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Abstract

We present an alternative particle picture for super-stable motion. It is based on a non-local
branching mechanism in discrete time and only trivial space motion.

1 Introduction

This note is an observation of the limit behavior of a basic branching walk model. We consider
systems of particles on the real line which at each discrete time point change state according
to the following branching mechanism: Each particle, independently of other, is removed and
replaced by a random number of new offspring particles which are spread out at random
positions such that, losely speaking, they are centered around their parent. Within the cluster
of offspring particles the tail behaviour in the distributions of the number of particles and
their positions is parametrized, whereas the dependence structure between these quantities is
general. We restrict however to the critical case of unit mean number of offspring.

Our result is that under appropriate scaling of time, space and mass such particle systems
converge weakly to the measure-valued branching process known as the super-stable motion.
On the particle level we may take the view of having a trivial spatial motion (particles are
fixed inbetween the discrete branching points) and non-local branching, whereas after rescaling
and letting the mass of a single particle go to zero we obtain a superprocess corresponding
to a stable space motion and local branching. Therefore the superprocess particle picture we
present here is qualitatively different from the approximations usually applied.

1We acknowledge a travelling grant from the Royal Swedish Academy of Sciences for the support of joint
reserch projects between Sweden and the former Soviet Union.
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The higher-dimensional cases of discrete time branching and offspring particles spread around
in Rd, d ≥ 2, can be treated in exactly the same way using obvious modifications. Hence
we restrict throughout to the one-dimensional case d = 1. The result is realized along a
standard log-Laplace functional iteration technique to yield convergence of finite-dimensional
distributions, and by applying Aldous’ criterion to obtain tightness.

2 Model

The dynamics of the system is determined by only the quantities we denote by

N ; τ1, . . . , τN .

Here N ≥ 0 is an integer-valued random variable which gives the number of offspring at each
branching event and (τ j)j≥1 is a sequence of real random variables, such that if N ≥ 1 then
τ1, . . . , τN are the shifts in position of the offspring particles relative to the parent particle
(in some arbitrary ordering). We may suppose that N and (τ j)j≥1 are defined on a common
probability space equipped with a probability measure P . Introduce the notations

N(u) =
N∑
j=1

1{τj≤u} ; A(u) = EN(u)

and
N̄(u) = N −N(u) +N(−u) , Φ(z) = E

{
(1− z)N − 1 +Nz

}
,

where E refers to expectation with respect to P .
To justify the interpretations we have given to N and (τ j)j≥1 we may construct the particle
system as follows. We let

Zn =
∑
j

δzj

denote the configuration of particles present at time n. The summation is either void or runs
over particles at positions z1, z2, . . .. We write Zn(dx) for the corresponding measure and in
the particular case when Z0 = δx we write Zxn(du). By the Ionescu-Tulcea Theorem there
exists a probability space on which is defined a probability measure P such that the sequence
Zn is measurable and satisfies under P, for each n ≥ 0, the branching property

Zxn+1(du) =
N∑
j=1

Zx+τj

n (du) , Zx0 = δx , (2.1)

where the summands are independent given their initial positions. The state space of Zn may
be taken as the set M of finite measures on R. By the extension Zt := Z[t] for t ≥ 0, we obtain
a continuous time process which for practical purposes is Markov in the sense that we may
identify Zt with the Markov process (Zt, t). We consider the paths of Zt as elements in the
space D(I,M) of cadlag paths from I = [0,∞) or I = [0, T ] to M . With the Prohorov metric
on M we obtain a complete metric space and may furnish D(I,M) with the corresponding
Skorokhod topology.
See e.g. Matthes, Kerstan and Mecke (1978), Chapter 12, for generalities on one-dimensional
spatially homogeneous branching processes in discrete time with a critical cluster. We are not
aware of any limit theorems, however, which are similar to the result presented below.
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3 Assumptions and Result

We will state five assumptions A1 to A5. First of all we impose the criticality condition

EN = 1. (A1)

Fix two parameters α and β such that 0 < α ≤ 2 and 0 < β ≤ 1. We assume next that there
exist functions L1 and L2, slowly varying at infinity, such that

Φ(z) = z1+βL1(1/z) (A2)

and ∫ x

−x
y2 dA(y) = x2−αL2(x) . (A3)

Moreover, when α < 2 we assume

(1−A(x))/A(−x)→ d , x→∞ , (A4)

where 0 ≤ d ≤ ∞.
We write xn ∼ yn if xn/yn → 1 as n→∞. Let an denote a sequence which satisfies

aαn/L2(an) ∼ n , (3.1)

and define also the sequence
T = Tn = nβ/L1(n) . (3.2)

This sequence plays a crucial role in our limit result as the time scaling sequence. There-
fore it appears in the sequel mostly as subindex. To simplify notations we use T and Tn
interchangeably.
Our final assumption is that for each δ > 0,

P (N̄(δaT ) > n) = o(1/nT ) , n→∞ . (A5)

(Writing 1/nT = (nT )−1) We turn to some consequences of and remarks regarding these
assumtions. First of all, assumption A1 implies that A(·) is a distribution function on R. This
allows us to introduce on the probability space where P is defined an auxiliary sequence of
i.i.d. random variables (`j)j≥1 such that

P (`1 ≤ u) = A(u) ,

and define their partial sums

Sn = S0 + `1 + . . .+ `n , S0 = x . (3.3)

Now by A3 and A4, the weak convergence of processes in D(I, R),

1

an
S[nt]

w−→ α-stable limit ξt , (3.4)

holds as n→∞, see e.g. Gikhman and Skorokhod (1969), Section 9.6.
Regarding the sequence T we see that

Φ(1/n) = 1/nT ,
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and we note the tail estimate
P (N > n) = O(1/nT ) , (3.5)

which follows from A2. We remark furthermore that when α < 2 then assumption A3 is
equivalent to

EN̄(x) = 1− A(x) + A(−x) ∼ 2− α
α

x−αL2(x) ,

thus

EN̄(δaT ) ∼ 2− α
α

δ−αT−1 , (3.6)

and similarly, in the case α = 2,

EN̄(δaT ) ≤ const δ−2T−1 , (3.7)

which may give some comprehension for assumption A5.
We are now ready to state our result. To obtain the limit theorem for Zt we scale time
by T and space by aT . Disregarding for the moment slowly varying functions, the order of
magnitude of the scaling factors are nβ for T and nβ/α for aT . The limiting process will be
an (α, β)-superprocess realized in D(I,M), which is based on the α-stable process ξt in (3.4).
It is defined by the log-Laplace functions

Vtf(x) := logExe
−〈f,Xt〉

being for each bounded continuous function f the unique solution of the nonlinear integral
equation

Vtf(x) = Ex

[
f(ξt) −

∫ t

0

Vt−uf(ξu)1+β du
]
, (3.8)

where Ex denotes expectation with respect to ξt given ξ0 = x.

Theorem 1 Suppose the assumptions A1−A5 hold. Let X0 belong to M and assume that as
n, and hence T , tends to infinity, then

Z0(aT dx)→ X0(dx)

in the sense of weak convergence in M . Then the weak convergence of processes in D(I,M),

ZTt(aT dx)
w−→ Xt(dx) ,

holds as n→∞, where the limit Xt is the (α, β)-superprocess defined by (3.8).

4 Integral equation

Our analysis of the behaviour of Zn under the scaling in the theorem will be based on an
integral equation for the function defined as

Qnf(x) = 1−Ee−〈f,Z
x
n〉 , n ≥ 0 ,

where f is a nonnegative test function. For functions g on R with 0 ≤ g(x) ≤ 1, define

Ψ[g](x) = E
{ N∏
j=1

(1 − g(x + τ j)) − 1 +
N∑
j=1

g(x+ τ j)
}
, (4.1)
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interpreting the expression inside brackets as zero if N = 0. The quantity Ψ[g](x) is a func-
tional of the collection (τ j)j≥1 conditional upon them being centered around x.
By (2.1),

1−Qn+1f(x) = E

N∏
j=1

(
1−Qnf(x + τ j)

)
.

Hence

Qn+1f(x) = E

N∑
j=1

Qnf(x + τ j) −Ψ
[
Qnf

]
(x) .

However,

E

N∑
j=1

Qnf(x + τ j) = E

∫
R

Qnf(x + u) dN(u)

=

∫
R

Qnf(x + u) dA(u) = EQnf(x+ `1)

so we have
Qn+1f(x) = EQnf(x + `1) −Ψ

[
Qnf

]
(x) .

An iteration of the preceeding relation yields

Qn+1f(x) = EQn−1f(x + `1 + `2)− EΨ
[
Qn−1f

]
(x+ `1)−Ψ

[
Qnf

]
(x)

and after n such steps

Qn+1f(x) = Ex

{
Q0f(Sn+1) −

n+1∑
k=1

Ψ
[
Qn+1−kf

]
(Sk−1)

}
,

where the sequence Sn is defined in (3.3) and Ex denotes the conditional expectation given
that S0 = x. Of course, Q0f(x) = 1− e−f(x).
In order to write this relation in integral form introduce

H(t) =
∞∑
j=1

1{j≤t} , t ≥ 0 ,

and make the extensions to continuous time: St = S[t] and Qtf(x) = Q[t]f(x). Then we have

Qtf(x) = Ex

{
1− e−f(St) −

∫ t

0

Ψ
[
Qt−uf

]
(Su−) dH(u)

}
. (4.2)

5 Three Technical Lemmas

We introduce a cut-off version of the functional Ψ[g](x) defined in (4.1) as follows,

g 7→ Ψu[g](x) := E
{ ∏
|τj |≤u

(1− g(x+ τ j)) − 1 +
∑
|τj|≤u

g(x+ τ j)
}
. (5.1)
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Lemma 1 If the function f satisfies 0 ≤ f ≤ f0 ≤ 1 for some constant f0, then for all real x
and all nonnegative u, c1, c2 with c1 ≥ c2,

0 ≤ Ψ[f ](x)−Ψu[f ](x) ≤ ∆(u, f0, c1, c2)

with
∆(u, f0, c1, c2) = 2c1f

2
0EN̄(u) + 2P (N̄(u) > c2) + c2f0P (N > c1) .

Proof:
The first inequality follows from the more general monotonicity property

0 ≤ f ≤ g ≤ 1 =⇒ 0 ≤ Ψ[f ](x) ≤ Ψ[g](x) ≤ 1 . (5.2)

To see this, observe that for constants 0 ≤ fj ≤ 1,

n∑
j=1

fj − 1 +
n∏
j=1

(1− fj) =
n−1∑
j=1

fj
{

1− (1− fj+1) . . . (1− fn)
}
, n ≥ 2 , (5.3)

which is monotone in each fj . By A1, Ψ[1](x) = E[N − 1;N > 0] = P (N = 0) ≤ 1.
Next,

0 ≤ Ψ[f ](x) −Ψu[f ](x) = Ψu
1 [f ](x) + Ψu

2 [f ](x) ,

where

Ψu
1 [f ](x) = E

{
1−

∏
|τj |>u

(1− f(x + τ j))
}{

1−
∏
|τj |≤u

(1− f(x + τ j))
}
,

Ψu
2 [f ](x) = E

{ ∏
|τj |>u

(1− f(x + τ j)) − 1 +
∑
|τj |>u

f(x + τ j)
}
.

By straightforward estimates,

Ψu
1 [f ](x) ≤ E

{
1− (1− f0)N̄(u)

}{
1− (1− f0)N−N̄(u)

}
≤ f2

0EN̄(u)(N − N̄(u))1{N≤c1} + f0EN̄(u)1{N>c1, N̄(u)≤c2}

+P (N > c1, N̄(u) > c2)

≤ c1f
2
0EN̄(u) + c2f0P (N > c1) + P (N̄(u) > c2) . (5.4)

It is not difficult to prove by induction from (5.3)

n∏
j=1

(1− fj) − 1 +
n∑
j=1

fj ≤
[ n∑
j=1

fj

]2
≤ f2

0n
2

(the simpler bound ≤ f0n is not appropriate for our purpose). Hence

Ψu
2 [f ](x) ≤ max

{
1, f2

0EN̄(u)2
}
,

and so

Ψu
2 [f ](x) ≤ P (N̄(u) > c1) + f2

0E
[
N̄(u)2, N̄(u) ≤ c1

]
≤ P (N̄(u) > c2) + c1f

2
0EN̄(u) . (5.5)
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The estimates in (5.4) and (5.5) are both independent of x and add up to ∆(u, f0, c1, c2).

Recall the sequences an and T = Tn defined in (3.1) and (3.2). Along with the previously
introduced functionals Ψ[g] in (4.1) and Ψu[g] in (5.1) we consider the following scaled version,

ΨT [g](x) = E
{ N∏
j=1

(1− g(x+
τ j

aT
)− 1 +

N∑
j=1

g(x+
τ j

aT
)
}
. (5.6)

Lemma 2 For any bounded function f such that

h(δ) := sup
x

sup
|y|≤δ

∣∣f(x + y) − f(x)
∣∣→ 0 , as δ → 0+, (5.7)

we have
lim
n→∞

nT ΨT [f/n](x) = f(x)1+β uniformly in x .

Proof:
We apply the monotonicity relation (5.2) and Lemma 1 to ΨT [f ], assuming n is large enough
that we can take f0 = ‖f‖/n < 1. Then for any u > 0 and c1 ≥ c2 > 0,

ΨT [f/n](x) ≤ Ψu
T [f/n](x) + ∆(u, ‖f‖n−1, c1, c2)

≤ Φ[(f(x) + h(u/aT ))/n] + ∆(u, ‖f‖n−1, c1, c2) .

Choose, for δ > 0 and 0 < ε ≤ 1, u = δaT , c1 = εn and c2 = ε2+βn. Then

ΨT [f/n](x) ≤ Φ[(f(x) + hx(δ))/n] + ∆(δaT , ‖f‖n−1, εn, ε2+βn) .

Similarly, again working with u = δaT ,

ΨT [f/n](x) ≥ Ψu
T [f/n](x) ≥ Φ[(f(x)− h(δ))+/n] .

Hence,

Φ[(f(x)− h(δ))+/n] ≤ ΨT [f/n](x)

≤ Φ[(f(x) + h(δ))/n] + ∆(δaT , ‖f‖n−1, εn, ε2+βn) .

By (3.6–7), assumption A5 and (3.5), the error term ∆ is uniform in x and satisfies

∆(δaT , ‖f‖n−1, εn, ε2+βn) = 2ε‖f‖2n−2EN̄(δaT ) + 2P (N̄(δaT ) > ε2+βn)

+ε2+β‖f‖P (N > εn)

= εO(1/nT ) + o(1/nT ) ,

so
nT∆(δaT , ‖f‖n−1, ε, ε2+βn) = o(1) + εO(1) .

Therefore

0 ∨ (f(x) − h(δ))1+βL
(n)
− ≤ nTΦT [f/n](x)

≤ (f(x) + h(δ))1+βL
(n)
+ + o(1) + εO(1) ,

where L
(n)
± ∼ 1. Take n→∞, δ→ 0 and ε→ 0 to finish the proof of the lemma.
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Lemma 3 For each pair of bounded functions f, g, there is n0 and a constant C such that

nT
∥∥ΨT [f/n]−ΨT [g/n]

∥∥ ≤ C‖f − g‖, n ≥ n0.

Proof:
Note first that the expression on the left side of the inequality is bounded by ‖f‖1+β +‖g‖1+β

times some constant related to L1. We prove the lemma for β < 1. The case β = 1 is
simpler. The lemma holds with identical proof also for Ψ[f ]. In what follows we hence drop
the subscript T .
We may represent Ψ[f ] in terms of stochastic integrals with respect to the point process N(u)
as

Ψ[f ](x) = E
{
e
∫

log(1−f(x+s))N(ds) − 1 +

∫
f(x + s)N(ds)

}
.

Hence ∣∣∣Ψ[f/n](x)−Ψ[g/n](x)
∣∣∣ ≤ E∣∣∣ ∫

∫
− log(1−f(x+s)/n)N(ds)∫
− log(1−g(x+s)/n)N(ds)

(1 − e−λ) dλ
∣∣∣

+E

∫ ∣∣∣H[f/n](x+ s) −H[g/n](x+ s)
∣∣∣N(ds), (5.8)

where
H[f ](x) = − log(1− f(x)) − f(x).

For n ≥ 2(‖f‖+ ‖g‖) we have

‖ log(1− f/n) − log(1− g/n)‖ ≤ 2‖f − g‖/n
and therefore the width of the λ-interval of integration in the first term on the right side of
(5.8) is bounded by 2‖f − g‖N/n. It is then easy to see, also using the monotonicity of the
integrand 1− e−λ, that

E
∣∣∣ ∫ −

∫
log(1−f(x+s)/n)N(ds)

−
∫

log(1−g(x+s)/n)N(ds)

(1− e−λ) dλ
∣∣∣

≤ E
∫ 2(‖f‖+‖g‖+‖f−g‖)N/n

2(‖f‖+‖g‖)N/n
(1− e−λ) dλ

=

∫ ∞
0

(1− e−λ)P (d1N < λn ≤ d2N) dλ,

where
d1 = 2(‖f‖+ ‖g‖), d2 = 2(‖f‖ + ‖g‖+ ‖f − g‖).

By (3.5) and the property of the slowly varying function L1,

nT (λn/di)
1+βP (N > λn/di) = O(1), n→∞.

Hence

nT

∫ ∞
0

(1 − e−λ)P (d1N < λn ≤ d2N) dλ

≤ const

∫ ∞
0

λ−(1+β)(1− e−λ) dλ (d1+β
2 − d1+β

1 )

≤ const ‖f − g‖.



Superprocess Approximation 67

This together with the estimate

nT‖H[f/n]−H[g/n]‖ ≤ 2T

n
(‖f‖+ ‖g‖) ‖f − g‖,

which again holds for n ≥ 2(‖f‖+ ‖g‖), and (5.8) shows that

nT‖Ψ[f/n]−Ψ[g/n]‖ ≤ const ‖f − g‖

for n sufficiently large, which is the statement of the lemma.

6 Integral Equation for the Scaled Process

We investigate the limit behaviour in a system of particles where individual particle mass is
scaled by 1/n, the overall density is preserved and the space-time scaling (aT , T ) is applied.
Put

f(n)(x) = f(x/aT ).

We are led to study the function

V
(n)
t f(x) := nQTt(f

(n)/n)(aTx) .

By (4.2),

nQTt(f
(n)/n)(aTx) = EaTx

{
n(1− e−f(ST t/aT )/n)

−
∫ Tt

0

nΨ
[
QtT−u(f(n)/n)

]
(Su−) dH(u)

}
.

Put
ξ

(n)
t = a−1

T STt ,

and write now, with slight abuse of notation, Ex for conditional expectation given ξ
(n)
0 = x.

Then

nQTt(f
(n)/n)(aTx) = Ex

{
n(1− e−f(ξ

(n)
t )/n)

−
∫ t

0

nΨ
[
QT (t−u)(f

(n)/n)
]
(aT ξ

(n)
u−) dH(uT )

}
.

However,

Ψ
[
QT (t−u)(f

(n)/n)
]
(aTx) = ΨT

[
n−1V

(n)
t−uf

]
(x).

Thus

V
(n)
t f(x) = Ex

{
n(1− e−f(ξ

(n)
t )/n)

−
∫ t

0

nT ΨT

[
n−1V

(n)
t−uf

]
(ξ

(n)
u− )T−1dH(uT )

}
. (6.1)

Proof of the Theorem
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The main point in the proof is to show that V
(n)
t f converges uniformly to Vtf in the sense

sup
t≤t0

∥∥V (n)
t f − Vtf

∥∥ → 0, n→∞. (6.2)

This proves the convergence of one-dimensional distributions. The uniformity in x accomodates
for a general initial measure X0, see e.g. Kaj and Sagitov (1998) for details in a similar case.
The extension to finite-dimensional distributions is straightforward using recursion relations
in the familiar manner for Markov branching processes. We omit this part of the proof.
The reason for requiring that the limit (6.2) holds uniformly in t is that it enables us to prove
tightness by means of Aldous criterion, e.g. along the lines of Dawson (1993), Section 4.6,
Sagitov (1994) or Kaj and Sagitov (1998), Section 4.4. We do not repeat in this proof the
very similar arguments needed for the present case. We do point out, however, that it suffices
to prove (6.2) for some t0 > 0. This follows easily from the semigroup properties of Vtf and

−n log(1− n−1V
(n)
t f) together with

‖ − n log(1− n−1V
(n)
t f) − V (n)

t f‖ ≤ ‖f‖2/n

for large n.
Consider t0 > 0, let t ∈ [0, t0] and let f denote a uniformly continuous function on R. By (3.8)
and (6.1), ∣∣V (n)

t f(x) − Vtf(x)
∣∣ ≤ I1 + I2 + I3 + I4 ,

where

I1 =
∣∣∣Ex{n(1− e−f(ξ

(n)
t )/n

)
− f(ξt)

}∣∣∣ ,
I2 = Ex

∫ t

0

∣∣∣nTΨT

[
n−1V

(n)
t−sf

]
(ξ

(n)
s− )− nTΨT

[
n−1Vt−sf

]
(ξ

(n)
s− )

∣∣∣T−1 dH(sT ),

I3 = Ex

∫ t

0

∣∣∣nTΨ
[
n−1Vt−sf

]
(ξ

(n)
s− ) − Vt−sf(ξ

(n)
s− )1+β

∣∣∣T−1 dH(sT ),

I4 =
∣∣∣Ex ∫ t

0

Vt−sf(ξ
(n)
s− )1+β T−1 dH(sT )−

∫ t

0

Vt−sf(ξs)
1+β ds

∣∣∣ .
For convenience we use at some occasions below the alternate semigroup notation Stf(x) =
Exf(ξt), and note the strong continuity

lim
t→0

∥∥Stf − f∥∥ = 0, (6.3)

valid since all stable processes have the Feller property.
For n ≥ 2‖f‖,

I1 ≤
1

n
‖f‖2 +

∣∣Ex[f(ξ
(n)
t )− f(ξt)]

∣∣.
Let ∆c(x) denote the standard modulus of continuity in the trajectory space D(I, R) for ξ

(n)
t

and ξt, see e.g. Gikhman and Skorokhod (1969), Section 9.5. Then∣∣Ex[f(ξ
(n)
t ) − f(ξt)]

∣∣ ≤ ∣∣Ex[f(ξ
(n)
t ) − f(x)]

∣∣+
∣∣Stf(x) − f(x)

∣∣
≤ sup

t≤t0
sup
x

∣∣Ex[f(ξ
(n)
t )− f(x) ; ∆t0(ξ(n)) ≤ ε]

∣∣
+2‖f‖ lim sup

n→∞
P
(
∆t0(ξ(n)) > ε

)
+ sup
t≤t0

∥∥Stf − f∥∥.
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We now conclude from the tightness property in (3.4), the uniform continuity of f and (6.3)
that we can find n0 so large and t0 so small that the right side in the above inequality, and
hence I1, is bounded uniformly in x and t as n→∞.
By Lemma 3,

I2 ≤ C
∫ t

0

∥∥V (n)
t−sf − Vt−sf

∥∥ T−1dH(sT ) ≤ C

2T
+C

∫ t

0

∥∥V (n)
s f − Vsf

∥∥ ds.
In order to apply Lemma 2 for the purpose of estimating I3, we must verify that Vtf(x) is
uniformly continuous, i.e. satisfies (5.4). However, it follows from (3.8) that

|Vtf(x + y) − Vtf(x)| ≤ |Stf(x + y) − Stf(x)|

+

∫ t

0

|Vt−uf(x+ y + ξu − ξ0)1+β − Vt−uf(x + ξu − ξ0)1+β | du,

and hence that the function

Ht(δ) := sup
x

sup
|y|≤δ

|Vtf(x+ y) − Vtf(x)|

satisfies

Ht(δ) ≤ sup
x

sup
|y|≤δ

|Stf(x + y) − Stf(x)|

+

∫ t

0

sup
x

sup
|y|≤δ

|Vtf(x + y)1+β − Vtf(x)1+β | du

≤ sup
x

sup
|y|≤δ

|Stf(x + y) − Stf(x)| + (2‖f‖)β
∫ t

0

Ht−s(δ) du.

Since ξ has independent increments and f is uniformly continuous the property (5.4) holds for
Stf . But it is then immediate from the previous inequality and Gronwall’s Lemma that (5.4)
also holds for Vtf .
Inspecting the proof of Lemma 2 we see moreover that the error terms only depend on g via
its norm ‖g‖. Since Vtf ≤ ‖f‖ for all t we obtain

I3 ≤
∫ t

0

∥∥nTΨ
[
n−1Vt−sf

]
− Vt−sf1+β

∥∥T−1 dH(sT )

≤ t0 sup
s≤t0
‖nTΨ

[
n−1Vsf

]
− Vsf1+β‖ → 0, n→∞.

Finally, for the term I4 we use

I4 ≤ ‖f‖1+β 1

2T
+
∣∣∣Ex ∫ t

0

Vt−sf(ξ(n)
s )1+β − Vt−sf(ξs)

1+β ds
∣∣∣.

¿From the just proven uniform continuity of Vtf and the fact that

ξ 7→
∫ t

0

Vt−sf(ξs)
1+β ds

is a continuous map we conclude that I4 can be made uniformly small.
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Summing up, given ε > 0, we have found a function δ
(n)
t0 → 0, n → ∞ uniformly in x, such

that for all t ≤ t0 ∣∣V (n)
t f(x) − Vtf(x)

∣∣ ≤ δ(n)
t0 +C

∫ t

0

‖V (n)
s f − Vsf‖ ds,

and therefore
sup
t≤t0
‖V (n)

t f − Vtf‖ ≤ δ(n)
t0 /(1− Ct0) < ε

for appropriately small t0 and sufficiently large n, which finishes the proof of (6.2) and hence
of the theorem.
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