ELECTRONIC COMMUNICATIONS in PROBABILITY

THE TIME CONSTANT AND CRITICAL PROBABIL-ITIES IN PERCOLATION MODELS

LEANDRO P. R. PIMENTEL¹

Institut de Mathématiques, École Polytechinique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

 $email: \verb"leandro.pimentel@epfl.ch"$

Submitted 3 February 2005, accepted in final form 19 July 2006

AMS 2000 Subject classification: 60K35, 82D30 Keywords: Percolation, time constant, critical probabilities, Delaunay triangulations

Abstract

We consider a first-passage percolation (FPP) model on a Delaunay triangulation \mathcal{D} of the plane. In this model each edge \mathbf{e} of \mathcal{D} is independently equipped with a nonnegative random variable $\tau_{\mathbf{e}}$, with distribution function \mathbb{F} , which is interpreted as the time it takes to traverse the edge. Vahidi-Asl and Wierman [9] have shown that, under a suitable moment condition on \mathbb{F} , the minimum time taken to reach a point \mathbf{x} from the origin $\mathbf{0}$ is asymptotically $\mu(\mathbb{F})|\mathbf{x}|$, where $\mu(\mathbb{F})$ is a nonnegative finite constant. However the exact value of the time constant $\mu(\mathbb{F})$ still a fundamental problem in percolation theory. Here we prove that if $\mathbb{F}(0) < 1 - p_c^*$ then $\mu(\mathbb{F}) > 0$, where p_c^* is a critical probability for bond percolation on the dual graph \mathcal{D}^* .

Introduction

First-passage percolation theory on periodic graphs was presented by Hammersley and Welsh [4] to model the spread of a fluid through a porous medium. In this paper we continue a study of planar first-passage percolation models on random graphs, initiated by Vahidi-Asl and Wierman [9], as follows. Let \mathcal{P} denote the set of points realized in a two-dimensional homogeneous Poisson point process with intensity 1. To each $\mathbf{v} \in \mathcal{P}$ corresponds an open polygonal region $\mathbf{C}_{\mathbf{v}} = \mathbf{C}_{\mathbf{v}}(\mathcal{P})$, the Voronoi tile at \mathbf{v} , consisting of the set of points of \mathbb{R}^2 which are closer to \mathbf{v} than to any other $\mathbf{v}' \in \mathcal{P}$. Given $\mathbf{x} \in \mathbb{R}^2$ we denote by $\mathbf{v}_{\mathbf{x}}$ the almost surely unique point in \mathcal{P} such that $\mathbf{x} \in \mathbf{C}_{\mathbf{v}_{\mathbf{x}}}$. The collection $\{\mathbf{C}_{\mathbf{v}} : \mathbf{v} \in \mathcal{P}\}$ is called the Voronoi Tiling of the plane based on \mathcal{P} .

The Delaunay Triangulation \mathcal{D} is the graph where the vertex set \mathcal{D}_v equals \mathcal{P} and the edge set \mathcal{D}_e consists of non-oriented pairs $(\mathbf{v}, \mathbf{v}')$ such that $\mathbf{C}_{\mathbf{v}}$ and $\mathbf{C}_{\mathbf{v}'}$ share a one-dimensional edge (Figure 1). One can see that almost surely each Voronoi tile is a convex and bounded polygon, and the graph \mathcal{D} is a triangulation of the plane [7]. The Voronoi Tessellation \mathcal{V} is the graph where the vertex set \mathcal{V}_v is the set of vertices of the Voronoi tiles and the edge set \mathcal{V}_e is the set

¹RESEARCH SUPPORTED BY SWISS NATIONAL SCIENCE FOUNDATION GRANT 510767

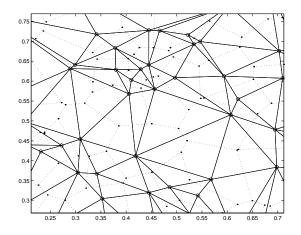


Figure 1: The Delaunay Triangulation and the Voronoi Tessellation.

of edges of the Voronoi tiles. The edges of \mathcal{V} are segments of the perpendicular bisectors of the edges of \mathcal{D} . This establishes duality of \mathcal{D} and \mathcal{V} as planar graphs: $\mathcal{V} = \mathcal{D}^*$. To each edge $\mathbf{e} \in \mathcal{D}_e$ is independently assigned a nonnegative random variable $\tau_{\mathbf{e}}$ from a common distribution \mathbb{F} , which is also independent of the Poisson point process that generates \mathcal{P} . From now on we denote $(\Omega, \mathcal{F}, \mathbb{P})$ the probability space induced by the Poisson point process \mathcal{P} and the passage times $(\tau_{\mathbf{e}})_{\mathbf{e}\in\mathcal{D}_e}$. The passage time $t(\gamma)$ of a path γ in the Delaunay Triangulation is the sum of the passage times of the edges in γ . The first-passage time between two vertices \mathbf{v} and \mathbf{v}' is defined by

$$T(\mathbf{v}, \mathbf{v}') := \inf\{t(\gamma); \gamma \in \mathcal{C}(\mathbf{v}, \mathbf{v}')\},\$$

where $C(\mathbf{v}, \mathbf{v}')$ the set of all paths connecting \mathbf{v} to \mathbf{v}' . Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ we define $T(\mathbf{x}, \mathbf{y}) := T(\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}})$.

To state the main result of this work we require some definitions involving a bond percolation model on the Voronoi Tessellation \mathcal{V} . Such a model is constructed by choosing each edge of \mathcal{V} to be open independently with probability p. An open path is a path composed of open edges. We denote \mathbb{P}_p^* the law induced by the Poisson point process and the random state (open or not) of an edge. Given a planar graph \mathcal{G} and $\mathbf{A}, \mathbf{B} \subseteq \mathbb{R}^2$ we say that a self-avoiding path $\gamma = (\mathbf{v}_1, ..., \mathbf{v}_k)$ is a path connecting \mathbf{A} to \mathbf{B} if $[\mathbf{v}_1, \mathbf{v}_2] \cap \mathbf{A} \neq \emptyset$ and $[\mathbf{v}_{k-1}, \mathbf{v}_k] \cap \mathbf{B} \neq \emptyset$ ($[\mathbf{x}, \mathbf{y}]$ denotes the line segment connecting \mathbf{x} to \mathbf{y}). For L > 0 let A_L be the event that there exists an open path $\gamma = (\mathbf{v}_j)_{1 \leq j \leq h}$ in \mathcal{V} , connecting $\{0\} \times [0, L]$ to $\{3L\} \times [0, L]$, and with $\mathbf{v}_j \in [0, 3L] \times [0, L]$ for all $j = 2, \ldots, h-1$. In this case we also say that γ crosses the rectangle $[0, 3L] \times [0, L]$. Define the function

$$\eta^*(p) := \liminf_{L \to \infty} \mathbb{P}_p^*(A_L) \,,$$

and consider the percolation threshold,

$$p_c^* := \inf\{p > 0 : \eta^*(p) = 1\}.$$
(1)

We have that $p_c^* \in (0, 1)$, which follows by standard arguments in percolation theory. For more in percolation thresholds on Voronoi tilings we refer to [1, 2, 11].

Theorem 1 If $\mathbb{F}(0) < 1 - p_c^*$ then there exist constants $c_j > 0$ such that for all $n \ge 1$

$$\mathbb{P}(T(\mathbf{0},\mathbf{n}) < c_1 n) \le c_2 \exp(-c_3 n), \qquad (2)$$

where $\mathbf{0} := (0, 0)$ and $\mathbf{n} := (n, 0)$.

To show the importance of Theorem 1 we recall two fundamental results proved by Vahidi-Asl and Wierman [9, 10]. Consider the growth process

$$\mathbf{B}_{\mathbf{x}}(t) := \{ \mathbf{y} \in \mathbb{R}^2 : \mathbf{y} \in c(\mathbf{C}_{\mathbf{v}}) \text{ with } \mathbf{v} \in \mathcal{D}_v \text{ and } T(\mathbf{v}_{\mathbf{x}}, \mathbf{v}) \leq t \}$$

where $c(\mathbf{C})$ denotes the closure of $\mathbf{C} \in \mathbb{R}^2$. Set

$$\mu(\mathbb{F}) := \inf_{n>0} \frac{\mathbb{E}T(\mathbf{0}, \mathbf{n})}{n} \in [0, \infty].$$

and let τ_1,τ_2,τ_3 be independent random variables with distribution $\mathbb F.$ If

$$\mathbb{E}\Big(\min_{j=1,2,3}\{\tau_j\}\Big) < \infty \tag{3}$$

then $\mu(\mathbb{F}) < \infty$ and for all unit vectors $\vec{\mathbf{x}} \in S^1$ $(|\vec{\mathbf{x}}| = 1)$ P-a.s.

γ

$$\lim_{n \to \infty} \frac{T(\mathbf{0}, n\vec{\mathbf{x}})}{n} = \lim_{n \to \infty} \frac{\mathbb{E}T(\mathbf{0}, \mathbf{n})}{n} = \mu(\mathbb{F}).$$
(4)

Further, if

$$\mathbb{E}\Big(\min_{j=1,2,3}\{\tau_j\}^2\Big) < \infty \tag{5}$$

and $\mu(\mathbb{F}) > 0$ then for all $\epsilon > 0$ P-a.s. there exists $t_0 > 0$ such that for all $t > t_0$

$$(1-\epsilon)t\mathbf{D}(1/\mu) \subseteq \mathbf{B}_{\mathbf{0}}(t) \subseteq (1+\epsilon)t\mathbf{D}(1/\mu), \qquad (6)$$

where $\mathbf{D}(r) := \{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}| \le r \}.$

We note here that the asymptotic shape is an Euclidean ball due to the statistical invariance of the Poisson point process. Unfortunately the exact value of the time constant $\mu(\mathbb{F})$, as a functional of \mathbb{F} , still a basic problem in first-passage percolation theory. Our result provides a sufficient condition on \mathbb{F} to ensure $\mu(\mathbb{F}) > 0$.

Corollary 1 Under assumption (3), if $\mathbb{F}(0) < 1 - p_c^*$ then $\mu(\mathbb{F}) \in (0, \infty)$.

PROOF. Together with the Borel-Cantelli Lemma, Theorem 1 and (4) imply

$$0 < c_1 \le \liminf_{n \to \infty} \frac{T(\mathbf{0}, \mathbf{n})}{n} = \lim_{n \to \infty} \frac{T(\mathbf{0}, \mathbf{n})}{n} = \mu(\mathbb{F}) < \infty,$$

which is the desired result.

For FPP models on the \mathbb{Z}^2 lattice Kesten (1986) has shown that $\mathbb{F}(0) < 1/2 = p_c(\mathbb{Z}^2)$ (the critical probability for bond percolation on \mathbb{Z}^2) is a sufficient condition to get (2) by using a stronger version of the BK-inequality. Here we follow a different method and we apply a simple renormalization argument to obtain a similar result. We expect that our condition to get (2) is equivalent to

$$\mathbb{F}(0) < p_c := \inf\{p > 0; \, \theta(p) = 1\}$$

where $\theta(p)$ is the probability that bond percolation on \mathcal{D} occurs with density p, since it is conjectured that $p_c + p_c^* = 1$ (duality) for many planar graphs. In fact, by combining Corollary 1 with (6) we have:

Corollary 2

$$1 \le p_c + p_c^*.$$

PROOF. To see this assume we have a first-passage percolation model on \mathcal{D} with

$$\mathbb{P}(\tau_{\mathbf{e}} = 0) = 1 - \mathbb{P}(\tau_{\mathbf{e}} = 1) = \mathbb{F}(0) = 1 - p > p_c^*.$$
(7)

Then \mathbb{P} -a.s. there exists an infinite cluster $\mathcal{W} \subseteq \mathcal{D}$ composed by edges \mathbf{e} with $\tau_{\mathbf{e}} = 0$. Denote by $T(\mathbf{0}, \mathcal{W})$ the first-passage time from $\mathbf{0}$ to \mathcal{W} . Then for all $t > T(\mathbf{0}, \mathcal{W})$ we have that $\mathbf{B}_{\mathbf{0}}(t)$ is an unbounded set. By (6) (since such a distribution satisfies (3) and (5)), this implies that $\mu(\mathbb{F}) = \mu(p) = 0$ if $1 - p > p_c$. On the other hand, by Corollary 1, $\mu(p) > 0$ if $1 - p < 1 - p_c^*$, and so (2) must hold.

Other passage times have been considered in the literature such as $T(\mathbf{0}, \mathbf{H}_n)$, where \mathbf{H}_n is the hyperplane consisting of points $\mathbf{x} = (x^1, x^2)$ so that $x_1 = n$, and $T(\mathbf{0}, \partial [-n, n]^2)$. The arguments in this article can be used to prove the analog of Theorem 1 when $T(\mathbf{0}, \mathbf{n})$ is replaced by $T(\mathbf{0}, \mathbf{H}_n)$ or $T(\mathbf{0}, \partial [-n, n]^2)$. For site versions of FPP models the method works as well if we change the condition on \mathbb{F} to $\mathbb{F}(0) < 1 - \bar{p}_c$, where now \bar{p}_c is the critical probability for site percolation. Similarly to Corollary 2, in this case one can also obtain the inequality $1/2 \leq \bar{p}_c$. For more details we refer to [8].

1 Renormalization

For the moment we assume that \mathbb{F} is Bernoulli with parameter p. Let $L \ge 1$ be a parameter whose value will be specified later. Let $\mathbf{z} = (z^1, z^2) \in \mathbb{Z}^2$ and

$$|\mathbf{z}|_{\infty} := \max_{j=1,2} \{ |z^j| \}.$$

Denote \mathbf{C}_z the circuit composed by sites $\mathbf{z}' \in \mathbb{Z}^2$ with $|\mathbf{z} - \mathbf{z}'|_{\infty} = 2$. For each $\mathbf{A} \subseteq \mathbb{R}^2$, we denote by $\partial \mathbf{A}$ its boundary. For each $\mathbf{z} \in \mathbb{Z}^2$ and $r \in \{j/2 : j \in \mathbb{N}\}$ consider the box

$$\mathbf{B}_z^{rL} := Lz + [-rL, rL]^2 \,.$$

Divide $\mathbf{B}_{\mathbf{z}}^{L/2}$ into thirty-six sub-boxes with the same size and declare that $B_{\mathbf{z}}^{L/2}$ is a **full box** if all these thirty-six sub-boxes contain at least one point of \mathcal{P} . Let

$$H_{\mathbf{z}}^{L} := \left[\mathbf{B}_{\mathbf{z}'}^{L/2} \text{ is a full box } \forall \, \mathbf{z}' \in \mathbf{C}_{\mathbf{z}} \right].$$

Let C_L be the set of all self-avoiding paths $\gamma = (\mathbf{v}_j)_{1 \le j \le h}$ in \mathcal{D} , connecting $\partial \mathbf{B}_{\mathbf{z}}^{L/2}$ to $\partial \mathbf{B}_{\mathbf{z}}^{3L/2}$ and with $\mathbf{C}_{\mathbf{v}_j} \cap \mathbf{B}_{\mathbf{z}}^{3L/2}$ for all $j = 2, \ldots, h - 1$. Let

$$G_z^L := [t(\gamma) \ge 1 \,\forall \, \gamma \in \mathcal{C}_L].$$

We say that $\mathbf{B}_{\mathbf{z}}^{L/2}$ is a **good box** (or that \mathbf{z} is a good point) if

$$Y_{\mathbf{z}}^{L} := \mathbb{I}(H_{\mathbf{z}}^{L} \cap G_{\mathbf{z}}^{L}) = 1,$$

where $\mathbb{I}(E)$ denotes the indicator function of the event E.

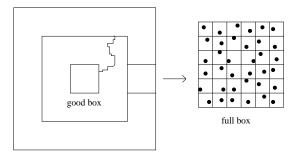


Figure 2: Renormalization

Lemma 1 If $\mathbb{P}(\tau_{\mathbf{e}} = 0) = 1 - p < 1 - p_c^*$ then

$$\lim_{L\to\infty}\mathbb{P}\big(Y_{\mathbf{0}}^L=1\big)=1$$

PROOF. First notice that

$$\mathbb{P}(Y_{\mathbf{0}}^{L}=0) \leq \mathbb{P}((H_{\mathbf{0}}^{L})^{c}) + \mathbb{P}((G_{\mathbf{0}}^{L})^{c}).$$
(8)

By the definition of a two-dimensional homogeneous Poisson point process,

$$\lim_{L \to \infty} \mathbb{P}\big((H_{\mathbf{0}}^L)^c \big) = 0.$$
(9)

Now, let $X_{\mathbf{e}^*} := \tau_{\mathbf{e}}$, where \mathbf{e}^* is the edge in \mathcal{V}_e (the Voronoi tessellation) dual to \mathbf{e} . Then $\{X_{\mathbf{e}^*}; \mathbf{e}^* \in \mathcal{V}_e\}$ defines a bond percolation model on \mathcal{V} with law \mathbb{P}_p^* . Consider the rectangles

$$\begin{aligned} R_L^1 &:= \left[L/2, 3L/2 \right] \times \left[-3L/2, 3L/2 \right], \ R_L^2 &:= \left[-3L/2, 3L/2 \right] \times \left[L/2, 3L/2 \right] \\ R_L^3 &:= \left[-3L/2, -L/2 \right] \times \left[-3L/2, 3L/2 \right] \text{ and } \ R_L^4 &:= \left[-3L/2, 3L/2 \right] \times \left[-3L/2, -L/2 \right] \end{aligned}$$

We denote by A_L^i the event A_L (recall the definition of p_c^*) but now translate to the rectangle R_L^i , and by F_L the event that an open circuit σ^* in \mathcal{V} which surrounds $B_{\mathbf{0}}^{L/2}$ and lies inside $B_{\mathbf{0}}^{3L/2}$ does not exist. Thus one can easily see that

$$\cap_{i=1}^4 A_L^i \subseteq (F_L)^c$$

Notice that if there exists an open circuit σ^* in \mathcal{V} which surrounds $B_{\mathbf{0}}^{L/2}$ and lies inside $B_{\mathbf{0}}^{3L/2}$, then every path γ in \mathcal{C}_L has an edge crossing with σ^* and thus $t(\gamma) \geq 1$. Therefore,

$$\mathbb{P}\left((G_{\mathbf{0}}^{L})^{c}\right) \leq \mathbb{P}_{p}^{*}(F_{L}) \leq 4\left(1 - \mathbb{P}_{p}^{*}(A_{L})\right).$$

$$(10)$$

Since $p > p_c^*$, by using (8), (9), (10) and the definition of p_c^* , we get Lemma 1.

To obtain some sort of independence between the random variables $Y_{\mathbf{z}}^{L}$ we shall study some geometrical aspects of Voronoi tilings. Given $\mathbf{A} \subseteq \mathbb{R}^{2}$, let $\mathcal{I}_{\mathcal{P}}(\mathbf{A})$ be the sub-graph of \mathcal{D} composed of vertices \mathbf{v}_{1} in \mathcal{D}_{v} and edges $(\mathbf{v}_{2}, \mathbf{v}_{3})$ in \mathcal{D}_{e} so that $\mathbf{C}_{\mathbf{v}_{i}} \cap \mathbf{A} \neq \emptyset$ for all i = 1, 2, 3. **Lemma 2** Let L > 0 and $\mathbf{z} \in \mathbb{Z}^2$. Assume that \mathcal{P} and \mathcal{P}' are two configurations of points so that $\mathcal{P} \cap \mathbf{B}_{\mathbf{z}}^{5L/2} = \mathcal{P}' \cap \mathbf{B}_{\mathbf{z}}^{5L/2}$ and that $\mathbf{B}_{\mathbf{z}'}^{L/2}$ is a full box with respect to \mathcal{P} , for all $\mathbf{z}' \in \mathbf{C}_{\mathbf{z}}$. Then $\mathcal{I}_{\mathcal{P}}(\mathbf{B}_{\mathbf{z}}^{3L/2}) = \mathcal{I}_{\mathcal{P}'}(\mathbf{B}_{\mathbf{z}}^{3L/2})$.

PROOF. By the definition of the Delaunay Triangulation, Lemma 2 holds if we prove that

$$\mathbf{C}_{\mathbf{v}}(\mathcal{P}) \cap \mathbf{B}_{\mathbf{z}}^{3L/2} \neq \emptyset \Rightarrow \mathbf{C}_{\mathbf{v}}(\mathcal{P}) = \mathbf{C}_{\mathbf{v}}(\mathcal{P}').$$
(11)

To prove this we claim that

$$\mathbf{C}_{\mathbf{v}}(\mathcal{P}) \cap \mathbf{B}_{\mathbf{z}}^{3L/2} \neq \emptyset \Rightarrow \mathbf{C}_{\mathbf{v}}(\mathcal{P}) \subseteq \mathbf{B}_{\mathbf{z}}^{2L}.$$
(12)

If (12) does not hold then there exist $\mathbf{x}_1 \in \partial \mathbf{B}_{\mathbf{z}}^{3L/2} \cap \mathbf{C}_{\mathbf{v}}(\mathcal{P})$ and $\mathbf{x}_2 \in \partial \mathbf{B}_{\mathbf{z}}^{2L} \cap \mathbf{C}_{\mathbf{v}}(\mathcal{P})$ (by convexity of Voronoi tilings). Since every box $B_{\mathbf{z}'}^{L/2}$ with $|\mathbf{z} - \mathbf{z}'|_{\infty} = 2$ is a full box, there exist $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{P}$ so that

$$|\mathbf{v}_1 - \mathbf{x}_1| \le \sqrt{2L/6}$$
 and $|\mathbf{v}_2 - \mathbf{x}_2| \le \sqrt{2L/6}$.

Although, \mathbf{x}_1 and \mathbf{x}_2 belong to $\mathbf{C}_{\mathbf{v}}(\mathcal{P})$ and so

$$|\mathbf{v} - \mathbf{x}_1| \le |\mathbf{v}_1 - \mathbf{x}_1|$$
 and $|\mathbf{v} - \mathbf{x}_2| \le |\mathbf{v}_2 - \mathbf{x}_2|$.

Thus,

$$L/2 \le |\mathbf{x}_1 - \mathbf{x}_2| \le |\mathbf{x}_1 - \mathbf{v}| + |\mathbf{x}_2 - \mathbf{v}| \le \sqrt{2}L/3,$$

which leads to a contradiction since $\sqrt{2}/3 < 1/2$. By an analogous argument, one can prove that

$$\mathbf{C}_{\mathbf{v}'}(\mathcal{P}') \cap (\mathbf{B}_{\mathbf{z}}^{5L/2})^c \neq \emptyset \Rightarrow \mathbf{C}_{\mathbf{v}'}(\mathcal{P}') \subseteq (\mathbf{B}_{\mathbf{z}}^{2L})^c.$$
(13)

Now suppose (11) does not hold. Without lost of generality, we may assume that there exists $\mathbf{v} \in \mathcal{P}$ with $\mathbf{C}_{\mathbf{v}}(\mathcal{P}) \cap \mathbf{B}_{\mathbf{z}}^{3L/2} \neq \emptyset$ and $\mathbf{x} \in \mathbf{C}_{\mathbf{v}}(\mathcal{P})$ with $\mathbf{x} \notin \mathbf{C}_{\mathbf{v}}(\mathcal{P}')$. So $\mathbf{x} \in \mathbf{C}_{\mathbf{v}'}(\mathcal{P}')$ for some $\mathbf{v}' \in \mathcal{P}'$. Although, $\mathcal{P} \cap \mathbf{B}_{\mathbf{z}}^{5L/2} = \mathcal{P}' \cap \mathbf{B}_{\mathbf{z}}^{5L/2}$ and then $\mathbf{v}' \in (\mathbf{B}_{\mathbf{z}}^{5L/2})^c$, which is a contradiction with (12) and (13).

For each $l \ge 1$, we say that the collection of random variables $\{Y_{\mathbf{z}} : \mathbf{z} \in \mathbb{Z}^2\}$ is *l*-dependent if $\{Y_{\mathbf{z}} : \mathbf{z} \in \mathbf{A}\}$ and $\{Y_{\mathbf{z}} : \mathbf{z} \in \mathbf{B}\}$ are independent whenever

$$l < d_{\infty}(\mathbf{A}, \mathbf{B}) := \min\{|\mathbf{z} - \mathbf{z}'|_{\infty} : \mathbf{z} \in \mathbf{A} \text{ and } \mathbf{z}' \in \mathbf{B}\}$$

Combining Lemma 2 with the translation invariance and the independence property of the Poisson point process we obtain:

Lemma 3 For all L > 0, $\{Y_{\mathbf{z}}^{L} : \mathbf{z} \in \mathbb{Z}^{2}\}$ is a 5-dependent collection of identically distributed Bernoulli random variables.

Denote $Y^L := \{Y_{\mathbf{z}}^L; \mathbf{z} \in \mathbb{Z}^2\}$ and let $M_m(Y^L)$ be the maximum number of pairwise disjoint good circuits in \mathbb{Z}^2 , surrounding the origin and lying inside the box $[-m, m]^2$.

Lemma 4 If $\mathbb{F}(0) < 1 - p_c^*$ then there exists $L_0 > 0$ and $c_j = c_j(L_0) > 0$ such that

$$\mathbb{P}(M_m(Y^{L_0}) \le c_1 m) \le \exp(-c_2 m).$$

PROOF. Combining Lemmas 1 and 3 with and Theorem 0.0 of Ligget, Schonman and Stacey [6], one gets that Y^L is dominated from below by a collection $X^L := \{X_z^L : z \in \mathbb{Z}^2\}$ of i.i.d. Bernoulli random variables with parameter $\rho(L) \to 1$ when $L \to \infty$. But for ρ_L sufficiently close to 1, we can chose c > 0 sufficiently small, so that the probability of the event that $M_m(X^L) < cm$ decays exponentially fast with m (see Chapter 3 of Grimmett [3]). Together with domination, this proves Lemma 4.

The connection between the variable $M_m(Y^L)$ and the first-passage time $T(\mathbf{0}, \mathbf{n})$ is summarize by the following:

Lemma 5

$$\frac{M_{nL^{-1}}^L}{6} \le T(\mathbf{0}, \mathbf{n})$$

PROOF. We say that $(B_{\mathbf{z}_j}^{L/2})_{1 \leq j \leq h}$ is a circuit of good boxes if $(\mathbf{z}_j)_{1 \leq j \leq h}$ is a good circuit in \mathbb{Z}^2 , and that $(B_{\mathbf{z}_j}^{L/2})_{1 \leq j \leq h}$ and $(B_{\mathbf{z}'_j}^{L/2})_{1 \leq j \leq h'}$ are *l*-distant if

$$d_{\infty}\left((\mathbf{z}_{j})_{1\leq j\leq k}, (\mathbf{z}_{j}')_{1\leq j\leq h'}\right) > l.$$

Denote $M_m^L := M_m(Y^L)$. Notice that there exist at least $(M_{nL^{-1}}^L/6)$ pairwise 5-distant circuits of good boxes surrounding the origin and lying inside $[-n,n]^2 \subseteq \mathbb{R}^2$. Therefore, every path γ between the origin and any point outside $[-n,n]^2$ must cross at least $(M_{nL^{-1}}^L/6)$ 5-distant circuits of good boxes. We claim this yields

$$\frac{M_{nL^{-1}}^L}{6} \le t(\gamma) \,. \tag{14}$$

Indeed, assume we take two 5-distant good boxes, say $\mathbf{B}_{\mathbf{z}_1}^{L/2}$ and $\mathbf{B}_{\mathbf{z}_2}^{L/2}$, connected by a path γ in \mathcal{D} . Then γ must contain two sub-paths in \mathcal{D} , say $\bar{\gamma}_i = (\mathbf{v}_j^i)_{1 \leq j \leq h_i}$ for i = 1, 2, connecting $\partial \mathbf{B}_{\mathbf{z}_i}^{3L/2}$ to $\partial \mathbf{B}_{\mathbf{z}_i}^{5L/2}$ and with $\mathbf{C}_{\mathbf{v}_j^i} \cap \mathbf{B}_{\mathbf{z}_i}^{3L/2}$ for all $j = 2, ..., h_i - 1$. Since $B_{\mathbf{z}_1}^{L/2}$ and $B_{\mathbf{z}_2}^{L/2}$ are 5-distant good boxes, by Lemma 2, these sub-paths must be edge disjoint. By the definition of a good box, $t(\bar{\gamma}_1) \geq 1$ and $t(\bar{\gamma}_2) \geq 1$, which yields

$$2 \le t(\bar{\gamma}_1) + t(\bar{\gamma}_2) \le t(\gamma) \,.$$

By repeating this argument inductively (on the number of good boxes which are crossed by γ) one can get (14). Lemma 5 follows directly from (14).

Now we are ready to prove Theorem 1.

PROOF. Together with Lemma 5, Lemma 4 implies Theorem 1 under (7). For the general case, assume $\mathbb{F}(0) = \mathbb{P}(\tau_{\mathbf{e}} = 0) < 1 - p_1$. Fix $\epsilon > 0$ so that $\mathbb{F}(\epsilon) < 1 - p_c^*$ (we can do so since \mathbb{F} is right-continuous). Define the auxiliary process $\tau_{\mathbf{e}}^{\epsilon} := \mathbb{I}(\tau_{\mathbf{e}} > \epsilon)$ and denote by T^{ϵ} the first-passage time associated to the collection $\{\tau_{\mathbf{e}}^{\epsilon} : \mathbf{e} \in \mathcal{D}_e\}$. Thus $T^{\epsilon}(\mathbf{0}, \mathbf{n}) \leq \epsilon^{-1}T(\mathbf{0}, \mathbf{n})$. Since $\tau_{\mathbf{e}}^{\epsilon}$ has a Bernoulli distribution with parameter $\mathbb{P}(\tau_{\mathbf{e}}^{\epsilon} = 0) = \mathbb{F}(\epsilon) < 1 - p_c^*$, together with the previous case this yields Theorem 1.

Acknowledgment

This work was develop during my doctoral studies at Impa and I would like to thank my adviser, Prof. Vladas Sidoravicius, for his dedication and encouragement during this period. I also thank the whole administrative staff of IMPA for their assistance and CNPQ for financing my doctoral studies, without which this work would have not been possible.

References

- B. Bollobas and O. Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Preprint available from arXiv.org:math/0410336.
- B. Bollobas and O. Riordan. Sharp thresholds and percolation in the plane. Preprint available from arXiv.org:math/0412510.
- [3] G. Grimmett. Percolation (second edition). Springer (1999).
- [4] J.M. Hammersley, D.J.A. Welsh. First-passage percolation, sub-additive process, stochastic network and generalized renewal theory. Springer-Verlag (1965), 61-110.
- [5] H. Kesten. Aspects of first-passage percolation. Lectures Notes in Math. 1180, Springer-Verlag (1986), 125-264.
- [6] T.M. Ligget, R.H. Schonmann and A.M. Stacey. Domination by product measures. Ann. Probab. 25 (1997), 71-95.
- [7] J. Moller. Lectures on random Voronoi tessellations. Lectures Notes in Stat. 87, Springer-Verlag (1991).
- [8] L.P.R. Pimentel. Competing growth, interfaces and geodesics in first-passage percolation on Voronoi tilings. Phd Thesis, IMPA, Rio de Janeiro (2004).
- [9] M.Q. Vahidi-Asl and J.C. Wierman. First-passage percolation on the Voronoi tessellation and Delaunay triangulation. Random Graphs 87 (M. Karonske, J. Jaworski and A. Rucinski, eds.) Wiley (1990), 341-359.
- [10] M.C. Vahidi-Asl and J.C. Wierman. A shape result for first-passage percolation on the Voronoi tessellation and Delaunay triangulation. Random Graphs 89 (A. Frieze and T. Luczak, eds.), Wiley (1992), 247-262.
- [11] A. Zvavitch. The critical probability for Voronoi percolation. MSc. thesis, Weizmann Institute of Science (1996).