ELECTRONIC COMMUNICATIONS in PROBABILITY

ON FRACTIONAL STABLE FIELDS INDEXED BY MET-RIC SPACES

JACQUES ISTAS LMC-IMAG, BP 53, 38041 Grenoble Cedex 9, France email: Jacques.Istas@imag.f

Submitted 2 February 2006, accepted in final form 26 September 2006

AMS 2000 Subject classification: 60G15 Keywords: Fractional Stable Fields, Metric spaces

Abstract

We define and build *H*-fractional α -stable fields indexed by a metric space (E, d). We mainly apply these results to spheres, hyperbolic spaces and real trees.

1 Introduction

The *H*-Fractional Brownian Motion B_H [8, 18], indexed by the Euclidean space (\mathbb{R}^n , ||.||), is a centered Gaussian field such that the variance of its increments is equal to a fractional power of the norm:

$$\mathbb{E}(B_H(M) - B_H(N))^2 = ||MN||^{2H} \quad \forall M, N \in \mathbb{R}^n.$$

In other words, the normalized increments of the H-Fractional Brownian are constant in distribution:

$$\frac{B_H(M) - B_H(N)}{||MN||^H} \stackrel{\mathcal{D}}{=} Z \quad \forall M, N \in \mathbb{R}^n ,$$

where Z is a centered Gaussian random variable with variance 1. It is well-known that the H-Fractional Brownian Motion B_H exists iff $0 < H \leq 1$. [5] proposes to build Fractional Brownian Motions indexed by a metric space (E, d) as centered Gaussian fields which normalized increments are constant in distribution:

$$\frac{B_H(M) - B_H(N)}{d^H(M, N)} \stackrel{\mathcal{D}}{=} Z \quad \forall M, N \in E ,$$

where Z is still a centered Gaussian random variable with variance 1. When (E, d) is the sphere or the hyperbolic space endowed with their geodesic distances, [5] proves that the Fractional Brownian Motion exists iff $0 < H \le 1/2$. When (E, d) is a real tree with its natural distance, [5] proves that the Fractional Brownian Motion exists at least for $0 < H \le 1/2$.

The following question then arises: what happens when we move from the Gaussian case to the stable case? One knows that there exists several H-self-similar α -stable fields with stationary

increments indexed by $(\mathbb{R}^n, ||.||)$, with various conditions on the fractional index H, providing $0 < H \le 1/\alpha$ if $0 < \alpha \le 1$ and 0 < H < 1 if $1 < \alpha < 2$ [10]. Let us mention some of them (cf. [13]):

- Linear Fractional Stable Motions: 0 < H < 1 and $H \neq 1/\alpha$,
- α -Stable Lévy Motions: $H = 1/\alpha$,
- Log-fractional Stable Motions: $H = 1/\alpha$,
- Real Harmonizable Fractional Stable Motions: 0 < H < 1,
- Lévy-Chentsov fields: $H = 1/\alpha$,
- β -Takenaka fields: $0 < \beta < 1$ and $H = \beta/\alpha$.

All these fields have normalized increments that are constant in distribution:

$$\frac{X(M) - X(N)}{||MN||^H} \stackrel{\mathcal{D}}{=} S_{\alpha} \quad \forall M, N \in \mathbb{R}^n ,$$

where S_{α} is a standard symmetric α -stable random variable, i.e. a random variable which characteristic function is given by:

$$\mathbb{E}(e^{i\lambda S_{\alpha}}) = e^{-|\lambda|^{\alpha}}.$$

We propose to call *H*-fractional α -stable field an α -stable field $X(M), M \in E$ which normalized increments are constant in distribution:

$$\frac{X(M) - X(N)}{d^H(M,N)} \stackrel{\mathcal{D}}{=} S_{\alpha} \quad \forall M, N \in E \;,$$

where S_{α} is a standard symmetric α -stable random variable. Let us summarize our main results.

• Non-existence.

Let $\beta_E = \sup\{\beta > 0 \text{ such that } d^{\beta} \text{ is of negative type}\}$. For instance, β_E is equal to 1 for spheres and hyperbolic spaces. We prove that there is no *H*-fractional α -stable field when $\alpha H > \beta_E$.

• Existence.

We mainly prove the following. Assume that E contains a dense countable subset and that d is a measure definite kernel:

- if $0 < \alpha \leq 1$, we construct *H*-fractional α -stable fields for any $0 < H \leq 1/\alpha$.
- if $1 < \alpha < 2$, we construct *H*-fractional α -stable fields for any $H \in (0, 1/(2\alpha)] \cup [1/2, 1/\alpha]$.

2 Non-existence

Let us first recall the definitions of functions of positive or negative type. Let X be a set.

• A symmetric function $(x, y) \mapsto \phi(x, y), X \times X \to \mathbb{R}^+$ is of positive type if, $\forall x_1, \dots, x_n \in X, \forall \lambda_1, \dots, \lambda_n \in \mathbb{R}$

$$\sum_{i,j=1}^n \lambda_i \lambda_j \phi(x_i, x_j) \geq 0 .$$

• A symmetric function $(x, y) \mapsto \psi(x, y), X \times X \to \mathbb{R}^+$ is of negative type if

$$- \forall x \in X, \ \psi(x, x) = 0 - \forall x_1, \dots, x_n \in X, \ \forall \lambda_1, \dots, \lambda_n \in \mathbb{R} \text{ such that } \sum_{i=1}^n \lambda_i = 0 \sum_{i,j=1}^n \lambda_i \lambda_j \psi(x_i, x_j) \leq 0.$$

Schoenberg's Theorem [14] implies the equivalence between

- Function ψ is of negative type.
- $\forall x \in X, \ \psi(x, x) = 0$ and $\forall t \ge 0$, function $\exp(-t\psi)$ is of positive type.

Lemma 2.1

Let ψ be a function of negative type and let $0 < \beta \leq 1$. Then ψ^{β} is of negative type. PROOF.

For $x \ge 0$, and $0 < \beta < 1$, by performing the change of variable $y = \lambda x$, one has:

$$x^{\beta} = C_{\beta} \int_{0}^{+\infty} \frac{e^{-\lambda x} - 1}{\lambda^{1+\beta}} d\lambda ,$$

with

$$C_{\beta} = \left(\int_{0}^{+\infty} \frac{e^{-\lambda} - 1}{\lambda^{1+\beta}} d\lambda \right)^{-1} .$$

Let $\lambda_1, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 0$:

$$\sum_{i,j=1}^{n} \lambda_i \lambda_j \psi^{\beta}(x_i, x_j) = C_{\beta} \int_0^{+\infty} \frac{\sum_{i,j=1}^{n} \lambda_i \lambda_j e^{-\lambda \psi(x_i, x_j)}}{\lambda^{1+\beta}} d\lambda .$$

By Schoenberg's Theorem, $\sum_{i,j=1}^{n} \lambda_i \lambda_j e^{-\lambda \psi(x_i, x_j)} \ge 0$. Since $C_{\beta} \le 0$:

$$\sum_{i,j=1}^n \lambda_i \lambda_j \psi^\beta(x_i, x_j) \leq 0 ,$$

and Lemma 2.1 is proved.

For the metric space (E, d), let us define:

$$\beta_E = \sup\{\beta > 0 \text{ such that } d^\beta \text{ is of negative type}\}, \qquad (1)$$

with the convention $\beta_E = 0$ if d^β is never of negative type. Let us note that if E contains three points M_1, M_2, M_3 such that:

$$d(M_1, M_2) > d(M_1, M_3) , d(M_1, M_2) > d(M_2, M_3) ,$$

then $\beta_E < \infty$. Indeed, with $\lambda_1 = -1/2$, $\lambda_2 = -1/2$, $\lambda_3 = 1$, one has $\sum_{i,j=1}^{3} \lambda_i \lambda_j d^\beta(M_i, M_j) \sim 1/2 \ d^\beta(M_1, M_2) > 0 \text{ as } \beta \to +\infty.$

Corollary 2.1 If $\beta_E \neq 0$, then $\{\beta > 0 \text{ such that } d^{\beta} \text{ of negative type}\} = (0, \beta_E]$.

Proof.

It follows from Lemma 2.1 that d^{β} is of negative type for $\beta < \beta_E$, and is never of negative type for $\beta > \beta_E$. Let $(\beta_p)_{p\geq 0}$ be an increasing sequence converging to β_E (when $\beta_E < \infty$).

For all $M_1, \ldots, M_n \in E$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $\sum_{i=1}^n \lambda_i = 0$:

$$\sum_{i,j=1}^{n} \lambda_i \lambda_j d^{\beta_p}(M_i, M_j) \leq 0.$$
⁽²⁾

Let now perform $\beta_p \to \beta_E$ in (2):

$$\sum_{i,j=1}^n \lambda_i \lambda_j d^{\beta_E}(M_i, M_j) \leq 0.$$

It follows that d^{β_E} is of negative type.

Let us now give some values of β_E .

• Euclidean space $(\mathbb{R}^n, ||.||)$.

One easily checks that function $(x, y) \mapsto ||x - y||^2$ is of negative type. Indeed, take $\lambda_1, \ldots, \lambda_p$ with $\sum_{i=1}^p \lambda_i = 0$ and $x_1, \ldots, x_p \in \mathbb{R}^n$:

$$\sum_{i,j=1}^{p} \lambda_i \lambda_j ||x_i - x_j||^2 = -2||\sum_{i=1}^{p} \lambda_i x_i||^2 \le 0.$$

Then, by Lemma 2.1, function $(x, y) \mapsto ||x - y||^{\beta}$ is of negative type when $0 < \beta \leq 2$. Consider now four vertices M_1, M_2, M_3, M_4 of a square with side length 1 and take $\lambda_1 = \lambda_3 = 1$ and $\lambda_2 = \lambda_4 = -1$. Then $\sum_{i,j=1}^{4} \lambda_i \lambda_j ||M_i M_j||^{\beta} = -8 + 4\sqrt{2}^{\beta}$ and is strictly positive when $\beta > 2$. It follows that $\beta_{\mathbb{R}^n} = 2$.

- Space $(\mathbb{R}^n, ||.||_{\ell^q})$ where $||x||_{\ell^q}^q = \sum_{i=1}^n |x_i|^q$. When $n \ge 3, q > 2, [6, 7]$ imply $\beta_{\mathbb{R}^n} = 0$.
- Spheres $S_n = \{x \in \mathbb{R}^{n+1}, ||x|| = 1\}$ with its geodesic distance. It follows from [5] that $\beta_{S_n} = 1$.
- Hyperbolic spaces $H_n = \{x \in \mathbb{R}^{n+1}, \sum_{i=1}^n x_i^2 x_{n+1}^2 = -1, x_{n+1} \ge 1\}$ with its geodesic distance d. It has been proved by [4] that d is of negative type. [4, Prop. 7.6] implies that $\beta_{H_n} = 1$.
- Real trees. A metric space (T, d) is a real tree (e.g. [3]) if the following two properties hold for every $x, y \in T$.
 - There is a unique isometric map $f_{x,y}$ from [0, d(x, y)] into T such that $f_{x,y}(0) = x$ and $f_{x,y}(d(x, y)) = y$.
 - If ϕ is a continuous injective map from [0, 1] into T, such that $\phi(0) = x$ and $\phi(1) = y$, we have

$$\phi([0,1]) = f_{x,y}([0,d(x,y)]).$$

It has been proved by [17] that the distance on real trees is of negative type: $\beta_T \geq 1$. One can build trees with $\beta_T > 1$. Nevertheless, we give a family of simple trees $(T_p)_{p\geq 1}$ such that $\lim_{p\to+\infty} \beta_{T_p} = 1$. A_0 is the root of the tree. A_0 has p sons $A_1, \ldots A_p$, with:

$$\begin{aligned} &d(A_0, A_i) &= 1 \quad i \neq 0 , \\ &d(A_i, A_j) &= 2 \quad i \neq j, \, i, j \neq 0 \end{aligned}$$

Choose $\lambda_0 = 1$ and $\lambda_i = -1/p$ for $i = 1, \dots, p$. Then

$$\sum_{i,j=0}^{p} \lambda_i \lambda_j d^\beta(A_i, A_j) = -2 + 2^\beta \frac{p-1}{p}$$

$$-2 + 2^{\beta} \frac{p-1}{p} \text{ is positive for } \beta \ge 1 + \log_2\left(\frac{p}{p-1}\right). \text{ It follows that } \beta_{T_p} \le 1 + \log_2\left(\frac{p}{p-1}\right)$$

Proposition 2.1

There is no H-fractional α -stable fields when $\alpha H > \beta_E$.

Proof.

We prove Proposition 2.1 by contradiction. Let $\lambda, \lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and $M_1, \ldots, M_n \in E$. On one hand:

$$\sum_{i,j=1}^{n} \lambda_i \lambda_j \mathbb{E}\left[exp(i\lambda(X(M_i) - X(M_j)))\right] = \mathbb{E}\left|\sum_{i=1}^{n} \lambda_i exp(i\lambda X(M_i))\right|^2 \ge 0.$$

On the other hand:

$$\sum_{i,j=1}^{n} \lambda_i \lambda_j \mathbb{E}\left[exp(i\lambda(X(M_i) - X(M_j)))\right] = \sum_{i,j=1}^{n} \lambda_i \lambda_j \exp(-|\lambda|^{\alpha} d^{\alpha H}(M_i, M_j))$$

If $\alpha H > \beta_E$, Schoenberg's Theorem implies that there exists λ such that $\exp(-|\lambda|^{\alpha} d^{\alpha H}(M, N))$ is not of positive type and Proposition 2.1 is proved.

3 Construction of *H*-fractional α -stable fields

3.1 Main result

Let us recall the definition of a measure definite kernel (cf. [12]).

Definition 3.1 Measure definite kernel.

A function $(M, N) \mapsto \psi(M, N)$, from $E \times E$ onto \mathbb{R}^+ , is a measure definite kernel if there exists a measure space $(\mathbf{H}, \sigma(\mathbf{H}), \mu)$ and a map $M \mapsto H_M$ from E onto $\sigma(\mathbf{H})$ such that:

$$\psi(M,N) = \mu(H_M \Delta H_N) ,$$

where Δ denotes the symmetric difference of sets.

For $\beta > 0$, $f \in L^{\beta}(\mathbf{H}, \mu)$, define the pseudo-norm:

$$||f||_{eta} = \left(\int_{\mathbf{H}} |f|^{eta} d\mu\right)^{1/eta} \,.$$

It follows that:

$$\psi(M,N) = \int_{\mathbf{H}} |\mathbf{1}_{H_M} - \mathbf{1}_{H_N}| d\mu$$
$$= ||\mathbf{1}_{H_M} - \mathbf{1}_{H_N}||_{\beta}^{\beta}.$$

Theorem 3.1

Let $1/2 \leq H \leq 1/\alpha$. The following formula, with $n \geq 1, \lambda_1, \ldots, \lambda_n \in \mathbb{R}, M_1, \ldots, M_n \in E$,

$$\mathbb{E}\left(\exp\left(i\sum_{j=1}^{n}\lambda_{j}X(M_{j})\right)\right) = \exp\left(-\left\|\sum_{j=1}^{n}\lambda_{j}\mathbf{1}_{H_{M_{j}}}\right\|_{1/H}^{\alpha}\right)$$
(3)

defines the distribution of an α -stable field $X(M), M \in E$ satisfying:

$$\frac{X(M) - X(N)}{\psi^H(M, N)} \stackrel{\mathcal{D}}{=} S_{\alpha} \quad \forall M, N \in E ,$$
(4)

where S_{α} is a standard symmetric α -stable random variable.

Proof.

We follow Theorem 1 and Lemma 4 of [1]. We have seen that function $(x, y) \mapsto |x-y|^{\gamma}, x, y \in \mathbb{R}$ is of negative type if $0 < \gamma \leq 2$. It follows that function $(f, g) \mapsto ||f - g||_{1/H}^{1/H}, f, g \in L^{1/H}(\mathbf{H}, \mu)$ is of negative type when $H \geq 1/2$. Since $\alpha H \leq 1$, one can apply Lemma 2.1: function $(f,g) \mapsto ||f-g||_{1/H}^{\alpha}, f,g \in L^{1/H}(\mathbf{H},\mu)$ is of negative type. Schoenberg's Theorem implies that, for all $\lambda \in \mathbb{R}$, function $(f,g) \mapsto \exp(-|\lambda|^{\alpha}||f-g||_{1/H}^{\alpha}), f,g \in L^{1/H}(\mathbf{H},\mu)$ is of positive type. (3) is therefore a characteristic function. Fix now $1 \leq j_0 \leq n$ in (3). We clearly have:

$$\lim_{\lambda_{j_0}\to 0} \mathbb{E}\left(\exp\left(i\sum_{j=1}^n \lambda_j X(M_j)\right)\right) = \exp\left(-\left\|\sum_{j=1, j\neq j_0}^n \lambda_j \mathbf{1}_{H_{M_j}}\right\|_{1/H}^{\alpha}\right)$$
$$= \mathbb{E}\left(\exp\left(i\sum_{j=1, j\neq j_0}^n \lambda_j X(M_j)\right)\right)$$

The Kolmogorov consistency theorem then proves that (3) defines the distribution of an α -stable stochastic fields.

Choosing n = 2 and $\lambda_1 = -\lambda_2$ in (3) leads to (4).

Remark 3.1

One should wonder if function $(f,g) \mapsto ||f-g||_{1/H}^{\alpha}$ is of negative type for H < 1/2. Assume that we can choose three disjoints sets A_1, A_2 and A_3 such that $\mu(A_1) = \mu(A_2) = \mu(A_3) = c > 0$

0. Put
$$f = \sum_{1}^{3} \lambda_i \mathbf{1}_{A_i}$$
. Then:

$$||f||_{1/H}^{\alpha} = c^{\alpha H} \left(\sum_{1}^{3} |\lambda_i|^{1/H}\right)^{\alpha H}.$$

But one knows [6, 7] that function $(x, y) \mapsto ||x - y||_{\ell^q}^p$, $x, y \in \mathbb{R}^n$ is never of negative type when $n \geq 3$, 0 and <math>q > 2. Function $(f, g) \mapsto ||f - g||_{1/H}^{\alpha}$ is not of negative type for H < 1/2.

3.2 Direct applications of Theorem 3.1

3.2.1 Euclidean spaces $(\mathbb{R}^n, ||.||), n \ge 1$

Although it is not our goal, we have a look to the Euclidean spaces. One knows that, for $0 < \beta \leq 1$, functions $(x, y) \mapsto ||x - y||^{\beta} x, y \in \mathbb{R}^n$ are measure definite kernels. This is known as Chentsov's construction $(\beta = 1)$ [2] and Takenaka's construction [15] $(0 < \beta < 1)$, see [13, p. 400-402] for a general presentation. Let us briefly describe these two constructions.

• Chentsov's construction ($\beta = 1$).

For any hyperplane h of \mathbb{R}^n , let r be the distance of h to the origin of \mathbb{R}^n and let $s \in S_{n-1}$ be the unit vector orthogonal to h. The hyperplane h is parametrized by the pair (s, r). Let **H** be the set of all hyperplanes that do not contain the origin. Let $\sigma(\mathbf{H})$ be the Borel σ -field. Let $\mu(ds, dr) = dsdr$, where ds denotes the uniform measure on S_{n-1} and dr the Lebesgue measure on \mathbb{R} . Let H_M be the set of all hyperplanes separating the origin and the point M. Then, there exists a constant c > 0 such that

$$||MN|| = c\mu(H_M \Delta H_N) .$$

• Takenaka's construction $(0 < \beta < 1)$.

A hypersphere in \mathbb{R}^n is parametrized by a pair (x, λ) , where $x \in \mathbb{R}^n$ is its center and $\lambda \in \mathbb{R}^+$ its radius. Let **H** be the set of all hyperspheres in \mathbb{R}^n . Let $\sigma(\mathbf{H})$ be the Borel σ -field. μ_β is the measure $\mu_\beta(dx, d\lambda) = \lambda^{\beta-n-1} dx d\lambda$. Let H_M be the set of hyperspheres separating the origin and the point M. Then, there exists a constant $c_\beta > 0$ such that

$$||MN||^{\beta} = c_{\beta}\mu_{\beta}(H_M\Delta H_N)$$

Theorem 3.1 can therefore be applied with $\psi = ||.||^{\beta}$, $0 < \beta \leq 1$. This leads βH -fractional α -stable fields for any $0 < \beta \leq 1$ and any H providing $1/2 < H \leq 1/\alpha$. The range of feasible parameters is therefore $0 < H \leq 1/\alpha$.

3.2.2 Spheres S_n

When [9] introduces the Spherical Brownian Motion, he proves that the geodesic distance d is a measure definite kernel. Indeed, for any point M on the unit sphere, define a half-sphere by:

$$H_M = \{ N \in S_n, \ d(M, N) \le \pi/2 \}$$

Let ds be the uniform measure on S_n , let ω_n be the surface of the sphere, and define the measure μ by:

$$\mu(ds) = \frac{\pi}{\omega_n} ds \; .$$

Then:

$$d(M,N) = \mu(H_M \Delta H_N)$$
.

Theorem 3.1 can be applied with $\psi = d$. This leads to *H*-fractional α -stable fields for any *H* providing $1/2 \le H \le 1/\alpha$.

3.2.3 Hyperbolic spaces H_n

The geodesic distance is a measure definite kernel [16, 11]. The proof is more technical and we give only a rough outline. H_n is considered as a subset of the real projective space $P^n(\mathbb{R})$. Let H_M be the set of hyperplanes that separates M and the origin 0 of H_n in $P^n(\mathbb{R}) - l_{\infty}$. Let μ be a measure on H_n invariant under the action of the Lorentz group. Then, up to a normalizing constant, the geodesic distance d can be written as:

$$d(M,N) = \mu(H_M \Delta H_N) .$$

Theorem 3.1 can be applied with $\psi = d$. This leads to *H*-fractional α -stable fields for any *H* providing $1/2 \le H \le 1/\alpha$.

3.2.4 Real trees

Let us shortly explain the construction given in [17]. Fix O in the tree T. Set H_M be the geodesic path between O and M. Then $d(M, N) = \mu(H_M \Delta H_N)$ where μ is the Valette's measure of the tree: distance d is a measure definite kernel.

Theorem 3.1 can be applied with $\psi = d$. This leads to *H*-fractional α -stable fields for any *H* providing $1/2 \le H \le 1/\alpha$.

4 Space with countable dense subspace

We will now extend the result of Theorem 3.1.

Assume that E contains a countable dense subset Γ and that distance d is a measure definite kernel. A measure definite kernel is always of negative type [12, Prop. 1.1]. It follows from Lemma 2.1 that $(M, N) \mapsto d^{\beta}(M, N)$, $M, N \in E$, $0 < \beta \leq 1$, is of negative type. [12, Prop. 1.4] proves that the square root of a function of negative type defined on a countable space is a measure definite kernel. It follows that $(M, N) \mapsto d^{\beta/2}(M, N)$, $M, N \in \Gamma$, $0 < \beta \leq 1$, is a measure definite kernel since Γ is countable. Theorem 3.1 can be applied with $\psi(M, N) = d^{\beta/2}(M, N)$, $M, N \in \Gamma$, $0 < \beta \leq 1$: we have build a field $X(M), M \in \Gamma$. Since this field is α -stable, it has finite moments of order $0 < \alpha' < \alpha$ and there exists a constant c > 0 (cf. [13, Prop. 1.2.17]) such that, for all $N, N' \in \Gamma$:

$$\mathbb{E}|X(N) - X(N')|^{\alpha'} = cd^{\alpha'\beta H/2}(N, N').$$
(5)

Let $M \in E - \Gamma$ and let $N \to M$, $N \in \Gamma$. From (5), one can define X(M) as:

$$X(M) \stackrel{\mathbb{P}}{=} \lim_{N \to M, N \in \Gamma} X(N)$$

We have therefore build an α -stable field $X(M), M \in E$ satisfying:

$$\frac{X(M) - X(N)}{d^{\beta H/2}(M,N)} \stackrel{\mathcal{D}}{=} S_{\alpha} \quad \forall M, N \in E ,$$

where S_{α} is a standard symmetric α -stable random variable.

Let us now apply this construction to the spheres and hyperbolic spaces with their geodesic distances. We build $\beta H/2$ -fractional α -stable fields with any $0 < \beta \leq 1, 1/2 \leq H \leq 1/\alpha$. Let us summarize this construction with the previous construction of sections 3.2.2 and 3.2.3. We are able to build *H*-fractional α -stable fields in the following cases:

- when $\alpha \leq 1$, with any $0 < H \leq 1/\alpha$; and one knows from Proposition 2.1 that $H > 1/\alpha$ is forbidden;
- when $1 < \alpha < 2$, with any $0 < H \le 1/(2\alpha)$ and $1/2 \le H \le 1/\alpha$; and one knows from Proposition 2.1 that $H > 1/\alpha$ is still forbidden; the interval $(1/(2\alpha), 1/2)$ is "missing".

Remark 4.1

One doesn't know if d^{γ} is a measure definite kernel for $1/2 < \gamma < 1$. This is the reason of the "missing" interval $(1/(2\alpha), 1/2)$.

References

- J. Bretagnolle, D. Dacunha-Castelle, and J-L. Krivine, Lois stables et espaces L^p, Ann. Inst. Poincaré. 2 (1969), no. 3, 231–259. MR203757
- [2] N. Chentsov, Lévy's Brownian motion of several parameters and generalized white noise, Theory of Probability and its Applications 2 (1957), 265–266.

- [3] A. Dress, V. Moulton, and W. Terhalle, *T-theory: An overview*, Europ. J. Combinatorics 17 (1996), 161–175. MR1379369
- [4] J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier 24 (1974), 171–217. MR365042
- [5] J. Istas, Spherical and Hyperbolic Fractional Brownian Motion, Elec. Comm. Prob. 10 (2005), 254–262. MR2198600
- [6] A. Koldobsky, Schoenberg's problem on positive definite functions, Algebra and Analysis 3 (1991), 78–85. MR1150554
- [7] A. Koldobsky and Y. Lonke, A short proof of Schoenberg's conjecture on positive definite functions, Bull. London Math. Soc. (1999), 693–699. MR1711028
- [8] A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum. (German), C. R. (Dokl.) Acad. Sci. URSS 26 (1940), 115–118. MR3441
- [9] P. Lévy, Processus stochastiques et mouvement brownien, Gauthier-Vilars, 1965. MR190953
- M. Maejima, A remark on self-similar processes with stationary increments, Canadian J. Stat. 14 (1986), 81–82. MR839294
- [11] G. Robertson, Crofton formulae and geodesic distance in hyperbolic spaces, J. Lie Theory 8 (1998), no. 441, 163–172. MR1616751
- [12] G. Robertson and T. Steger, Negative definite kernels and a dynamical characterization of property T for countable groups, Ergod. Th. and Dynam. Sys. 18 (1998), 247–253. MR1609459
- [13] G. Samorodnitsky and M. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite variance, Chapman & Hall, New York, 1994. MR1280932
- [14] I. Schoenberg, Metric spaces and positive definite functions, Ann. Math. 39 (1938), 811– 841. MR1503439
- S. Takenaka, Integral-geometric construction of self-similar stable processes, Nagoya Math. J. 123 (1991), 1–12. MR1126180
- [16] S. Takenaka, I. Kubo, and H. Urakawa, Brownian motion parametrized with metric space of constant curvature, Nagoya Math. J. 82 (1981), 131–140. MR618812
- [17] A. Valette, Les représentations uniformément bornées associées à un arbre réel, Bull. Soc. Math. Belgique 42 (1990), 747–760. MR1316222
- [18] A. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random processes, Theory of Probability and its Applications 2 (1957), 273–320. MR94844