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Abstract

It is proved that if the multivariate Student t-statistic based on i.i.d. symmetric random vectors
is asymptotically standard normal, then these random vectors are in the generalized domain of
attraction of the normal law. Uniform integrability is also considered, even in the absence of
symmetry.

1. Introduction.

Let X, Xi, i ∈ N, be i.i.d. Rd valued random variables that we assume are full, that is, if
for each u ∈ Sd−1, the random variable uTX is not almost surely constant. X is said to be in
the generalized domain of attraction of the normal law (X ∈ GDOAN for short) if there exist
(nonrandom) matrices An and constant vectors bn such that

An(Sn − bn)→d N(0, I),

where Sn =
∑n

i=1 Xi. See Hahn and Klass (1980), Maller (1993) and Sepanski (1994) for
properties of GDOAN, including analytic characterizations. In particular, if X ∈ GDOAN then
E|X| < ∞ and the coordinates of X all belong to the domain of attraction of the normal law
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in R, actually in a uniform way (however X itself does not necessarily belong to the domain of
attraction of the normal law in Rd). Moreover, the matrices An can be taken to be symmetric
and non-singular, and bn to be nEX.
Let

Cn =
n
∑

i=1

XiX
T
i , Cn =

n
∑

i=1

(Xi −Xn)(Xi −Xn)
T ,

where Cn is the sample covariance matrix of X1, . . . , Xn. If X is full, then (Maller (1993),
Lemma 2.3) Cn and Cn are nonsingular on sets of probability tending to 1. So, for X full, in
statements about convergence in law or in probability, we can assume without loss of generality

that C−1
n and C

−1

n exist, or, alternatively, we can replace C−1
n (ω) and C

−1

n (ω) by the zero matrix
when they are not defined, and this will be our convention. The multidimensional version of the
Student t-statistic for the random vector X −EX is

Tn := C
−1/2

n (Sn − nEX),

and we will also consider
Tn := C−1/2

n Sn,

the multivariate equivalent of selfnormalized sums. Here, C
−1/2
n and C

−1/2

n are respectively the

symmetric square roots of C−1
n and C

−1

n . Both, Sepanski (1996) and Vu, Maller, and Klass
(1996) proved the following:

Theorem 1.1. X ∈ GDOAN =⇒ C
−1/2

n (Sn − nEX)→d N(0, I).

Giné, Götze and Mason (1997) proved the converse to this statement in R. We believe (or at
least we hope) that the converse to Theorem 1.1 is true as well in Rd, and the main object of
this note is to prove that this is indeed the case if the distribution of X is symmetric. This
problem seems to have been first mentioned in Maller (1993), with the comment that it is more
difficult than the direct implication. In fact, Roy Erickson (see Griffin and Mason (1991)) had
a beautiful short proof of the result in R for symmetric variables, and here we will extend his
proof to Rd.
In order to handle the non-symmetric case in R a) we had to prove that stochastic boundedness
of Tn, n ∈ N, implies square exponential uniform integrability, meaning that there is λ > 0 such
that

sup
n

EeλT
2
n <∞,

(although uniform integrability of ‖Tn‖6 was enough for the proof) and b) we had to use the
Mellin transform to break the dependence in Tn in order to get better estimates of certain
moments. We will also show here that, even in the absence of symmetry, in Rd, if the sequence
Tn is stocastically bounded, then

sup
n

E‖Tn‖m <∞

for all m > 0, under the assumption that the law of X assigns mass zero to all hyperplanes
through the origin. On the other hand, we do not know at present how to break the dependence
in Tn for d > 1, and probably this requires some deep matrix analysis, even under this restricted
continuity hypothesis on the law of X.
The following partial summary of results on GDOAN , taken from Maller (1993) will be useful
in what follows:
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Theorem 1.2. For X full, the following conditions are equivalent to X ∈ GDOAN :
i) E‖X‖p < ∞ for all 0 < p < 2 and there exist (nonstochastic) symmetric nonsingular

matrices An such that An(Sn − nEX)→d N(0, I);
ii) there exist matrices An such that AnCnA

T
n →pr I;

iii) there exist An and bn such that

An

n
∑

i=1

(Xi − bn)(Xi − bn)
TAT

n →pr I and n|An(bn −Xn)| →pr 0;

iv) max1≤i≤nXT
i C−1

n Xi →pr 0;

v) max1≤i≤n(Xi −Xn)
TC

−1

n (Xi −Xn)→pr 0.

Moreover, the matrices An can be taken to be the same in i)-iii) and bn can be taken to be EX
in iii).

Vu, Maller and Klass (1980) also proved that if for An nonsingular and nonstochastic, and
for symmetric stochastic Vn and for Rd random vectors Yn, one has AnYn →d N(0, I) and

AnVnA
T
n →pr I then one also has V

−1/2
n Yn →d N(0, I). From this and from Theorem 1.2 ii)

and iii) with bn = EX, it follows that:

Theorem 1.3. If X ∈ GDOAN and EX = 0, then, both

C−1/2
n Sn →d N(0, I) and C

−1/2

n Sn →d N(0, I).

2. Elementary reductions of the problem.

In Statistics there is more interest in C
−1/2

n Sn, whereas C
−1/2
n Sn may be easier to handle. The

following remark shows that it does not mater whether one considers Cn or Cn in the problem
we will treat here.

Lemma 2.1. If either of the two sequences {C−1/2
n Sn} and {C−1/2

n Sn} is stochastically bounded,

then C
−1/2
n C

1/2

n →pr I and, in particular,

C
−1/2

n Sn − C−1/2
n Sn →pr 0,

so that the two sequences are weak convergence equivalent.

Proof. (Since X is full, we can assume for this lemma that Cn and Cn are nonsingular.) Both
directions are similar, so let us assume

C
−1/2

n Sn →d N(0, I).

Then, n‖C−1/2

n Xn‖2 = n−1‖C−1/2

n Sn‖2 →pr 0. Therefore,

C
−1/2

n CnC
−1/2

n = I + nC
−1/2

n XnX
T

nC
−1/2

n →pr I.

Set An = C
−1/2

n C
1/2
n , so that AnA

T
n →pr I. Then, An diagonalizes and has strictly positive

eigenvalues λni (e.g. Horn and Johnson (1985), Theorem 7.6.3, p. 465). Moreover, the entries
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of An, anij , are stochastically bounded since, for each i,
∑

j a
2
nij →pr 1, but then so are the

eigenvalues λn,1 ≤ . . . ≤ λn,d because 0 ≤ λn,i ≤
∑d

j=1 anjj . So, the random vectors (anij , 1 ≤
i, j ≤ d;λn,i, 1 ≤ i ≤ d) converge in law along a subsequence of every subsequence; pick up
one convergence subsequence (still, for convenience, denoted by n), let (aij , λi, 1 ≤ i, j ≤ d) be
the limit in law, and set A = {aij}. Now, for each i, det(An − λniI) →d det(A − λiI), but
det(An−λniI) = 0, so, det(A−λiI) = 0 a.s. for each i, and the random variables λi(ω) are, for
almost every ω, the eigenvalues of A(ω). Moreover, AAT = I a.s., that is, A is unitary. Hence,
the eigenvalues λi being nonnegative, we have λi = 1 a.s. The polynomial in λ, det(An − λI),

determines a continuous map from Rd2

into C[−M,M ] say for M = d, so that det(An−λI)→d

det(A − λI) in law in C[−M,M ]. Since det(An − λI) = (λn1 − λ) · · · (λnd − λ) →pr (1 − λ)d,
we have det(A − λI) = (1 − λ)d a.s. on [−M,M ]. But the only unitary matrix with this
characteristic polynomial is the identity, that is, A = I a.s. We have just proved that An →pr I.

Hence also C
−1/2
n C

1/2

n →pr I. This last limit and the hypothesis give

(I − C−1/2
n C

1/2

n )C
−1/2

n Sn →pr 0,

that is, C
−1/2

n Sn − C
−1/2
n Sn →pr 0. q.e.d.

So, when proving the converse of Theorem 1.3, which is our object, by Lemma 2.1, we only need

to consider C
−1/2
n (instead of C

−1/2

n ), that is, it suffices to prove that

C−1/2
n Sn →d N(0, I) =⇒ X ∈ GDOAN and EX = 0. (2.1)

Next we make another remark to the effect that the centering question can be disposed of easily
(obviously, this is not needed in the symmetric case).

Lemma 2.2. If X ∈ GDOAN and C
−1/2
n Sn →d N(0, I) then EX = 0.

Proof. The second hypothesis implies, by Lemma 2.1, that C
−1/2
n C

1/2

n →pr I and the first, by

Theorem 1.1, that C
−1/2

n (Sn − nEX) →d N(0, I). Therefore, C
−1/2
n (Sn − nEX) →d N(0, I).

This, together with the second hypothesis gives that

the sequence {nC−1/2
n EX}∞n=1 is tight. (2.2)

Let λmin(A), λmax(A) denote respectively the smallest and the largest eigenvalues of a positive
definite symmetric matrix A (possibly random). Suppose that λmax(Cn)/n

2 →pr 0 and that
EX 6= 0. Then,

Pr
{

‖nC−1/2
n EX‖ > M

}

≥ Pr
{

n‖EX‖λmin(C
−1/2
n ) > M

}

= Pr

{

λmax(Cn) <
n2‖EX‖2

M2

}

→ 1

as n → ∞, for all M > 0, which contradicts the tightness in (2.2). So, it suffices to prove that

λmax(Cn)/n
2 →pr 0. Let ξ(k), k = 1, . . . , d, denote the k-th coordinate of X, and ξ

(k)
i that of

Xi, i = 1, . . . , n. If X ∈ GDOAN then every coordinate ξ(k) is in the domain of attraction
of the normal law in R and therefore, by Raikov’s theorem, for each k, there exist sequences
of constants {an,k}∞n=1 such that an,k =

√
n `k(n) with either `k(n) = 1 for all n or `k(n)
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slowly varying and increasing to infinity, such that
∑n

i=1(ξ
(k)
i )2/a2

n,k →pr 1 if `k(n) ↗ ∞ and
∑n

i=1(ξ
(k)
i )2/a2

n,k →pr E(ξ(k))2 if `k(n) ≡ 1. Hence, there is c <∞ such that

Pr

{

trace(Cn)

max1≤k≤d a2
n,k

> c

}

= Pr

{

∑d
k=1

∑n
i=1(ξ

(k)
i )2

max1≤k≤d a2
n,k

> c

}

→ 0

and therefore, since max1≤k≤d a
2
n,k/n

2 → 0 and the trace dominates the largest eigenvalue, we

obtain λmax(Cn)/n
2 →pr 0. q.e.d.

So, as a consequence of the last two lemmas, in order to prove that

C
−1/2

n Sn →d N(0, I) =⇒ X ∈ GDOAN and EX = 0,

it suffices to prove:
C−1/2
n Sn →d N(0, I) =⇒ X ∈ GDOAN, (2.3)

a reduction of the problem that is trivial in the case d = 1.

3. Proof of statement (2.3) in the symmetric case.

We begin with two lemmas that hold in general (without assuming symmetry of X).

Lemma 3.1.
∑n

i=1 XT
i (ω)C

−1
n (ω)Xi(ω) = d whenever Cn(ω) is non-singular, and this sum is

zero otherwise.

Proof. Assuming Cn non-singular, if Cn = (ci,j) and we let Mi,j denote the (i, j)-th minor of Cn

multiplied by (−1)i+j , the above expression is just
∑

i,j ci,jMi,j/(det Cn), but
∑

i,j ci,jMi,j =

d(det Cn). In the singular case, the lemma follows from the convention C−1
n (ω) = 0. q.e.d.

Lemma 3.2.
∑

1≤i,j≤n

[

XT
i C−1

n Xj

]2
=
∑

1≤i,j≤n

[

XT
i C−1

n Xj

] [

XT
j C−1

n Xi

]

= d at those ω for
which Cn(ω) is non-singular, and this sum is zero otherwise.

Proof. With the same notation as in the previous lemma, assuming det Cn 6= 0, and setting ξ
(r)
i

to be the r-th coordinate of Xi, r = 1, . . . , d, we have:

(det Cn)
2
∑

i,j

(

XT
i C−1

n Xj

)2
=
∑

i,j

(

∑

r,s

ξ
(r)
i ξ

(s)
j Mr,s

)2

=
∑

i,j,r,s,t,u

ξ
(r)
i ξ

(s)
j ξ

(t)
i ξ

(u)
j Mr,sMt,u

=
∑

t,u

Mt,u





∑

r,s

(

∑

i

ξ
(r)
i ξ

(t)
i

)





∑

j

ξ
(s)
j ξ

(u)
j



Mr,s





=
∑

t,u

Mt,u

(

∑

r,s

cr,tcs,uMr,s

)

=
∑

t,u

Mt,u

(

∑

s

cs,u

(

∑

r

cr,tMr,s

))

=
∑

t,u

Mt,u

(

∑

s

cs,u(det Cn)δt,s

)

= (det Cn)
∑

t,u

Mt,uct,u = d(det Cn)
2.
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The other identity has a similar proof. q.e.d.

Corollary 3.3. If X is symmetric, then, for all k ∈ N,

sup
n

E
∥

∥

∥
C−1/2
n Sn

∥

∥

∥

2k

≤ (2kd)k.

Proof. Let εi, i ∈ N, be i.i.d. with Pr{εi = 1} = Pr{εi = −1} = 1/2, independent of Xi,
i ∈ N. Then, since XiX

T
i = (εiXi)(εiXi)

T and (Xi, i ≤ n) has the same joint distribution as
(εiXi, i ≤ n), it follows that C−1

n Sn has the same probability law as C−1
n (

∑n
i=1 εiXi). So, letting

Eε denote integration with respect to the Rademacher variables only, we get, by Khinchin’s
inequality (e.g., de la Peña and Giné (1999), p. 16) and Lemma 3.1, that

E
∥

∥

∥C−1/2
n Sn

∥

∥

∥

2k

=E

∥

∥

∥

∥

∥

n
∑

i=1

εiC
−1/2
n Xi

∥

∥

∥

∥

∥

2k

= EEε

∥

∥

∥

∥

∥

n
∑

i=1

εiC
−1/2
n Xi

∥

∥

∥

∥

∥

2k

≤ (2k)kE

(

n
∑

i=1

∥

∥

∥C−1/2
n Xi

∥

∥

∥

2
)k

= (2k)kE

(

n
∑

i=1

XT
i C−1

n Xi

)k

≤ (2kd)k. q.e.d.

Theorem 3.4. Let X be a symmetric full random variable in Rd. Then

C−1/2
n Sn →d N(0, I) ⇐⇒ X ∈ GDOAN

and
C
−1/2

n Sn →d N(0, I) ⇐⇒ X ∈ GDOAN.

Proof. By Theorem 1.3 and Lemma 2.1, it suffices to prove

C−1/2
n Sn →d N(0, I) =⇒ X ∈ GDOAN,

and, by Theorem 1.2 iv, this further reduces to proving that

max
1≤i≤n

XT
i C−1

n Xi →pr 0, (3.1)

assuming the multivariate Student t-statistic is asymptotically standard normal. Under this
assumption, Corollary 3.3 implies, by uniform integrability, that

E
∥

∥

∥C−1/2
n Sn

∥

∥

∥

4

→ E‖Z‖4 = d2 + 2d, (3.2)

where Z is N(0, I). Now, X being full, by Lemma 3.1 and the randomization from the proof of
Corollary 3.3, we have that, asymptotically,

E
∥

∥

∥C−1/2
n Sn

∥

∥

∥

4

= E





∑

1≤i,j≤n

εiεjX
T
i C−1

n Xj





2

= E



dI(det Cn 6= 0) +
∑

1≤i6=j≤n

εiεjX
T
i C−1

n Xj





2

= d2I(det Cn 6= 0)

+ n(n− 1)
[

E
(

XT
1 C−1

n X2

)2
+ E

(

XT
1 C−1

n X2

) (

XT
2 C−1

n X1

)

]

.
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Adding and subtracting 2nE
(

XT
1 C−1

n X1

)2
and applying Lemma 3.2, this becomes

E
∥

∥

∥C−1/2
n Sn

∥

∥

∥

4

= (d2 + 2d)I(det Cn 6= 0)− 2nE
(

XT
1 C−1

n X1

)2
. (3.3)

Comparing (3.2) and (3.3) and noting that Pr{det Cn 6= 0} → 1, we conclude

nE
(

XT
1 C−1

n X1

)2 → 0,

and therefore,

E max
1≤i≤n

(

XT
i C−1

n Xi

)2 ≤ nE
(

XT
1 C−1

n X1

)2 → 0,

which implies (3.1). q.e.d.

4. Integrability of the Student t-statistic in the general case.

We recall the notation Tn = C−1
n Sn. We also recall from matrix theory (e.g., Horn and Johnson

(1985), Corollary 7.7.4, p. 471) that if C and D are two positive definite matrices such that
C ≤ D, meaning that D − C is positive semidefinite, then D−1 ≤ C−1, and in particular then,
for all x, xTD−1x ≤ xTC−1x. In this section X needs not be symmetric, however, our proof of
integrability will require C−1

n ≤ C−1
m a.s. for m ≤ n, at least for all m large enough; of course,

Cn ≥ Cm and therefore, C−1
n ≤ C−1

m on the event detCm 6= 0, but it seems impossible to define
Cm on the set detCm = 0 only in terms of X1, . . . , Xm and in such a way that Cm ≤ Cn a.s.
for all n ≥ m. This problem disappears if detCn 6= 0 a.s. from some non-random n on, and it is
easy to check that this happens if and only if Pr{uTX = 0} = 0 for all u ∈ Sd−1, that is, iff the
law of X assigns probability zero to any hyperplane through the origin. Moreover, in this case,
detCn 6= 0 a.s. for all n ≥ d. [If, for some n ≥ d and ω ∈ Ω, U is the unitary transformation
that diagonalizes Cn(ω) and vi = UXi(ω) has coordinates vki , k = 1, . . . , d, then detCn(ω) 6= 0
iff the dual vectors (vk1 , . . . , v

k
n), k = 1, . . . , d, are orthogonal and non-zero, which happens iff

the vectors X1(ω), . . . , Xn(ω) span Rd; but, by Fubini, this holds a.s. iff Pr{uTX = 0} = 0 for
all u ∈ Sd−1, and if this is the case, then also X1, . . . , Xd span Rd a.s.]
Note that the conditions ‘X is full’ and ‘the law of X assigns mass zero to every hyperplane
through the origin’ do not imply each other. In this section we require the second condition but
fullness of X is not assumed.
Along the steps in Giné, Götze and Mason (1997), we begin with the following lemma:

Lemma 4.1. Let X be a not necessarily symmetric random vector in Rd such that Pr{uTX =
0} = 0, u ∈ Sd−1. Assume that iλ 6= jλ, λ = 1, . . . , r, and that exactly m indices occur among
i1, . . . , ir, j1, . . . , jr, each with multiplicity r`,

∑m
`=1 r` = 2r. Let s = Card{` ≤ m : r` = 1}.

Then, if n ≥ md,

∣

∣E
[(

XT
i1C

−1
n Xj1

)

· · ·
(

XT
irC

−1
n Xjr

)]∣

∣ ≤ d(2r−s)/2
[ n

m

]−m
(

E
∥

∥T[n/m]

∥

∥

)s
.

In particular, for n ≥ md and setting

Mn := max
d≤`≤n

[1, E‖T`‖] ,

we have
∣

∣E
[(

XT
i1C

−1
n Xj1

)

· · ·
(

XT
irC

−1
n Xjr

)]∣

∣ ≤
(

d+ 1

d

)m

dr
(m

n

)m

Mm
n .
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Proof. For ease of notation, we consider a simple case that nevertheless shows how the proof
works in general. Let

U = E
[

(

XT
1 C−1

n X2

) (

XT
2 C−1

n X3

) (

XT
4 C−1

n X2

)3
]

,

where the index 2 has multiplicity 5, 4 has multiplicity 3 and the other two, multiplicity 1 each,

and r = 5, m = 4, s = 2. We set S[n/4] = S[n/4],1 =
∑[n/4]

i=1 Xi, S[n/4],2 =
∑2[n/4]

i=[n/4]+1 Xi, C[n/4] =

C[n/4],1 =
∑[n/4]

i=1 XiX
T
i and C[n/4],2 =

∑2[n/4]
i=[n/4]+1 XiX

T
i . Then, using Cauchy-Schwartz’s in-

equality (to bound five scalar products of the type XT
` C−1

n Xk in terns of XT
k C−1

n Xk), the fact
that C−1

n ≤ C−1
[n/4],j a.s., Lemma 3.1 and independence and equidistribution of the vectors Xi,

we obtain

[ n

m

]m

|U | =

∣

∣

∣

∣

∣

∣

E





3[n/4]
∑

k=2[n/4]+1

4[n/4]
∑

`=3[n/4]+1

(

ST[n/4],1C
−1
n Xk

)

(

XT
k C−1

n S[n/4],2

) (

XT
` C−1

n Xk

)3





∣

∣

∣

∣

∣

∣

≤ E

[

(

ST[n/4],1C
−1
n S[n/4],1

)1/2 (

ST[n/4],2C
−1
n S[n/4],2

)1/2

×
3[n/4]
∑

k=2[n/4]+1

(

XT
k C−1

n Xk

)5/2
4[n/4]
∑

`=3[n/4]+1

(

XT
` C−1

n X`

)3/2

]

≤ d(5+3)/2E

[

(

ST[n/4],1C
−1
[n/4],1S[n/4],1

)1/2 (

ST[n/4],2C
−1
[n/4],2S[n/4],2

)1/2
]

≤ d(2r−s)/2

(

E
(

ST[n/m]C
−1
[n/m]S[n/m]

)1/2
)s

= d(2r−s)/2(E‖T[n/m]‖)s,

proving the lemma in this case. Obviously, this proof generalizes. q.e.d.

Corollary 4.2. With X as in Lemma 4.1, for k ∈ N and n ≥ 2kd, we have

E
∥

∥

∥
C−1/2
n Sn

∥

∥

∥

2k

≤ 4edk
k
∑

r=0

(

k

r

)

(2r)! (1 + 4e)
2r

M2r
n ≤ 4e(2k)!

(

1 + (1 + 4e)2
)k

dkM2k
n . (4.1)

In particular, if supnE
∥

∥

∥C
−1/2
n Sn

∥

∥

∥ = M <∞, then

sup
n

E
∥

∥

∥C−1/2
n Sn

∥

∥

∥

m

<∞

for all 0 < m <∞.
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Proof. First we note that, by Lemma 3.1, for k ∈ N,

E ‖Tn‖2k = E
[

STnC−1
n Sn

]k

= E





∑

i

XT
i C−1

n Xi +
∑

i6=j

XT
i C−1

n Xj





k

= E



d+
∑

i6=j

XT
i C−1

n Xj





k

=

k
∑

r=0

(

k

r

)

dk−rE





∑

i6=j

XT
i C−1

n Xj





r

<∞.

Next, Lemma 4.1 and elementary combinatorics give that, for all r ∈ N and n ≥ 2rd,

∣

∣

∣

∣

∣

∣

E





∑

1≤i6=j≤n

XT
i C−1

n Xj





r∣
∣

∣

∣

∣

∣

≤M2r
n dr

2r
∑

m=2

(

2n

m

)

∑

r1+···+rm=2r

ri≥1

(

2r

r1, . . . , rm

)

(m

n

)m

2m

≤M2r
n dr

2r
∑

m=2

(

2n

m

)(

2r − 1

m− 1

)

(2r)!
(m

n

)m

2m

≤M2r
n dr(2r)!

2r
∑

m=2

(

2r − 1

m− 1

)

(4e)m

≤ 4eM2r
n dr(2r)! (1 + 4e)

2r−1
.

Inequality (4.1) follows by combining these two estimates. The boundedness of moments is a

consequence of (4.1) and the fact that, by Lemma 3.1, setting ai =
∥

∥

∥C
−1/2
n Xi

∥

∥

∥

2

= XT
i C−1

n Xi,

we have
∥

∥

∥C−1/2
n Sn

∥

∥

∥

2

=
∑

i,j

XT
i C−1

n Xj =
∑

i,j

〈C−1/2
n Xi, C

−1/2
n Xj〉

≤
∑

i,j

a
1/2
i a

1/2
j =

(

∑

i

a
1/2
i

)2

≤ n
∑

i

ai = nd (4.2)

(which controls maxn≤(m+1)d

∥

∥

∥C
−1/2
n Sn

∥

∥

∥

m

). q.e.d.

This yields the main result of this section, namely that tightness of the sequence {Tn} implies
uniform integrability of ‖Tn‖m for every m:

Theorem 4.3. Assume Pr{uTX = 0} = 0 for all u ∈ Sd−1. If the sequence C
−1/2
n Sn, n ∈ N,

is stochastically bounded then

sup
n

E
∥

∥

∥
C−1/2
n Sn

∥

∥

∥
<∞

and therefore

sup
n

E
∥

∥

∥C−1/2
n Sn

∥

∥

∥

m

<∞
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for 0 < m <∞.

Proof. Inequalities (4.1) and (4.2) allow to carry out the same Paley-Zygmund type argument
as in Lemma 2.4 in Giné, Götze and Mason (1987), to conclude that if {‖Tn‖} is stochastically
bounded then supnE‖Tn‖ < ∞. Now the theorem follows from the second part of Corollary
4.2. q.e.d.

In particular this theorem implies that if Tn is asymptotically standard normal, then, as in
the symmetric case, we have convergence of all its moments to the corresponding moments
of the standard normal variable in Rd. In particular, E‖Tn‖2 → d and E‖Tn‖4 → d2 + 2d.
However, in the absence of symmetry E‖Tn‖4 has an expression that contains terms other than
nE(XT

1 C−1
n X1)

2, and they must be shown to tend to zero in order to conclude, as in the proof
of Theorem 3.4, that nE(XT

1 C−1
n X1)

2 → 0. Concretely, E‖Tn‖2 → d and Lemma 3.1 imply
E(XT

1 C−1
n X2) = o(n−2), and using this and Lemma 3.2, E‖Tn‖4 can be written as

E‖Tn‖4 = E



d+
∑

i6=j

XT
i C−1

n Xj





2

= d2 + 2d+ o(1)− 2nE
(

XT
1 C−1

n X1

)2

+ n(n− 1)(n− 2)E
[(

XT
1 C−1

n X2

) (

XT
1 C−1

n X3

)

+
(

XT
1 C−1

n X2

) (

XT
3 C−1

n X2

)

+
(

XT
1 C−1

n X2

) (

XT
2 C−1

n X3

)

+
(

XT
1 C−1

n X2

) (

XT
3 C−1

n X1

)]

+ n(n− 1)(n− 2)(n− 3)E
(

XT
1 C−1

n X2

) (

XT
3 C−1

n X4

)

,

so that one should prove that the last two expected values tend to zero. This was achieved in R
by means of an integral representation for (

∑n
i=1 X2

i )
−r and a delicate argument involving the

measure [E exp(λX2)]rdλ/λ which do not directly generalize to the case in hand.
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