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Abstract

Let X = (X t)t≥0 be a stable Lévy process of index α ∈ (1,2) with the Lévy measure ν(d x) =

(c/x1+α) I(0,∞)(x) d x for c > 0, let x > 0 be given and fixed, and let τx = inf { t > 0 : X t = x }
denote the first hitting time of X to x . Then the density function fτx

of τx admits the following
series representation:

fτx
(t) =

xα−1

π(cΓ(−α) t)2−1/α

∞
∑

n=1

�

(−1)n−1 sin(π/α)
Γ(n−1/α)

Γ(αn−1)

� xα

cΓ(−α) t
�n−1

− sin
�nπ

α

� Γ(1+n/α)

n!

� xα

cΓ(−α) t
�(n+1)/α−1
�

for t > 0. In particular, this yields fτx
(0+) = 0 and

fτx
(t)∼

xα−1

Γ(α−1)Γ(1/α)
(cΓ(−α) t)−2+1/α

as t →∞. The method of proof exploits a simple identity linking the law of τx to the laws of X t

and sup0≤s≤t Xs that makes a Laplace inversion amenable. A simpler series representation for fτx

is also known to be valid when x < 0.

1 Introduction

If a Lévy process X = (X t)t≥0 jumps upwards, then it is much harder to derive a closed form expres-
sion for the distribution function of its first passage time τ(x ,∞) over a strictly positive level x , and
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in the existing literature such expressions seem to be available only when X has no positive jumps
(unless the Lévy measure is discrete). A notable exception to this rule is the recent paper [1]where
an explicit series representation for the density function of τ(x ,∞) was derived when X is a stable
Lévy process of index α ∈ (1,2) having the Lévy measure given by ν(d x) = (c/x1+α) I(0,∞)(x) d x

with c > 0 given and fixed. This was done by performing a time-space inversion of the Wiener-
Hopf factor corresponding to the Laplace transform of (t, y) 7→ P(St> y) where St = sup0≤s≤t Xs

for t > 0 and y > 0.
Motivated by this development our purpose in this note is to search for a similar series repre-

sentation associated with the first hitting time τx of X to a strictly positive level x itself. Clearly,
since X jumps upwards and creeps downwards, τx will happen strictly after τ(x ,∞), and since
X reaches x by creeping through it independently from the past prior to τ(x ,∞), one can ex-
ploit known expressions for the latter portion of the process and derive the Laplace transform for
(t, y) 7→ P(τy > t). This was done in [6, Theorem 1] and is valid for any Lévy process with no
negative jumps (excluding subordinators). A direct Laplace inversion of the resulting expression
appears to be difficult, however, and we show that a simple (Chapman-Kolmogorov type) identity
which links the law of τx to the laws of X t and St proves helpful in this context (due largely to the
scaling property of X ). It enables us to connect the old result of [13] with the recent result of [1]
through an additive factorisation of the Laplace transform of (t, y) 7→ P(τy > t). This makes the
Laplace inversion possible term by term and yields an explicit series representation for the density
function of τx .

2 Result and proof

1. Let X = (X t)t≥0 be a stable Lévy process of index α ∈ (1,2) whose characteristic function is
given by

EeiλX t = exp

�

t

∫ ∞

0

(eiλx − 1− iλx)
d x

Γ(−α) x1+α

�

= et(−iλ)α (1)

for λ ∈ IR and t ≥ 0. It follows that the Laplace transform of X is given by

Ee−λX t = etλα (2)

for λ ≥ 0 and t ≥ 0 ( the left-hand side being +∞ for λ < 0). From (2) we see that the Laplace
exponent of X equals ψ(λ) = λα for λ≥ 0 and ϕ(p) :=ψ−1(p) = p1/α for p ≥ 0.

2. The following properties of X are readily deduced from (1) and (2) using standard means (see
e.g. [2] and [9]): the law of (X c t)t≥0 is the same as the law of (c1/αX t)t≥0 for each c > 0 given
and fixed (scaling property); X is a martingale with EX t = 0 for all t ≥ 0; X jumps upwards (only)
and creeps downwards ( in the sense that P(Xτ(−∞,x)

= x) = 1 for x < 0 where τ(−∞,x) = inf { t >
0 : X t < x } is the first passage time of X over x); X has sample paths of unbounded variation; X

oscillates from −∞ to +∞ ( in the sense that lim inf t→∞ X t = −∞ and lim sup t→∞ X t = +∞ both
a.s.); the starting point 0 of X is regular ( for both (−∞, 0) and (0,+∞)). Note that the constant
c = 1/Γ(−α) in the Lévy measure ν(d x) = (c/x1+α) d x of X is chosen/fixed for convenience so
that X converges in law to

p
2 B as α ↑ 2 where B is a standard Brownian motion, and all the facts

throughout can be extended to a general constant c > 0 using the scaling property of X .

3. Letting fX1
denote the density function of X1, the following series representation is known to be
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valid (see e.g. (14.30) in [14, p. 88]):

fX1
(x) =

∞
∑

n=1

sin(nπ/α)

π

Γ(1+n/α)

n!
xn−1 (3)

for x ∈ IR. Setting S1 = sup0≤t≤1 X t and letting fS1
denote the density function of S1, the following

series representation was recently derived in [1, Theorem 1]:

fS1
(x) =

∞
∑

n=1

(−1)n−1 sin(π/α)

π

Γ(n−1/α)

Γ(αn−1)
xαn−2 (4)

for x > 0. Clearly, the series representations (3) and (4) extend to t 6= 1 by the scaling property
of X since X t =

law t1/αX1 and St := sup0≤s≤t Xs =
law t1/αS1 for t > 0.

4. Consider the first hitting time of X to x given by

τx = inf { t > 0 : X t = x } (5)

for x > 0. Then it is known (see (2.16) in [6]) that the time-space Laplace transform equals

∫ ∞

0

e−λx
E(e−pτx ) d x =

1

λ−ϕ(p) +
1

ϕ′(p) (p−ψ(λ)) =
1

λ−p1/α
+

α

p−1+1/α(p−λα)
(6)

for λ > 0 and p > 0. Note that this can be rewritten as follows:

∫ ∞

0

e−pt d t

∫ ∞

0

e−λx
P(τx> t) d x =

1

λp
+

1

p(p1/α−λ)
−

α

p1/α(p−λα)
(7)

for λ > 0 and p > 0.
Let IL−1

p
denote the inverse Laplace transform with respect to p. Using that 1/(p(p1/α−λ)) =

∑∞
n=1λ

n−1/p1+n/α and IL−1
p
[1/pa] = ta−1/Γ(a) for a > 0, it is easily verified that

IL−1
p

h 1

p(p1/α−λ)

i

(t) =
1

λ

h

E1/α(λ t1/α)− 1
i

(8)

for t > 0 where Ea(x) =
∑∞

n=0 xn/Γ(an+1) denotes the Mittag-Leffler function. On the other
hand, by (3) in [8, p. 238] we find

IL−1
p

h 1

p1/α(p−λα)

i

(t) =
1

Γ(1/α)

eλ
α t

λ
γ(1/α,λα t) (9)

for t > 0 where γ(a, x) =
∫ x

0
ya−1 e−y d y denotes the incomplete gamma function. Combining (7)

with (8) and (9) we get

∫ ∞

0

e−λx
P(τx> t) d x =

1

λ
E1/α(λ t1/α)−

α

Γ(1/α)

eλ
α t

λ
γ(1/α,λα t) (10)

=
α

λ

�

α

Γ(1/α)
eλ
α t

∫ ∞

λt1/α

e−zαdz− eλ
α t +

1

α
E1/α(λ t1/α)

�



656 Electronic Communications in Probability

for λ > 0 and t > 0.
The first and the third term on the right-hand side of (10) may now be recognised as the Laplace
transforms of particular functions considered in [1] and [13] respectively (recall also (2.2) above).
The proof of the following theorem provides a simple probabilistic argument (of Chapman-Kolmogorov
type) for this additive factorisation (see Remark 1 below).

Theorem 1. Let X = (X t)t≥0 be a stable Lévy process of index α ∈ (1,2) with the Lévy measure

ν(d x) = (c/x1+α) I(0,∞)(x) d x for c > 0, let x > 0 be given and fixed, and let τx denote the first

hitting time of X to x. Then the density function fτx
of τx admits the following series representation:

fτx
(t) =

xα−1

π(cΓ(−α) t)2−1/α

∞
∑

n=1

�

(−1)n−1 sin(π/α)
Γ(n−1/α)

Γ(αn−1)

� xα

cΓ(−α) t
�n−1

(11)

− sin
�nπ

α

� Γ(1+n/α)

n!

� xα

cΓ(−α) t
�(n+1)/α−1
�

for t > 0. In particular, this yields:

fτx
(t) = o(1) as t ↓ 0 ; (12)

fτx
(t)∼

xα−1

Γ(α−1)Γ(1/α)
(cΓ(−α) t)−2+1/α as t ↑ ∞ . (13)

Proof. It is no restriction to assume below that c = 1/Γ(−α) as the general case follows by
replacing t in (11) with c Γ(−α) t for t > 0.

Since X creeps downwards, we can apply the strong Markov property of X at τx , use the
additive character of X , and exploit the scaling property of X to find

P(S1> x) = P(S1> x , X1> x) +P(S1> x , X1≤ x) (14)

= P(X1> x) +

∫ 1

0

P(X1≤ x |τx= t) Fτx
(d t)

= P(X1> x) +

∫ 1

0

P(x+X1−t≤ x) Fτx
(d t)

= P(X1> x) +

∫ 1

0

P((1− t)1/αX1 ≤ 0) Fτx
(d t)

= P(X1> x) + (1/α)P(τx≤1)

where we also use that P(X1 ≤ 0) = 1/α and Fτx
denotes the distribution function of τx . Note

that the second equality in (14) represents a Chapman-Kolmogorov equation of Volterra type (see
[11, Section 2] for a formal justification and a brief historical account of the argument). Since
τx =

law xατ1 by the scaling property of X , we find that (14) reads

P(S1> x) = P(X1> x) + (1/α) Fτ1
(1/xα) (15)

for x > 0. Hence we see that Fτ1
is absolutely continuous (cf. [10] for a general result on the

absolute continuity) and by differentiating in (15) we get

fτ1
(1/xα) = x1+α� fS1

(x)− fX1
(x)
�

(16)
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for x > 0. Letting t = 1/xα we find that

fτ1
(t) = t−1−1/α� fS1

(t−1/α)− fX1
(t−1/α)
�

(17)

for t > 0. Hence (11) with x=1 follows by (3) and (4) above. Moreover, since τx =
law xατ1 we

see that fτx
(t) = x−α fτ1

(t x−α) and this yields (11) with x > 0.
It is known that fX1

(x) ∼ c x−1−α as x → ∞ (see e.g. (14.34) in [14, p. 88]) and likewise
fS1
(x) ∼ c x−1−α as x →∞ (see [1, Corollary 3] and [7] for a proof). From (16) we thus see that

fτ1
(0+) = 0 and hence fτx

(0+) = 0 for all x > 0 as claimed in (12). The asymptotic relation (13)
follows directly from (11) using the reflection formula Γ(1−z)Γ(z) = π/ sinπz for z ∈ C \Z. This
completes the proof. �

Remark 1. Note that (14) can be rewritten as follows:

(1/α)P(τx>1) = 1/α+ FS1
(x)− FX1

(x) = FS1
(x)−
�

FX1
(x)− FX1

(0)
�

(18)

for x > 0, and from (2.30) in [1] we know that
∫ ∞

0

e−λx fS1
(x) d x = eλ

α

∫ ∞

λ

e−zαdz (19)

for λ > 0. In view of (10) this implies that
∫ ∞

0

e−λx fX1
(x) d x = eλ

α−
1

α
E1/α(λ) (20)

for λ > 0. Recalling (2) we see that (20) is equivalent to
∫ 0

−∞
e−λx fX1

(x) d x =
1

α
E1/α(λ) (21)

for λ > 0. An explicit series representation for f in place of fX1
in (21) was found in [13] (see

also [12]) and this expression coincides with (3) above when x < 0. (Note that (21) holds for all
λ ∈ IR and substitute y = −x to connect to [13].) This represents an analytic argument for the
additive factorisation addressed following (10) above.

Remark 2. In contrast to (12) note that

fτ(x ,∞)
(0+) =

c

α xα
(22)

for x > 0. This is readily derived from P(τ(x ,∞) ≤ t) = P(St ≥ x) using St =
law t1/αS1 and

fS1
(x)∼ c x−1−α for x →∞ as recalled in the proof above.

Remark 3. If x < 0 then applying the same arguments as in (14) above with It = inf0≤s≤t Xs we
find that

P(It≤ x) = P(I t≤ x , X t≤ x) +P(I t≤ x , X t> x) (23)

= P(X t≤ x) +

∫ t

0

P(x+X t−s> x) Fτx
(ds)

= P(X t≤ x) + (1−1/α) P(τx≤ t)
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for t > 0. In this case, moreover, we also have P(It≤ x) = P(σx≤ t) since X creeps through x , so
that (23) yields

P(τx≤ t) = αP(X t≤ x) (24)

for x < 0 and t > 0. Since X t =
law t1/αX1 this implies

fτx
(t) = −x t−1−1/αFX1

(x t−1/α) =−
∞
∑

n=1

sin(nπ/α)

π

Γ(1+n/α)

n!

xn

t1+n/α
(25)

for t > 0 upon using (3) above. Replacing t in (25) by cΓ(−α) t we get a series representation
for fτx

in the case when c > 0 is a general constant. The first identity in (25) is known to hold in
greater generality (see [4] and [2, p. 190] for different proofs).

Remark 4. If c = 1/2Γ(−α) and α ↑ 2 then the series representations (11) and (25) with t/2 in
place of t reduce to the known expressions for the density function fτx

of τx = inf { t > 0 : Bt = x }
where B = (Bt)t≥0 is a standard Brownian motion:

fτx
(t) =

|x |
p

2πt3
e−x2/2t =

|x |
p

2πt3

∞
∑

n=0

(−1)n

2nn!

x2n

tn
(26)

for t > 0 and x ∈ IR\{0}.

Remark 5. Duality theory for Markov/Lévy processes (see [3, Chap. VI] and [2, Chap. II and
Corollary 18 on p. 64]) implies that

Ee−pτx =

∫∞
0

e−pt fX t
(x) d t

∫∞
0

e−pt fX t
(0) d t

(27)

from where the following identity can be derived (see [2, Lemma 13, p. 230]):

P(τx≤ t) =
1

Γ(1−1/α)Γ(1/α) fX1
(0)

∫ t

0

fXs
(x)

(t−s)1−1/α
ds (28)

for x ∈ IR and t > 0 (being valid for any stable Lévy process). By the scaling property of X we
have fXs

(x) = s−1/α fX1
(xs−1/α) for s ∈ (0, t) and x ∈ IR. Recalling the particular form of the series

representation for fX1
given in (3), we see that it is not possible to integrate term by term in (28)

in order to obtain an explicit series representation.

Remark 6. The density function fX1
from (3) can be expressed in terms of the Fox functions (see

[15]), and the density function fS1
from (4) can be expressed in terms of the Wright functions

(see [5, Sect. 12] and the references therein). In view of the identity (17) and the fact that
fτx
(t) = x−α fτ1

(t x−α), these facts can be used to provide alternative representations for the
density function fτx

from (11) above. We are grateful to an anonymous referee for bringing these
references to our attention.
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