every $r \in (\beta, 2]$.

(c) Assume $\beta = 1$ and ν is symmetric. Then as $t \to 0$, for every $r \in (\beta, 2], q \in [p, \beta)$

$$\mathbb{E} \sup_{s \le t} |X_s - as|^p = O(t^{p/\beta}[\underline{l}(t)^{p/r} + \underline{l}(t)^{p/q}]).$$

It can be seen from strictly α -stable Lévy processes where $\beta = \alpha$ that the above estimates are best possible as concerns powers of t.

Observe that condition (1.5) is satisfied for a broad class of Lévy processes. For absolutely continuous Lévy measures one may consider the condition

$$\exists c \in (0,1], 1_{\{0 < |x| < c\}} \nu(dx) \le \psi(|x|) 1_{\{0 < |x| < c\}} dx \tag{1.6}$$

where $\psi: (0, c] \to (0, \infty)$ is a regularly varying function at zero of index $-(\beta + 1)$ and $\psi(1/x)$ is locally bounded, $x \ge 1/c$. It implies that the tail function of the Lévy measure is dominated, for $x \le c$, by $2\int_x^c \psi(s)ds + \underline{\nu}(c)$, a regularly varying function at zero with index $-\beta$, so that (1.5) holds with $\varphi(x) = C x \psi(x)$ (see [1], Theorem 1.5.11).

Important special cases are as follows.

Corollary 1.1. Assume the situation of Theorem 2 (with ν symmetric if $\beta = 1$) and let U denote any of the processes X, Y, $(X_t - at)_{t \ge 0}$.

(a) Assume that the slowly varying part l of φ is decreasing and unbounded on (0,c] (e.g. $(-\log x)^a, a > 0)$. Then as $t \to 0$, for every $\varepsilon \in (0, \beta)$,

$$\mathbb{E} \sup_{s \le t} |U_s|^p = O(t^{p/\beta} \underline{l}(t)^{p/(\beta-\varepsilon)}).$$

(b) Assume that l is increasing on (0, c] satisfying l(0+) = 0 (e.g. $(-\log x)^{-a}, a > 0, c < 1$) and $\beta \in (0, 2)$. Then as $t \to 0$, for every $\varepsilon > 0$,

$$\mathbb{E} \sup_{s \le t} |U_s|^p = O(t^{p/\beta} \underline{l}(t)^{p/(\beta+\varepsilon)}).$$

The remaining cases $p = \beta \in (0, 2)$ if $\beta \neq 1$ and $p \leq 1$ if $\beta = 1$ are solved under the assumption that the slowly varying part of the function φ in (1.5) is constant.

Theorem 3. Let $(X_t)_{t\geq 0}$ be a Lévy process with characteristics $(a, 0, \nu)$ and index β such that $\beta \in (0, 2)$ and $\mathbb{E} |X_1|^{\beta} < +\infty$ if $\beta \neq 1$ and $\mathbb{E} |X_1|^p < +\infty$ for some $p \leq 1$ if $\beta = 1$. Assume that the tail function of the Lévy measure satisfies

$$\exists c \in (0,1], \ \exists C \in (0,\infty), \qquad \underline{\nu}(x) \le Cx^{-\beta} \quad on \quad (0,c].$$

$$(1.7)$$

Then as $t \to 0$

$$\begin{split} \mathbb{E} \sup_{s \leq t} |X_s|^{\beta} &= O(t(-\log t)) \quad if \ \beta > 1, \\ \mathbb{E} \sup_{s \leq t} |Y_s|^{\beta} &= O(t(-\log t)) \quad if \ \beta < 1 \end{split}$$

and

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O((t(-\log t))^p) \quad if \quad \beta = 1, \ p \le 1$$

where the process Y is defined as in Theorem 2.

The above estimates are optimal (see Section 3). Condition (1.7) is satisfied if

$$\exists c \in (0,1], \ \exists C \in (0,\infty), \ \mathbf{1}_{\{0 < |x| \le c\}} \nu(dx) \le \frac{C}{|x|^{\beta+1}} \mathbf{1}_{\{0 < |x| \le c\}} dx.$$
(1.8)

The paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1, 2 and 3. Section 3 contains a collection of examples.

2 Proofs

We will extensively use the following compensation formula (see e.g. [4])

$$\mathbb{E} \int_0^t \int f(s,x)\mu(ds,dx) = \mathbb{E} \sum_{s \le t} f(s,\Delta X_s) \mathbf{1}_{\{\Delta X_s \neq 0\}} = \int_0^t \int f(s,x)d\nu(x)ds$$

where $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$ is a Borel function.

Proof of Theorem 1. Since $\mathbb{E} |X_1|^p < +\infty$ and $p > \beta$ (or $p = \beta$ provided $\int_{\{|x| \le 1\}} |x|^\beta d\nu(x) < +\infty$ and $\beta > 0$), it follows from (1.2) that

$$\int |x|^p d\nu(x) < +\infty.$$

CASE 1 (0 \beta < 1 and hence $\int_{\{x|\leq 1\}} |x| d\nu(x) < +\infty$. Consequently, X a.s. has finite variation on finite intervals. By (1.4),

$$Y_t = X_t - t\left(a - \int_{\{|x| \le 1\}} x d\nu(x)\right) = \int_0^t \int x\mu(ds, dx) = \sum_{s \le t} \triangle X_s$$

so that, using the elementary inequality $(u+v)^p \leq u^p + v^p$,

$$\sup_{s \le t} |Y_s|^p \le \left(\sum_{s \le t} |\triangle X_s|\right)^p \le \sum_{s \le t} |\triangle X_s|^p = \int_0^t \int |x|^p \mu(ds, dx).$$

Consequently,

$$\mathbb{E} \sup_{s \le t} |Y_s|^p \le t \int |x|^p d\nu(x) \text{ for every } t \ge 0.$$

CASE 2 $(1 \le p \le 2)$. Introduce the martingale

$$M_t := X_t - t \mathbb{E} X_1 = X_t - t \left(a + \int_{\{|x|>1\}} x d\nu(x) \right) = \int_0^t \int x(\mu - \lambda \otimes \nu) (ds, dx).$$

It follows from the Burkholder-Davis-Gundy inequality (see [5], p. 524) that

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C \mathbb{E} [M]_t^{p/2}$$

for some finite constant C. Since $p/2 \leq 1$, the quadratic variation [M] of M satisfies

$$[M]_t^{p/2} = \left(\sum_{s \le t} |\triangle X_s|^2\right)^{p/2} \le \sum_{s \le t} |\triangle X_s|^p$$

so that

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le Ct \int |x|^p d\nu(x) \text{ for every } t \ge 0$$

CASE 3: p > 2. One considers again the martingale Lévy process $M_t = X_t - t \mathbb{E} X_1$. For $k \ge 1$ such that $2^k \le p$, introduce the martingales

$$N_t^{(k)} := \int_0^t \int |x|^{2^k} (\mu - \lambda \otimes \nu) (ds, dx) = \sum_{s \le t} |\Delta X_s|^{2^k} - t \int |x|^{2^k} d\nu(x).$$

Set $m := \max\{k \ge 1 : 2^k < p\}$. Again by the Burkholder-Davis-Gundy inequality

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C \mathbb{E} [M]_t^{p/2}$$

$$= C \mathbb{E} \left(t \int x^2 d\nu(x) + N_t^{(1)} \right)^{p/2}$$

$$\le C \left(t^{p/2} \left(\int x^2 d\nu(x) \right)^{p/2} + \mathbb{E} |N_t^{(1)}|^{p/2} \right)$$

$$\le C \left(t + \mathbb{E} |N_t^{(1)}|^{p/2} \right)$$

for every $t \in [0, 1]$ where C is a finite constant that may vary from line to line. Applying successively the Burkholder-Davis-Gundy inequality to the martingales $N^{(k)}$ and exponents $p/2^k > 1, 1 \le k \le m$, finally yields

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C(t + \mathbb{E} [N^{(m)}]_t^{p/2^{m+1}}) \text{ for every } t \in [0,1]$$

Using $p \leq 2^{m+1}$, one gets

$$[N^{(m)}]_t^{p/2m+1} = \left(\sum_{s \le t} |\Delta X_s|^{2^{m+1}}\right)^{p/2^{m+1}} \le \sum_{s \le t} |\Delta X_s|^p$$

so that

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C\left(t + t \int |x|^p d\nu(x)\right) \quad \text{for every } t \in [0, 1].$$

This implies $\mathbb{E} \sup_{s < t} |X_s|^p = O(t)$ as $t \to 0$.

Proof of Theorems 2 and 3. Let $p \leq \beta$ and fix $c \in (0,1]$. Let $\nu_1 = \mathbf{1}_{\{|x| \leq c\}} \cdot \nu$ and $\nu_2 = \mathbf{1}_{\{|x| > c\}} \cdot \nu$. Construct Lévy processes $X^{(1)}$ and $X^{(2)}$ such that $X \stackrel{d}{=} X^{(1)} + X^{(2)}$ and $X^{(2)}$ is a compound Poisson process with Lévy measure ν_2 . Then $\beta = \beta(X) = \beta(X^{(1)}), \beta(X^{(2)}) = 0$, $\mathbb{E} |X^{(1)}|^q < +\infty$ for every q > 0 and $\mathbb{E} |X^{(2)}_1|^p < +\infty$. It follows e.g. from Theorem 1 that for every $t \geq 0$,

$$\mathbb{E} \sup_{s \le t} |X_s^{(2)}|^p \le C_p t \quad \text{if } p < 1,$$

$$(2.1)$$

$$\mathbb{E} \sup_{s \le t} |X^{(2)} - s \mathbb{E} X_1^{(2)}|^p \le C_p t \quad \text{if } 1 \le p \le 2$$

where $\mathbb{E} X_1^{(2)} = \int x d\nu_2(x) = \int_{\{|x|>c\}} x d\nu(x).$ As concerns $X^{(1)}$, consider the martingale

$$Z_t^{(1)} := X_t^{(1)} - tEX_1^{(1)} = X_t^{(1)} - t\left(a - \int x\mathbf{1}_{\{c < |x| \le 1\}} d\nu(x)\right) = \int_0^t \int x(\mu_1 - \lambda \otimes \nu_1)(ds, dx)$$

where μ_1 denotes the Poisson random measure associated with the jumps of $X^{(1)}$. The starting idea is to separate the "small" and the "big" jumps of $X^{(1)}$ in a non homogeneous way with respect to the function $s \mapsto s^{1/\beta}$. Indeed one may decompose $Z^{(1)}$ as follows

$$Z^{(1)} = M + N$$

where

$$M_t := \int_0^t \int x \mathbf{1}_{\{|x| \le s^{1/\beta}\}} (\mu_1 - \lambda \otimes \nu_1) (ds, dx)$$

and

$$N_t := \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} (\mu_1 - \lambda \otimes \nu_1) (ds, dx)$$

are martingales. Observe that for every q > 0 and $t \ge 0$,

$$\int_{0}^{t} \int |x|^{q} \mathbf{1}_{\{|x|>s^{1/\beta}\}} d\nu_{1}(x) ds = \int |x|^{q} (|x|^{\beta} \wedge t) d\nu_{1}(x)$$

$$\leq \int_{\{|x|\leq c\}} |x|^{\beta+q} d\nu(x) < +\infty$$

Consequently,

$$N_t = \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\mu_1(s, x) - g(t)$$

where $g(t) := \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds$. Furthermore, for every $r > \beta$ or r = 2 and $t \ge 0$ $\int_0^t \int |x|^r \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) ds \le t \int_{\{|x| \le c\}} |x|^r d\nu(x) < +\infty.$ (2.2)

In the sequel let C denote a finite constant that may vary from line to line. We first claim that for every $t \ge 0, r \in (\beta, 2] \cap [1, 2]$ and for r = 2,

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C \left(\int_0^t \int |x|^r \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r}.$$
(2.3)

In fact, it follows from the Burkholder-Davis-Gundy inequality and from $p/r \le 1, r/2 \le 1$ that

$$\begin{split} \mathbb{E} \sup_{s \leq t} |M_s|^p &\leq \left(\mathbb{E} \sup_{s \leq t} |M_s|^r \right)^{p/r} \\ &\leq C \left(\mathbb{E} [M]_t^{r/2} \right)^{p/r} \\ &= C \left(\mathbb{E} \left(\sum_{s \leq t} |\Delta X_s^{(1)}|^2 \mathbf{1}_{\{|\Delta X_s^{(1)}| \leq s^{1/\beta}\}} \right)^{r/2} \right)^{p/r} \\ &\leq C \left(\mathbb{E} \sum_{s \leq t} |\Delta X_s^{(1)}|^r \mathbf{1}_{\{|\Delta X_s^{(1)}| \leq s^{1/\beta}\}} \right)^{p/r} \\ &= C \left(\int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r}. \end{split}$$

Exactly as for M, one gets for every $t \ge 0$ and every $q \in [p, 2] \cap [1, 2]$ that

$$\mathbb{E} \sup_{s \le t} |N_s|^p \le C \left(\int_0^t \int |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q}.$$
 (2.4)

If ν is symmetric then (2.4) holds for every $q \in [p, 2]$ (which of course provides additional information in case p < 1 only). Indeed, g = 0 by the symmetry of ν so that

$$N_t = \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\mu_1(s, x)$$

and for $q \in [p, 1]$

$$\mathbb{E} \sup_{s \leq t} \left| \int_{0}^{s} \int x \mathbf{1}_{\{|x| > u^{1/\beta}\}} \mu_{1}(du, dx) \right|^{p} \leq \left(\mathbb{E} \sup_{s \leq t} \left| \int_{0}^{t} \int x \mathbf{1}_{\{|x| > u^{1/\beta}\}} \mu_{1}(du, dx) \right|^{q} \right)^{p/q} (2.5)$$

$$\leq \left(\mathbb{E} \sum_{s \leq t} \left| \triangle X_{s}^{(1)} \right|^{q} \mathbf{1}_{\{|\Delta X_{s}^{(1)}| > s^{1/\beta}\}} \right)^{p/q}$$

$$= \left(\int_{0}^{t} \int |x|^{q} \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_{1}(x) ds \right)^{p/q}.$$

In the case $\beta < 1$ we consider the process

$$\begin{aligned} Y_t^{(1)} &:= Z_t^{(1)} + t \int x d\nu_1(x) = X_t^{(1)} - t \left(a - \int_{\{|x| \le 1\}} x d\nu(x) \right) \\ &= M_t + N_t + t \int x d\nu_1(x) \\ &= \int_0^t \int x \mathbf{1}_{\{|x| \le s^{1/\beta}\}} \mu_1(ds, dx) + \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} \mu_1(ds, dx). \end{aligned}$$

Exactly as in (2.5) one shows that for $t\geq 0$ and $r\in (\beta,1]$

$$\mathbb{E} \sup_{s \le t} \left| \int_0^s \int x \mathbf{1}_{\{|x| \le u^{1/\beta}\}} \mu_1(du, dx) \right|^p \le \left(\int_0^t \int |x|^r \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r}.$$
 (2.6)

Combining (2.1) and (2.3) - (2.6) we obtain the following estimates. Let

$$Z_t = X_t - t \left(a - \int x \mathbf{1}_{\{c < |x| \le 1\}} d\nu(x) \right).$$

CASE 1: $\beta \ge 1$ and p < 1. Then for every $t \ge 0, r \in (\beta, 2] \cup \{2\}, q \in [1, 2], q \in [1,$

$$\mathbb{E} \sup_{s \leq t} |Z_s|^p \leq C \left(t + \left(\int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r} + \left(\int_0^t \int |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q} \right).$$
(2.7)

If ν is symmetric (2.7) is even valid for every $q \in [p, 2]$.

CASE 2: $\beta \ge 1$ and $p \ge 1$. Then for every $t \ge 0, r \in (\beta, 2] \cup \{2\}, q \in [p, 2],$

$$\mathbb{E} \sup_{s \leq t} |X_s - s \mathbb{E} X_1|^p \leq C \left(t + \left(\int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r} + \left(\int_0^t |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q} \right).$$
(2.8)

CASE 3: $\beta < 1$. Then for every $t \ge 0, r \in (\beta, 1], q \in [p, 1]$

$$\mathbb{E} \sup_{s \leq t} |Y_s|^p \leq C \left(t + \left(\int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r} + \left(\int_0^t |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q} \right).$$
(2.9)

If ν is symmetric then $Y = Z = (X_t - at)_{t \ge 0}$ and (2.9) is valid for every $r \in (\beta, 2], q \in [p, 2]$.

Now we deduce Theorem 2. Assume $p \in (0, \beta)$ and (1.5). The constant c in the above decomposition of X is specified by the constant from (1.5). Then one just needs to investigate the integrals appearing in the right hand side of the inequalities (2.7) - (2.10). One checks that for $a > 0, s \le c^{\beta}$

$$\int |x|^a \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) \le a \int_0^{s^{1/\beta}} x^{a-1} \underline{\nu}(x) dx \le a \int_0^{s^{1/\beta}} x^{a-1} \varphi(x) dx$$

and

$$\int |x|^{a} \mathbf{1}_{\{|x|>s^{1/\beta}\}} d\nu_{1}(x) \leq a \int_{s^{1/\beta}}^{c} x^{a-1} \underline{\nu}(x) dx + s^{a/\beta} \underline{\nu}(s^{1/\beta}) \\ \leq a \int_{s^{1/\beta}}^{c} x^{a-1} \varphi(x) dx + s^{\frac{q}{\beta}-1} l(s^{1/\beta}).$$

Now, Theorem 1.5.11 in [1] yields for $r > \beta$,

$$\int_0^{s^{1/\beta}} x^{r-1} \varphi(x) dx \sim \frac{1}{r-\beta} s^{\frac{r}{\beta}-1} l(s^{1/\beta}) \quad \text{as} \quad s \to 0$$

which in turn implies that for small t,

$$\int_{0}^{t} \int |x|^{r} \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_{1}(x) ds \le r \int_{0}^{t} \int_{0}^{s^{1/\beta}} x^{r-1} \varphi(x) dx ds \qquad (2.10)$$

$$\sim \frac{\beta}{(r-\beta)} t^{r/\beta} l(t^{1/\beta}) \quad \text{as} \quad t \to 0.$$

Similarly, for $0 < q < \beta$,

$$\int_{s^{1/\beta}}^{c} x^{q-1} \varphi(x) dx \sim \frac{1}{\beta - q} s^{\frac{q}{\beta} - 1} l(s^{1/\beta}) \text{ as } s \to 0$$

and thus

$$\begin{split} \int_{0}^{t} \int |x|^{q} \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_{1}(x) ds &\leq q \int_{0}^{t} \int_{s^{1/\beta}}^{c} x^{q-1} \varphi(x) dx ds + \int_{0}^{t} s^{\frac{q}{\beta} - 1} l(s^{1/\beta}) ds \ (2.11) \\ &\sim \frac{\beta^{2}}{(\beta - q)q} t^{q/\beta} l(t^{1/\beta}) \quad \text{as} \quad t \to 0. \end{split}$$

Using (2.2) for the case $\beta = 2$ and $t + t^p = o(t^{p/\beta} \underline{l}(t)^{\alpha})$ as $t \to 0, \alpha > 0$, for the case $\beta > 1$ one derives Theorem 2.

As for Theorem 3, one just needs a suitable choice of q in (2.7) - (2.9). Note that by (1.7) for every $\beta \in (0, 2)$ and $t \leq c^{\beta}$,

$$\int_0^t \int |x|^{\beta} \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \le \int_0^t \left(C\beta \int_{s^{1/\beta}}^c x^{-1} dx + 1 \right) ds \le C_1 t (-\log t)$$

so that $q = \beta$ is the right choice. (This choice of q is optimal.) Since by (2.10), for $r \in (\beta, 2] \ (\neq \emptyset)$,

$$\int_{0}^{t} \int |x|^{r} \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_{1}(x) ds = O(t^{r/\beta})$$
(2.7) - (2.9)

the assertions follow from (2.7) - (2.9).

3 Examples

Let K_{ν} denote the modified Bessel function of the third kind and index $\nu > 0$ given by

$$K_{\nu}(z) = \frac{1}{2} \int_0^\infty u^{\nu-1} \exp\left(-\frac{z}{2}(u+\frac{1}{u})\right) du, \quad z > 0.$$

• The Γ -process is a subordinator (increasing Lévy process) whose distribution \mathbb{P}_{X_t} at time t > 0 is a $\Gamma(1, t)$ -distribution

$$\mathbb{P}_{X_t}(dx) = \frac{1}{\Gamma(t)} x^{t-1} e^{-x} \mathbf{1}_{(0,\infty)}(x) dx.$$

The characteristics are given by

$$\nu(dx) = \frac{1}{x} e^{-x} \mathbf{1}_{(0,\infty)}(x) ds$$

and $a = \int_0^1 x d\nu(x) = 1 - e^{-1}$ so that $\beta = 0$ and Y = X. It follows from Theorem 1 that

$$\mathbb{E} \sup_{s \le t} X_s^p = \mathbb{E} X_t^p = O(t)$$

for every p > 0. This is clearly the true rate since

$$\mathbb{E} \, X^p_t = \frac{\Gamma(p+t)}{\Gamma(t+1)} t \sim \Gamma(p) \, t \quad \text{as} \quad t \to 0.$$

• The α -stable Lévy Processes indexed by $\alpha \in (0,2)$ have Lévy measure

$$\nu(dx) = \left(\frac{C_1}{x^{\alpha+1}} \mathbf{1}_{(0,\infty)}(x) + \frac{C_2}{|x|^{\alpha+1}} \mathbf{1}_{(-\infty,0)}(x)\right) dx$$

with $C_i \ge 0, C_1 + C_2 > 0$ so that $\mathbb{E} |X_1|^p < +\infty$ for $p \in (0, \alpha), \mathbb{E} |X_1|^\alpha = \infty$ and $\beta = \alpha$. It follows from Theorems 2 and 3 that for $p \in (0, \alpha)$,

$$\begin{split} \mathbb{E} \sup_{s \leq t} |X_s|^p &= O(t^{p/\alpha}) \quad \text{if} \quad \alpha > 1, \\ \mathbb{E} \sup_{s \leq t} |Y_s|^p &= O(t^{p/\alpha}) \quad \text{if} \quad \alpha < 1, \\ \mathbb{E} \sup_{s \leq t} |X_s|^p &= O((t(-\log t))^p) \quad \text{if} \quad \alpha = 1 \end{split}$$

Here Theorem 3 gives the true rate provided X is not strictly stable. In fact, if $\alpha = 1$ the scaling property in this case says that $X_t \stackrel{d}{=} t X_1 + Ct \log t$ for some real constant $C \neq 0$ (see [7], p.87) so that for p < 1

$$\mathbb{E} |X_t|^p = t^p \mathbb{E} |X_1 + C \log t|^p \sim |C|^p t^p |\log t|^p \quad \text{as} \quad t \to 0.$$

Now assume that X is strictly α -stable. If $\alpha < 1$, then $a = \int_{|x| \le 1} x d\nu(x)$ and thus Y = X and if $\alpha = 1$, then ν is symmetric (see [7]). Consequently, by Theorem 2, for every $\alpha \in (0, 2)$, $p \in (0, \alpha)$,

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^{p/\alpha}).$$

In this case Theorem 2 provides the true rate since the self-similarity property of strictly stable Lévy processes implies

$$\mathbb{E} \sup_{s \le t} |X_s|^p = t^{p/\alpha} \mathbb{E} \sup_{s \le 1} |X_s|^p$$

• Tempered stable processes are subordinators with Lévy measure

$$\nu(dx) = \frac{2^{\alpha} \cdot \alpha}{\Gamma(1-\alpha)} x^{-(\alpha+1)} \exp(-\frac{1}{2}\gamma^{1/\alpha}x) \mathbf{1}_{(0,\infty)}(x) dx$$

and first characteristic $a = \int_0^1 x d\nu(x), \alpha \in (0, 1), \gamma > 0$ (see [8]) so that $\beta = \alpha, Y = X$ and $\mathbb{E} X_1^p < +\infty$ for every p > 0. The distribution of X_t is not generally known. It follows from Theorems 1,2 and 3 that

$$\begin{split} & \mathbb{E} \, X^p_t &= O(t) \quad \text{if} \quad p > \alpha, \\ & \mathbb{E} \, X^p_t &= O(t^{p/\alpha}) \quad \quad \text{if} \quad p < \alpha \\ & \mathbb{E} \, X^\alpha_t &= O(t(-\log t)) \quad \quad \text{if} \quad p = \alpha. \end{split}$$

For $\alpha = 1/2$, the process reduces to the *inverse Gaussian process* whose distribution \mathbb{P}_{X_t} at time t > 0 is given by

$$\mathbb{P}_{X_t}(dx) = \frac{t}{\sqrt{2\pi}} x^{-3/2} \exp\left(-\frac{1}{2}(\frac{t}{\sqrt{x}} - \gamma\sqrt{x})^2\right) \mathbf{1}_{(0,\infty)}(x) dx.$$

In this case all rates are the true rates. In fact, for p > 0,

$$\mathbb{E}X_{t}^{p} = \frac{t}{\sqrt{2\pi}}e^{t\gamma} \int_{0}^{\infty} x^{p-3/2} \exp\left(-\frac{1}{2}(\frac{t^{2}}{x}+\gamma^{2}x)\right) dx$$
$$= \frac{t}{\sqrt{2\pi}}e^{t\gamma} \left(\frac{t}{\gamma}\right)^{p-1/2} \int_{0}^{\infty} y^{p-3/2} \exp\left(-\frac{t\gamma}{2}(\frac{1}{y}+y)\right) dy$$
$$= \frac{2}{\sqrt{2\pi}} \left(\frac{1}{\gamma}\right)^{p-1/2} t^{p+1/2} e^{t\gamma} K_{p-1/2}(t\gamma)$$

and, as $z \to 0$,

$$K_{p-1/2}(z) \sim \frac{C_p}{z^{p-1/2}} \quad \text{if} \quad p > \frac{1}{2},$$

$$K_{p-1/2}(z) \sim \frac{C_p}{z^{1/2-p}} \quad \text{if} \quad p < \frac{1}{2},$$

$$K_0(z) \sim |\log z|$$

where $C_p = 2^{p-3/2} \Gamma(p-1/2)$ if p > 1/2 and $C_p = 2^{-p-1/2} \Gamma(\frac{1}{2}-p)$ if p < 1/2.

• The Normal Inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen and has been used in financial modeling (see [8]), in particular for energy derivatives (electricity). The NIG process is a Lévy process with characteristics $(a, 0, \nu)$ where

$$\nu(dx) = \frac{\delta\alpha}{\pi} \frac{\exp(\gamma x)K_1(\alpha|x|)}{|x|} dx,$$

$$a = \frac{2\delta\alpha}{\pi} \int_0^1 \sinh(\gamma x)K_1(\alpha x) dx,$$

 $\alpha > 0, \ \gamma \in (-\alpha, \alpha), \delta > 0$. Since $K_1(|z|) \sim |z|^{-1}$ as $z \to 0$, the Lévy density behaves like $\delta \pi^{-1} |x|^{-2}$ as $x \to 0$ so that (1.8) is satisfied with $\beta = 1$. One also checks that $\mathbb{E} |X_1|^p < +\infty$ for every p > 0. It follows from Theorems 1 and 3 that, as $t \to 0$

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t) \quad \text{if} \quad p > 1,$$

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O((t(-\log t))^p) \quad \text{if} \quad p \le 1$$

If $\gamma = 0$, then ν is symmetric and by Theorem 2,

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^p) \quad \text{if} \quad p < 1.$$

The distribution \mathbb{P}_{X_t} at time t > 0 is given by

$$\mathbb{P}_{X_t}(dx) = \frac{t\delta\alpha}{\pi} \exp(t\,\delta\sqrt{\alpha^2 - \gamma^2} + \gamma x) \frac{K_1(\alpha\sqrt{t^2\delta^2 + x^2})}{\sqrt{t^2\delta^2 + x^2}} dx$$

so that Theorem 3 gives the true rate for $p=\beta=1$ in the symmetric case. In fact, assuming $\gamma=0,$ we get as $t\to 0$

$$\mathbb{E} |X_t| = \frac{2t\delta\alpha}{\pi} e^{t\delta\alpha} \int_0^\infty \frac{xK_1(\alpha\sqrt{t^2\delta^2 + x^2})}{\sqrt{t^2\delta^2 + x^2}} dx$$
$$= \frac{2t\delta\alpha}{\pi} e^{t\delta\alpha} \int_{t\delta}^\infty K_1(\alpha y) dy$$
$$\sim \frac{2\delta}{\pi} t \int_{t\delta}^1 \frac{1}{y} dy$$
$$\sim \frac{2\delta}{\pi} t (-\log(t)).$$

• Hyperbolic Lévy motions have been applied to option pricing in finance (see [3]). These processes are Lévy processes whose distribution \mathbb{P}_{X_1} at time t = 1 is a symmetric (centered) hyperbolic distribution

$$\mathbb{P}_{X_1}(dx) = C \exp(-\delta\sqrt{1 + (x/\gamma)^2}) \, dx, \quad \gamma, \, \delta > 0.$$

Hyperbolic Lévy processes have characteristics $(0, 0, \nu)$ and satisfy $\mathbb{E}|X_1|^p < +\infty$ for every p > 0. In particular, they are martingales. Their (rather involved) symmetric Lévy measure

has a Lebesgue density that behaves like Cx^{-2} as $x \to 0$ so that (1.8) is satisfied with $\beta = 1$. Consequently, by Theorems 1, 2 and 3, as $t \to 0$

$$\begin{split} \mathbb{E} \sup_{s \leq t} |X_s|^p &= O(t) \quad \text{if} \quad p > 1, \\ \mathbb{E} \sup_{s \leq t} |X_s|^p &= O(t^p) \quad \text{if} \quad p < 1, \\ \mathbb{E} \sup_{s \leq t} |X_s| &= O(t \, (-\log t)) \quad \text{if} \quad p = 1 \end{split}$$

• *Meixner processes* are Lévy processes without Brownian component and with Lévy measure given by

$$\nu(dx) = \frac{\delta e^{\gamma x}}{x \sinh(\pi x)} dx, \ \delta > 0, \ \gamma \in (-\pi, \pi)$$

(see [8]). The density behaves like $\delta/\pi x^2$ as $x \to 0$ so that (1.8) is satisfied with $\beta = 1$. Using (1.2) one observes that $\mathbb{E} |X_1|^p < +\infty$ for every p > 0. It follows from Theorems 1 and 3 that

$$\begin{split} & \mathbb{E} \sup_{s \leq t} |X_s|^p = O(t) \quad \text{if} \quad p > 1, \\ & \mathbb{E} \sup_{s \leq t} |X_s|^p = O((t \, (-\log t))^p) \quad \text{if} \quad p \leq 1. \end{split}$$

If $\gamma = 0$, then ν is symmetric and hence Theorem 2 yields

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^p) \quad \text{if} \quad p < 1.$$

References

- BINGHAM, N.H., GOLDIE, C.M., TEUGELS, J.L., *Regular Variation*, Cambridge University Press, 1987. MR0898871
- [2] BLUMENTHAL, R.M., GETOOR, R.K., Sample functions of stochastic processes with stationary independent increments, J. of Mathematics and Mechanics 10, 1961, 493-516. MR0123362
- [3] EBERLEIN, E., KELLER, U., Hyperbolic distributions in finance, *Bernoulli* 1, 1995, 281-299.
- [4] JACOD, J., SHIRYAEV, A.N., Limit Theorems for Stochastic Processes, Second Edition, Springer, Berlin, 2003. MR1943877
- [5] KALLENBERG, O., Foundations of Modern Probability, Second Edition, Berlin, 2002. MR1876169
- [6] MILLAR, P.W., Path behaviour of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie verw. Geb. 17, 1971, 53-73. MR0324781
- [7] SATO, K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. MR1739520
- [8] SCHOUTENS, W., Lévy Processes in Finance, Wiley, Chichester, 2003.