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Abstract

Let µ be a compactly supported probability measure on R
+ with expectation 1 and variance

V. Let µn denote the n-time free multiplicative convolution of measure µ with itself. Then,
for large n the length of the support of µn is asymptotically equivalent to eV n, where e is the
base of natural logarithms, e = 2.71 . . .

1 Preliminaries and the main result

First, let us recall the definition of the free multiplicative convolution. Let ak denote the mo-
ments of a compactly-supported probability measure µ, ak =

∫
tkdµ, and let the ψ-transform

of µ be ψµ (z) =
∑

∞

k=1 akzk. The inverse ψ-transform is defined as the functional inverse of

ψµ (z) and denoted as ψ
(−1)
µ (z) . It is a well-defined analytic function in a neighborhood of

z = 0, provided that a1 6= 0.

Suppose that µ and ν are two probability measures supported on R
+ = {x|x ≥ 0} and let

ψ
(−1)
µ (z) and ψ

(−1)
ν (z) be their inverse ψ-transforms. Then, as it was first shown by Voiculescu

in [5], the function

f (z) :=
(
1 + z−1

)
ψ(−1)

µ (z) ψ(−1)
ν (z)

is the inverse ψ-transform of a probability measure supported on R
+. (Voiculescu used a

variant of the inverse ψ-transform, the S-transform.) This new probability measure is called
the free multiplicative convolution of measures µ and ν, and denoted as µ ⊠ ν.

The significance of this convolution operation can be seen from the fact that if µ and ν are the
distributions of singular values of two free operators X and Y, then µ ⊠ ν is the distribution
of singular values of the product operator XY (assuming that the algebra containing X and
Y is tracial). For more details about free convolutions and free probability theory, the reader
can consult [2], [4], or [6].

We are interested in the support of the n-time free multiplicative convolution of the measure
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µ with itself, which we denote as µn:

µn = µ ⊠ . . . ⊠ µ
︸ ︷︷ ︸

n-times

.

Let Ln denote the upper boundary of the support of µn.

Theorem 1. Suppose that µ is a compactly-supported probability measure on R
+, with the

expectation 1 and variance V. Then

lim
n→∞

Ln

n
= eV,

where e denotes the base of natural logarithms, e = 2.71 . . .

Remarks: 1) Let Xi be operators in a von Neumann algebra A with trace E. Assume that
Xi are free in the sense of Voiculescu and identically distributed, and let Πn = X1 . . . Xn. It is
known that if µ is the spectral probability measure of X∗

i Xi, then µn is the spectral probability

measure of Π∗

nΠn. Assume further that E (X∗

i Xi) = 1 and E
(

(X∗

i Xi)
2
)

= 1 + V, and define

‖Πn‖2 =: [E (Π∗

nΠn)]
1/2

. Then our theorem implies that

lim
n→∞

‖Πn‖
‖Πn‖2

=
√

eV n

for all sufficiently large n. This result also holds if we relax the assumption E (X∗

i Xi) = 1 and
define

V =
E

(

(X∗

i Xi)
2
)

[E (X∗

i Xi)]
2 − 1.

2) Theorem 1 improves the author’s result in [3], where it was shown that Ln/n ≤ cL where c
is a certain absolute constant and L is the upper bound of the support of µ. Theorem 1 shows
that the asymptotic growth in the support of free multiplicative convolutions µn is controlled
by the variance of µ and not by the length of its support.
The idea of proof of Theorem 1 is based on the fact that the radius of convergence of Taylor
series for ψn (z) is 1/Ln. Therefore the function ψn (z) must have a singularity at the boundary
of the disc |z| = 1/Ln. Since all the coefficients in this Taylor series are real and positive, the
singularity is zn = 1/Ln. Therefore, the study of Ln is equivalent to the study of the singularity
of ψn (z) which is located on R

+ and which is closest to 0.
By Proposition 5.2 in [1], we know that for all sufficiently large n, the measure µn is absolutely
continuous on R

+\ {0} , and its density is analytic at all points where it is different from zero.
For these n, the singularity of ψn (z) is neither an essential singularity nor a pole. Hence, the
problem is reduced to finding a branching point of ψn (z) which is on R

+ and closest to zero.

The branching point of ψn (z) equals a critical value of ψ
(−1)
n (u). Since by Voiculescu’s theo-

rem,

ψ(−1)
n (u) =

(
1 + u

u

)n−1 [

ψ(−1) (u)
]n

,

therefore we can find critical points of ψ
(−1)
n (u) from the equation

d

du

[

n log ψ(−1) (u) + (n − 1) log

(
1 + u

u

)]

= 0,
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or
d

du
log ψ(−1) (u) =

(

1 − 1

n

)
1

u (1 + u)
. (1)

Thus, our task is to estimate the root un of this equation which is real, positive and closest to

0, and then study the asymptotic behavior of zn = ψ
(−1)
n (un) as n → ∞. This study will be

undertaken in the next section.

2 Proof of Theorem 1

Notation: L and Ln are the least upper bounds of the support of measures µ and µn,
respectively; V and Vn are variances of these measures; ψ (z) and ψn (z) are ψ-transforms for

measures µ and µn, and ψ(−1) (u) and ψ
(−1)
n (u) are functional inverses of these ψ-transforms.

When we work with ψ-transforms, we use letters t, x, y, z to denote variables in the domain of
ψ-transforms, and b, u, v, w to denote the variables in their range.

In our analysis we need some facts about functions ψ (z) and ψ(−1) (u). Let the support of
a measure µ be inside the interval [0, L] , and let µ have expectation 1 and variance V. Note
that for z ∈ (0, 1/L) , the function ψ (z) is positive, increasing, and convex. Correspondingly,
for u ∈ (0, ψ (1/L)) , the function ψ(−1) (u) is positive, increasing and concave.

Lemma 2. For all positive z such that z < 1/ (2L) , it is true that

∣
∣ψ (z) − z − (1 + V ) z2

∣
∣ ≤ c1z

3,

|ψ′ (z) − 1 − 2 (1 + V ) z| ≤ c2z
2,

where c1 and c2 depend only on L.

Proof: Clearly, E
(
Xk

)
≤ Lk. Using the Taylor series for ψ (z) and ψ′ (z), we find that for all

positive z such that z < 1/ (2L) ,

∣
∣ψ (z) − z − (1 + V ) z2

∣
∣ ≤ L3

1 − Lz
z3,

and

|ψ′ (z) − 1 − 2 (1 + V ) z| ≤ L3 3 − 2Lz

(1 − Lz)2
z2,

which implies the statement of this lemma. QED.

Lemma 3. For all positive u such that u < 1/ (12L) , it is true that

∣
∣
∣ψ(−1) (u) − u + (1 + V ) u2

∣
∣
∣ ≤ c3u

3,

where c3 depends only on L.

Proof: Let the Taylor series for ψ(−1) (u) be

ψ(−1) (u) = u − (1 + V )u2 +

∞∑

k=3

dkuk.
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Using the Lagrange inversion formula, it is possible to prove that

|dk| ≤
3

2
(6L)

k−1
,

see, e.g., proof of Lemmas 3 and 4 in [3]. This implies that the Taylor series for ψ(−1) (u) are

convergent in the disc |u| < (6L)
−1

. Hence, in this disc,

∣
∣
∣
∣
∣

∞∑

k=3

dkuk

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣

54L2

1 − 6Lu
u3

∣
∣
∣
∣
,

which implies the statement of this lemma. QED.

The proof of Theorem 1 uses the following proposition. Its purpose is to estimate the critical

point of ψ
(−1)
n (u) from below. Later, we will see that this estimate gives the asymptotically

correct order of magnitude of the critical point.

Proposition 4. Let un be the critical point of ψ
(−1)
n (u) which belongs to R

+ and which is

closest to 0. Then for all ε > 0, there exists such n0 (L, V, ε) , that for all n > n0,

un ≥ 1

n (1 + 2V + ε)
.

Proof of Proposition 4:

Claim: Let ε be an arbitrary positive constant. Let xn = (n (1 + 2V + 2ε))
−1

and bn =
ψ (xn) . Then for all n ≥ n0 (ε, L, V ) and all u ∈ [0, bn], the following inequality is valid:

d

du
log ψ(−1) (u) >

n − 1

n

1

u (1 + u)
. (2)

If this claim is valid, then since un is the smallest positive root of equation (1), therefore we
can conclude that un > bn = ψ (xn). By Lemma 2, it follows that for all sufficiently large n

un > ψ

(
1

n (1 + 2V + 2ε)

)

>
1

n (1 + 2V + ε)
.

(Indeed, note that the last inequality has 2ε and ε on the left-hand and right-hand side,
respectively. Since Lemma 2 implies that ψ (z) ∼ z for small z, therefore this inequality is
valid for all sufficiently large n.)

Hence, Proposition 4 follows from the claim, and it remains to prove the claim.

Proof of Claim: Let us re-write inequality (2) as

1

zψ′ (z)
>

n − 1

n

1

ψ (z) (1 + ψ (z))
, (3)

where z = ψ(−1) (u) .

Using Lemma 2, we infer that inequality (3) is implied by the following inequality:

1

z

1

1 + 2 (1 + V ) z + c2z2
>

n − 1

n

1

ψ (z) (1 + ψ (z))
,
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where c2 depends only on L. Note that ψ (z) ≥ z because the first moment of µ is 1 and all
other moments are positive. Therefore, it is enough to show that

1

1 + 2 (1 + V ) z + c2z2
>

n − 1

n

1

1 + z
.

for z ≤ (n (1 + 2V + 2ε))
−1

and all sufficiently large n. Let us write this inequality as

1

n − 1
+

1

n − 1
z > (1 + 2V ) z + c2z

2.

If we fix an arbitrary ε > 0, then clearly for all z ≤ (n (1 + 2V + 2ε))
−1

this inequality holds
if n is sufficiently large. QED.
This completes the proof of Proposition 4.
Now let us proceed with the proof of Theorem 1.

Let un be the critical point of ψ
(−1)
n (u) , which is positive and closest to zero, and let yn =

ψ(−1) (un) . We know that yn is a root of the equation

1

zψ′ (z)
=

(

1 − 1

n

)
1

ψ (z) (1 + ψ (z))
. (4)

(This is equation (1) in a slightly different form.) After a re-arrangement, we can re-write this
equation as

ψ (z)

z
(1 + ψ (z)) =

(

1 − 1

n

)

ψ′ (z) . (5)

On the other hand, from the proof of Proposition 4 we know that un ≥ bn = ψ (xn) , so that
monotonicity of ψ(−1) implies

yn = ψ(−1) (un) ≥ xn =
1

n (1 + 2V + ε)

Let us look for a root of equation (5) in the range [xn, c/n] where c is a fixed positive number.
Let us make a substitution z = t/n in equation (5) and use Lemma 2. We get:

(

1 + (1 + V )
t

n
+ O

(
n−2

)
) (

1 +
t

n
+ O

(
n−2

)
)

=

(

1 − 1

n

) (

1 + 2 (1 + V )
t

n
+ O

(
n−2

)
)

.

After a simplification, we get

t − 1

V
+ O

(
n−1

)
= 0.

Hence, for a fixed c > 1 and all sufficiently large n, the root is unique in the interval [0, c] and
given by the expression

t =
1

V
+ O

(
n−1

)
.

Therefore,

yn =
1

V n
+ O

(
n−2

)
.

By Lemma 2, this implies that

un = ψ (yn) =
1

V n
+ O

(
n−2

)
.
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This is the critical point of ψ
(−1)
n (u) .

The next step is to estimate the critical value of ψ
(−1)
n (u) , which is zn = ψ

(−1)
n (un) . We write:

zn = un

[
ψ(−1) (un)

un

]n

(1 + un)
n−1

.

Using Lemma 3, we infer that

zn = un

[
1 − (1 + V ) un + O

(
n−2

)]n
(1 + un)

n−1

=

(
1

V n
+ O

(
n−2

)
)

×
[

1 − (1 + V )
1

V n
+ O

(
n−2

)
]n

×
[

1 +
1

V n
+ O

(
n−2

)
]n

∼ 1

eV n
,

as n → ∞. Here e denotes the base of the natural logarithm: e = 2.71 . . . .
Hence,

lim
n→∞

Ln

n
= lim

n→∞

1

nzn
= eV.

QED.

3 Conclusion

Let me conclude with a slightly different formulation of the main result. Suppose that Xi

are free, identically distributed random variables in a tracial non-commutative W ∗-probability
space with a faithful trace E. We proved that if E (X∗

i Xi) = 1, then the asymptotic growth
in the square of the norm of products Πn = Xn . . . X1 is linear in n with the rate equal to
e (E (X∗

i XiX
∗

i Xi) − 1).
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