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Abstract
We consider a first-passage percolation (FPP) model on a Delaunay triangulation D of the
plane. In this model each edge e of D is independently equipped with a nonnegative random
variable τe, with distribution function F, which is interpreted as the time it takes to traverse
the edge. Vahidi-Asl and Wierman [9] have shown that, under a suitable moment condition
on F, the minimum time taken to reach a point x from the origin 0 is asymptotically µ(F)|x|,
where µ(F) is a nonnegative finite constant. However the exact value of the time constant
µ(F) still a fundamental problem in percolation theory. Here we prove that if F(0) < 1 − p∗c
then µ(F) > 0, where p∗c is a critical probability for bond percolation on the dual graph D∗.

Introduction

First-passage percolation theory on periodic graphs was presented by Hammersley and Welsh
[4] to model the spread of a fluid through a porous medium. In this paper we continue a
study of planar first-passage percolation models on random graphs, initiated by Vahidi-Asl
and Wierman [9], as follows. Let P denote the set of points realized in a two-dimensional
homogeneous Poisson point process with intensity 1. To each v ∈ P corresponds an open
polygonal region Cv = Cv(P), the Voronoi tile at v, consisting of the set of points of R2

which are closer to v than to any other v′ ∈ P. Given x ∈ R2 we denote by vx the almost
surely unique point in P such that x ∈ Cvx . The collection {Cv : v ∈ P} is called the Voronoi
Tiling of the plane based on P.
The Delaunay Triangulation D is the graph where the vertex set Dv equals P and the edge set
De consists of non-oriented pairs (v,v′) such that Cv and Cv′ share a one-dimensional edge
(Figure 1). One can see that almost surely each Voronoi tile is a convex and bounded polygon,
and the graph D is a triangulation of the plane [7]. The Voronoi Tessellation V is the graph
where the vertex set Vv is the set of vertices of the Voronoi tiles and the edge set Ve is the set
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Figure 1: The Delaunay Triangulation and the Voronoi Tessellation.

of edges of the Voronoi tiles. The edges of V are segments of the perpendicular bisectors of
the edges of D. This establishes duality of D and V as planar graphs: V = D∗.
To each edge e ∈ De is independently assigned a nonnegative random variable τe from a
common distribution F, which is also independent of the Poisson point process that generates
P. From now on we denote (Ω,F , P) the probability space induced by the Poisson point
process P and the passage times (τe)e∈De

. The passage time t(γ) of a path γ in the Delaunay
Triangulation is the sum of the passage times of the edges in γ. The first-passage time between
two vertices v and v′ is defined by

T (v,v′) := inf{t(γ) ; γ ∈ C(v,v′)} ,

where C(v,v′) the set of all paths connecting v to v′. Given x,y ∈ R2 we define T (x,y) :=
T (vx,vy).
To state the main result of this work we require some definitions involving a bond percolation
model on the Voronoi Tessellation V. Such a model is constructed by choosing each edge of
V to be open independently with probability p. An open path is a path composed of open
edges. We denote P∗p the law induced by the Poisson point process and the random state
(open or not) of an edge. Given a planar graph G and A,B ⊆ R2 we say that a self-avoiding
path γ = (v1, ...,vk) is a path connecting A to B if [v1,v2] ∩A 6= ∅ and [vk−1,vk] ∩B 6= ∅
([x,y] denotes the line segment connecting x to y). For L > 0 let AL be the event that there
exists an open path γ = (vj)1≤j≤h in V, connecting {0} × [0, L] to {3L} × [0, L], and with
vj ∈ [0, 3L]× [0, L] for all j = 2, . . . , h−1. In this case we also say that γ crosses the rectangle
[0, 3L]× [0, L]. Define the function

η∗(p) := lim inf
L→∞

P∗p(AL) ,

and consider the percolation threshold,

p∗c := inf{p > 0 : η∗(p) = 1} . (1)

We have that p∗c ∈ (0, 1), which follows by standard arguments in percolation theory. For more
in percolation thresholds on Voronoi tilings we refer to [1, 2, 11].
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Theorem 1 If F(0) < 1− p∗c then there exist constants cj > 0 such that for all n ≥ 1

P
(
T (0,n) < c1n

)
≤ c2 exp(−c3n) , (2)

where 0 := (0, 0) and n := (n, 0).

To show the importance of Theorem 1 we recall two fundamental results proved by Vahidi-Asl
and Wierman [9, 10]. Consider the growth process

Bx(t) := {y ∈ R2 : y ∈ c(Cv) with v ∈ Dv and T (vx,v) ≤ t} .

where c(C) denotes the closure of C ∈ R2. Set

µ(F) := inf
n>0

ET (0,n)
n

∈ [0,∞] .

and let τ1, τ2, τ3 be independent random variables with distribution F. If

E
(

min
j=1,2,3

{τj}
)

< ∞ (3)

then µ(F) < ∞ and for all unit vectors ~x ∈ S1 (|~x| = 1) P-a.s.

lim
n→∞

T (0, n~x)
n

= lim
n→∞

ET (0,n)
n

= µ(F) . (4)

Further, if
E

(
min

j=1,2,3
{τj}2

)
< ∞ (5)

and µ(F) > 0 then for all ε > 0 P-a.s. there exists t0 > 0 such that for all t > t0

(1− ε)tD(1/µ) ⊆ B0(t) ⊆ (1 + ε)tD(1/µ) , (6)

where D(r) := {x ∈ R2 : |x| ≤ r}.
We note here that the asymptotic shape is an Euclidean ball due to the statistical invariance
of the Poisson point process. Unfortunately the exact value of the time constant µ(F), as a
functional of F, still a basic problem in first-passage percolation theory. Our result provides a
sufficient condition on F to ensure µ(F) > 0.

Corollary 1 Under assumption (3), if F(0) < 1− p∗c then µ(F) ∈ (0,∞).

Proof. Together with the Borel-Cantelli Lemma, Theorem 1 and (4) imply

0 < c1 ≤ lim inf
n→∞

T (0,n)
n

= lim
n→∞

T (0,n)
n

= µ(F) < ∞ ,

which is the desired result. �

For FPP models on the Z2 lattice Kesten (1986) has shown that F(0) < 1/2 = pc(Z2) (the
critical probability for bond percolation on Z2) is a sufficient condition to get (2) by using
a stronger version of the BK-inequality. Here we follow a different method and we apply a
simple renormalization argument to obtain a similar result. We expect that our condition to
get (2) is equivalent to

F(0) < pc := inf{p > 0 ; θ(p) = 1} ,

where θ(p) is the probability that bond percolation on D occurs with density p, since it is
conjectured that pc +p∗c = 1 (duality) for many planar graphs. In fact, by combining Corollary
1 with (6) we have:
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Corollary 2
1 ≤ pc + p∗c .

Proof. To see this assume we have a first-passage percolation model on D with

P(τe = 0) = 1− P(τe = 1) = F(0) = 1− p > p∗c . (7)

Then P-a.s. there exists an infinite cluster W ⊆ D composed by edges e with τe = 0. Denote
by T (0,W) the first-passage time from 0 to W. Then for all t > T (0,W) we have that B0(t)
is an unbounded set. By (6) (since such a distribution satisfies (3) and (5)), this implies that
µ(F) = µ(p) = 0 if 1− p > pc. On the other hand, by Corollary 1, µ(p) > 0 if 1− p < 1− p∗c ,
and so (2) must hold. �

Other passage times have been considered in the literature such as T (0,Hn), where Hn is
the hyperplane consisting of points x = (x1, x2) so that x1 = n, and T (0, ∂[−n, n]2). The
arguments in this article can be used to prove the analog of Theorem 1 when T (0,n) is
replaced by T (0,Hn) or T (0, ∂[−n, n]2). For site versions of FPP models the method works as
well if we change the condition on F to F(0) < 1− p̄c, where now p̄c is the critical probability
for site percolation. Similarly to Corollary 2, in this case one can also obtain the inequality
1/2 ≤ p̄c. For more details we refer to [8].

1 Renormalization

For the moment we assume that F is Bernoulli with parameter p. Let L ≥ 1 be a parameter
whose value will be specified later. Let z = (z1, z2) ∈ Z2 and

|z|∞ := max
j=1,2

{|zj |} .

Denote Cz the circuit composed by sites z′ ∈ Z2 with |z − z′|∞ = 2. For each A ⊆ R2, we
denote by ∂A its boundary. For each z ∈ Z2 and r ∈ {j/2 : j ∈ N} consider the box

BrL
z := Lz + [−rL, rL]2 .

Divide BL/2
z into thirty-six sub-boxes with the same size and declare that B

L/2
z is a full box

if all these thirty-six sub-boxes contain at least one point of P. Let

HL
z :=

[
BL/2

z′ is a full box ∀ z′ ∈ Cz

]
.

Let CL be the set of all self-avoiding paths γ = (vj)1≤j≤h in D, connecting ∂BL/2
z to ∂B3L/2

z

and with Cvj ∩B3L/2
z for all j = 2, . . . , h− 1. Let

GL
z :=

[
t(γ) ≥ 1∀ γ ∈ CL

]
.

We say that BL/2
z is a good box (or that z is a good point) if

Y L
z := I

(
HL

z ∩GL
z

)
= 1 ,

where I
(
E

)
denotes the indicator function of the event E.
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Figure 2: Renormalization

Lemma 1 If P(τe = 0) = 1− p < 1− p∗c then

lim
L→∞

P
(
Y L
0 = 1

)
= 1 .

Proof. First notice that

P
(
Y L
0 = 0

)
≤ P

(
(HL

0 )c
)

+ P
(
(GL

0 )c
)
. (8)

By the definition of a two-dimensional homogeneous Poisson point process,

lim
L→∞

P
(
(HL

0 )c
)

= 0 . (9)

Now, let Xe∗ := τe, where e∗ is the edge in Ve (the Voronoi tessellation) dual to e. Then
{Xe∗ ; e∗ ∈ Ve} defines a bond percolation model on V with law P∗p. Consider the rectangles

R1
L := [L/2, 3L/2]× [−3L/2, 3L/2] , R2

L := [−3L/2, 3L/2]× [L/2, 3L/2]

R3
L := [−3L/2,−L/2]× [−3L/2, 3L/2] and R4

L := [−3L/2, 3L/2]× [−3L/2,−L/2] .

We denote by Ai
L the event AL (recall the definition of p∗c) but now translate to the rectangle

Ri
L, and by FL the event that an open circuit σ∗ in V which surrounds B

L/2
0 and lies inside

B
3L/2
0 does not exist. Thus one can easily see that

∩4
i=1A

i
L ⊆ (FL)c .

Notice that if there exists an open circuit σ∗ in V which surrounds B
L/2
0 and lies inside B

3L/2
0 ,

then every path γ in CL has an edge crossing with σ∗ and thus t(γ) ≥ 1. Therefore,

P
(
(GL

0 )c
)
≤ P∗p(FL) ≤ 4

(
1− P∗p(AL)

)
. (10)

Since p > p∗c , by using (8), (9), (10) and the definition of p∗c , we get Lemma 1. �

To obtain some sort of independence between the random variables Y L
z we shall study some

geometrical aspects of Voronoi tilings. Given A ⊆ R2, let IP(A) be the sub-graph of D
composed of vertices v1 in Dv and edges (v2,v3) in De so that Cvi

∩A 6= ∅ for all i = 1, 2, 3.
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Lemma 2 Let L > 0 and z ∈ Z2. Assume that P and P ′ are two configurations of points so
that P ∩ B5L/2

z = P ′ ∩ B5L/2
z and that BL/2

z′ is a full box with respect to P, for all z′ ∈ Cz.
Then IP(B3L/2

z ) = IP′(B3L/2
z ).

Proof. By the definition of the Delaunay Triangulation, Lemma 2 holds if we prove that

Cv(P) ∩B3L/2
z 6= ∅ ⇒ Cv(P) = Cv(P ′) . (11)

To prove this we claim that

Cv(P) ∩B3L/2
z 6= ∅ ⇒ Cv(P) ⊆ B2L

z . (12)

If (12) does not hold then there exist x1 ∈ ∂B3L/2
z ∩ Cv(P) and x2 ∈ ∂B2L

z ∩ Cv(P) (by
convexity of Voronoi tilings). Since every box B

L/2
z′ with |z−z′|∞ = 2 is a full box, there exist

v1,v2 ∈ P so that
|v1 − x1| ≤

√
2L/6 and |v2 − x2| ≤

√
2L/6 .

Although, x1 and x2 belong to Cv(P) and so

|v − x1| ≤ |v1 − x1| and |v − x2| ≤ |v2 − x2| .

Thus,
L/2 ≤ |x1 − x2| ≤ |x1 − v|+ |x2 − v| ≤

√
2L/3 ,

which leads to a contradiction since
√

2/3 < 1/2. By an analogous argument, one can prove
that

Cv′(P ′) ∩ (B5L/2
z )c 6= ∅ ⇒ Cv′(P ′) ⊆ (B2L

z )c . (13)

Now suppose (11) does not hold. Without lost of generality, we may assume that there exists
v ∈ P with Cv(P) ∩B3L/2

z 6= ∅ and x ∈ Cv(P) with x 6∈ Cv(P ′). So x ∈ Cv′(P ′) for some
v′ ∈ P ′. Although, P ∩B5L/2

z = P ′ ∩B5L/2
z and then v′ ∈ (B5L/2

z )c, which is a contradiction
with (12) and (13). �

For each l ≥ 1, we say that the collection of random variables {Yz : z ∈ Z2} is l-dependent if
{Yz : z ∈ A} and {Yz : z ∈ B} are independent whenever

l < d∞(A,B) := min{|z− z′|∞ : z ∈ A and z′ ∈ B} .

Combining Lemma 2 with the translation invariance and the independence property of the
Poisson point process we obtain:

Lemma 3 For all L > 0, {Y L
z : z ∈ Z2} is a 5-dependent collection of identically distributed

Bernoulli random variables.

Denote Y L := {Y L
z ; z ∈ Z2} and let Mm(Y L) be the maximum number of pairwise disjoint

good circuits in Z2, surrounding the origin and lying inside the box [−m,m]2.

Lemma 4 If F(0) < 1− p∗c then there exists L0 > 0 and cj = cj(L0) > 0 such that

P
(
Mm(Y L0) ≤ c1m

)
≤ exp(−c2m) .
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Proof. Combining Lemmas 1 and 3 with and Theorem 0.0 of Ligget, Schonman and Stacey
[6], one gets that Y L is dominated from below by a collection XL := {XL

z ; z ∈ Z2} of i.i.d.
Bernoulli random variables with parameter ρ(L) → 1 when L → ∞. But for ρL sufficiently
close to 1, we can chose c > 0 sufficiently small, so that the probability of the event that
Mm(XL) < cm decays exponentially fast with m (see Chapter 3 of Grimmett [3]). Together
with domination, this proves Lemma 4. �

The connection between the variable Mm(Y L) and the first-passage time T (0,n) is summarize
by the following:

Lemma 5
ML

nL−1

6
≤ T (0,n) .

Proof. We say that (BL/2
zj )1≤j≤h is a circuit of good boxes if (zj)1≤j≤h is a good circuit in

Z2, and that (BL/2
zj )1≤j≤h and (BL/2

z′j
)1≤j≤h′ are l-distant if

d∞
(
(zj)1≤j≤k, (z′j)1≤j≤h′

)
> l .

Denote ML
m := Mm(Y L). Notice that there exist at least (ML

nL−1/6) pairwise 5-distant circuits
of good boxes surrounding the origin and lying inside [−n, n]2 ⊆ R2. Therefore, every path
γ between the origin and any point outside [−n, n]2 must cross at least (ML

nL−1/6) 5-distant
circuits of good boxes. We claim this yields

ML
nL−1

6
≤ t(γ) . (14)

Indeed, assume we take two 5-distant good boxes, say BL/2
z1 and BL/2

z2 , connected by a path γ
in D. Then γ must contain two sub-paths in D, say γ̄i = (vi

j)1≤j≤hi for i = 1, 2, connecting

∂B3L/2
zi to ∂B5L/2

zi and with Cvi
j
∩ B3L/2

zi for all j = 2, ..., hi − 1. Since B
L/2
z1 and B

L/2
z2 are

5-distant good boxes, by Lemma 2, these sub-paths must be edge disjoint. By the definition
of a good box, t(γ̄1) ≥ 1 and t(γ̄2) ≥ 1, which yields

2 ≤ t(γ̄1) + t(γ̄2) ≤ t(γ) .

By repeating this argument inductively (on the number of good boxes which are crossed by γ)
one can get (14). Lemma 5 follows directly from (14). �

Now we are ready to prove Theorem 1.
Proof. Together with Lemma 5, Lemma 4 implies Theorem 1 under (7). For the general
case, assume F(0) = P(τe = 0) < 1 − p1. Fix ε > 0 so that F(ε) < 1 − p∗c (we can do so
since F is right-continuous). Define the auxiliary process τ ε

e := I(τe > ε) and denote by T ε

the first-passage time associated to the collection {τ ε
e : e ∈ De}. Thus T ε(0,n) ≤ ε−1T (0,n).

Since τ ε
e has a Bernoulli distribution with parameter P

(
τ ε
e = 0

)
= F(ε) < 1− p∗c , together with

the previous case this yields Theorem 1. �
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