SUBDIAGONAL AND ALMOST UNIFORM DISTRIBUTIONS

PAUL RESSEL

Mathematisch - Geographische Fakultät, Katholische Universität Eichstätt, 85071 EICHSTÄTT, Germany.

email: paul.ressel@ku-eichstaett.de

submitted July 30, 2001 Final version accepted September 10, 2001

AMS 2000 Subject classification: 60E99, 60E15, 46A55 Subdiagonal distribution, almost uniform distribution, exchangeable random order

Abstract

A distribution (function) F on [0,1] with F(t) less or equal to t for all t is called subdiagonal. The extreme subdiagonal distributions are identified as those whose distribution functions are almost surely the identity, or equivalently for which $F \circ F = F$. There exists a close connection to exchangeable random orders on $\{1, 2, 3, \ldots\}$.

In connection with the characterization of exchangeable random total orders on \mathbb{N} an interesting class of probability distributions on [0, 1] arizes, the socalled *almost uniform* distributions, defined as those $w \in M^1_+([0, 1])$ for which $w(\{t \in [0, 1] | w([0, t]) = t\}) = 1$, i.e. the distribution function F of w is w-a.s. the identity. The space \mathcal{W} of all almost uniform distributions parametrizes in a canonical way the extreme exchangeable random total orders on \mathbb{N} , as shown in [1]. If ν is any probability measure on \mathbb{R} with distribution function G, then the image measure ν^G is almost uniform, see Lemma 3 in [1]. In this paper we show another interesting "extreme" property of \mathcal{W} : calling $\mu \in M^1_+([0,1])$ subdiagonal if $\mu([0,t]) \leq t$ for all $t \in [0,1]$, we prove that the compact and convex set \mathcal{K} of all subdiagonal distributions on [0,1] has precisely the almost uniform distributions as extreme points. A simple example shows that \mathcal{K} is not a simplex.

Lemma. Let a < b, c < d and

 $C := \{\varphi : [a, b] \longrightarrow [c, d] \mid \varphi \text{ non-decreasing}, \varphi(a) = c, \varphi(b) = d\}.$

Then C is compact and convex (w.r. to the pointwise topology) and

$$\varphi \in ex(C) \iff \varphi([a, b]) = \{c, d\}$$

Proof. If $\varphi([a, b]) = \{c, d\}$ then φ is obviously an extreme point. Suppose now that $\varphi \in ex(C)$. We begin with the simple statement that on [0, 1] all functions $f_{\alpha}(x) := x + \alpha(x - x^2)$, for $|\alpha| \leq 1$, are strictly increasing from 0 to 1. If $\varphi \in C$ then $\psi := (\varphi - c)/(d - c)$ increases on [a, b] from 0 to 1, hence $\psi_{\alpha} := f_{\alpha} \circ \psi$ has the same property. So $\varphi_{\alpha} := (d - c)\psi_{\alpha} + c$ increases from c to d, i.e. $\varphi_{\alpha} \in C$ for $|\alpha| \leq 1$; note that $\varphi = \varphi_0$. Now $\psi = \frac{1}{2}(\psi_{\alpha} + \psi_{-\alpha})$ and $\varphi = \frac{1}{2}(\varphi_{\alpha} + \varphi_{-\alpha})$ which shows that φ is not extreme if $\varphi \neq \varphi_{\alpha}$. We note the equivalences (for $\alpha \neq 0$)

$$\begin{split} \varphi &= \varphi_{\alpha} & \iff \psi = \psi_{\alpha} \Longleftrightarrow f_{\alpha}(\psi(t)) = \psi(t) \quad \forall \ t \in [a, b] \\ & \iff \psi([a, b]) = \{0, 1\} \\ & \iff \varphi([a, b]) = \{c, d\} \ . \end{split}$$

Hence $\varphi \in ex(C) \Longrightarrow \varphi = \varphi_{\alpha} \Longrightarrow \varphi([a, b]) = \{c, d\}$, which was the assertion. \Box

Remarks.

- 1.) If φ is right-continuous so are the φ_{α} .
- 2.) Since $|f_{\alpha}(x) x| \leq |\alpha|/4$ we get the uniform estimate $||\varphi_{\alpha} \varphi|| \leq (d-c) \cdot |\alpha|/4$.
- 3.) $\varphi_{\alpha} \geq \varphi$ for $\alpha \geq 0$, $\varphi_{\alpha} \leq \varphi$ for $\alpha \leq 0$.

Both the classes of subdiagonal as well as almost uniform distributions being defined via their distribution functions, we will now work directly with these and consider \mathcal{K} as those distribution functions F on [0, 1] for which $F \leq id$. Theorem 2 in [1] can then be reformulated as

$$\mathcal{W} = \{ F \in \mathcal{K} \mid F \circ F = F \} .$$

The announced result is the following:

Theorem. $ex(\mathcal{K}) = \mathcal{W}$.

Proof. " \supseteq ": Let $F \in \mathcal{W}$, $G, H \in \mathcal{K}$ such that $F = \frac{1}{2}(G + H)$. We now make use of the particular "shape" of almost uniform distribution functions: either t is a "diagonal point" of F, i.e. F(t) = t, or t is contained in a "flat" of F, i.e. in an interval]a, b[on which F has the constant value a, cf. Lemma 2 in [1]. If F(t) = t then certainly G(t) = H(t) = t as well. If t is in the flat]a, b[of F then

$$F(t) = a = F(a) = G(a) = H(a)$$

so $G(t) \ge a$ and $H(t) \ge a$ and therefore G(t) = a = H(t). We see that F = G = H, i.e. $F \in ex(\mathcal{K})$.

" \subseteq ": Assume $F \in \mathcal{K}$ and $F \circ F \neq F$; we want to show that $F \notin ex(\mathcal{K})$. There is some $s \in [0,1]$ such that F(F(s)) < F(s), implying 0 < s < 1 and F(s) < s. We may and do assume that F(t) < F(s) for all t < s, otherwise with $s_0 := \inf\{t < s | F(t) = F(s)\}$ we would still have

$$F(F(s_0)) = F(F(s)) < F(s) = F(s_0)$$
.

We shall first consider the case that F is constant in a right neighbourhood of s, i.e. for some $v \in]s, 1]$ we have $F|[s, v] \equiv F(s)$, and again we may and do assume that v is maximal with this property, i.e. F(v) > F(s). If F(s-) < F(s), then for sufficiently small $\varepsilon > 0$

$$G_{\pm}(t) := \begin{cases} F(t) \pm \varepsilon, \ t \in [s, v[\\ F(t), \ \text{else} \end{cases}$$

are both subdiagonal, and $F = \frac{1}{2}(G_+ + G_-)$, so $F \notin ex(\mathcal{K})$. If F(s-) = F(s) we put u := F(s) and have a non-degenerate interval [u, s] on which F increases from F(u) to u, and with $F([u, s]) \stackrel{\supset}{\neq} \{F(u), F(s)\}$ since F(t) < F(s) for t < s. We apply the Lemma and Remark 1 to F|[u, s] and get right-continuous functions $F_{\alpha} : [u, s] \longrightarrow [F(u), u]$ increasing from F(u) to u, $|\alpha| \leq 1$, for which $F_{\alpha} \neq F$ if $\alpha \neq 0$. Put

$$G_{\alpha}(t) := \begin{cases} F_{\alpha}(t), & t \in [u, s] \\ F(t), & \text{else} \end{cases}$$

then G_{α} is a distribution function for $|\alpha| \leq 1$. Since $F = \frac{1}{2}(G_{\alpha} + G_{-\alpha})$ we are done once we know that G_{α} is subdiagonal for sufficiently small $|\alpha|$. For this to hold we only need to know that

(*)
$$\inf_{u \le t \le s} (t - F(t)) > 0$$
,

cf. Remark 2. Now by right continuity there is some $t_0 \in]u, s[$ such that $F(t_0) \leq \frac{1}{2}(u+F(u))$, i.e.

$$t - F(t) \ge u - \frac{u + F(u)}{2} = \frac{u - F(u)}{2} > 0$$

for $t \in [u, t_0]$; and for $t \in [t_0, s]$ we have $F(t) \leq F(s) = u$ and so $t - F(t) \geq t - u \geq t_0 - u$. Together this gives (*).

It remains to consider the case F(t) > F(s) for t > s. Choose $v \in]s, 1[$ such that $F(v) < \frac{1}{2}(s+F(s))$. Then again F increases on [s,v] from F(s) to F(v) and $F([s,v]) \stackrel{\supset}{\neq} \{F(s), F(v)\}$ as well as

$$\inf_{s \le t \le v} (t - F(t)) \ge s - F(v) > \frac{s - F(s)}{2} > 0 ,$$

so that another application of the Lemma shows F to be not extreme in \mathcal{K} . \Box

In order to see that \mathcal{K} is not a simplex, consider the following four almost uniform distribution functions $F_1, ..., F_4$, determined by their resp. set of diagonal points $D_1, ..., D_4$:

$$D_1 := \{0, 1\} \cup \left[\frac{1}{4}, \frac{3}{4}\right]$$
$$D_2 := \left[0, \frac{1}{4}\right] \cup \left\{\frac{1}{2}\right\} \cup \left[\frac{3}{4}, 1\right]$$
$$D_3 := \left[0, \frac{1}{4}\right] \cup \left[\frac{1}{2}, \frac{3}{4}\right] \cup \left\{1\right\}$$
$$D_4 := \{0\} \cup \left[\frac{1}{4}, \frac{1}{2}\right] \cup \left[\frac{3}{4}, 1\right] .$$

Then

$$\frac{1}{2}(F_1 + F_2) = \frac{1}{2}(F_3 + F_4) = \frac{1}{2}id + \frac{1}{8}\left(1_{\left[\frac{1}{4},1\right]} + 1_{\left[\frac{1}{2},1\right]} + 1_{\left[\frac{3}{4},1\right]} + 1_{\left\{1\right\}}\right) \in \mathcal{K} ,$$

so the integral representation in \mathcal{K} is not unique.

Let us shortly describe the connection of the above theorem to exchangeable random orders. A (total) order (on \mathbb{N} always) is a subset $V \subseteq \mathbb{N} \times \mathbb{N}$) with $(j, j) \in V$ for all $j \in \mathbb{N}$, with $(i, j), (j, k) \in V \Longrightarrow (i, k) \in V$, and such that either (j, k) or $(k, j) \in V$ for all $j, k \in \mathbb{N}$. The set \mathcal{V} of all total orders is compact and metrisable in its natural topology, and a probability measure μ on \mathcal{V} is called exchangeable if it is invariant under the canonical action of all finite permutations of \mathbb{N} (see [1] for a more detailed description). A particular class of such measures arises in this way: let X_1, X_2, \ldots be an iid–sequence with a distribution $w \in \mathcal{W}$. For any $\emptyset \neq U \subseteq \mathbb{N}^2$ put

$$\mu_w(\{V \in \mathcal{V} | U \subseteq V\}) := P(X_j \le X_k \ \forall \ (j,k) \in U)$$

This defines (uniquely) an exchangeable random total order, and the main result in [1] shows that $\{\mu_w | w \in \mathcal{W}\}$ is the extreme boundary of the compact and convex set of all exchangeable random total orders (on \mathbb{N}), which furthermore is a simplex.

Now, given some exchangeable random total order $\,\mu$, there is a unique probability measure $\nu\,$ on $\,\mathcal{W}\,$ such that

$$\mu = \int \mu_w \, d\nu(w)$$

and ν determines the subdiagonal distribution

$$\overline{\nu}(B) := \int w(B) \, d\nu(w), \quad B \in \mathcal{I} \mathcal{B} \cap [0,1] \,,$$

which in a way is the "first moment measure" of ν .

One might believe that only very "simple" probability values depend on ν via $\overline{\nu}$, but in fact, due to the defining property of almost uniform distributions, also many "higher order" probabilities have this property. For example

$$\mu(1 \leq 2) = \mu(\{V \in \mathcal{V} | (1,2) \in V\})$$

$$= \int \mu_w (1 \leq 2) \, d\nu(w)$$

$$= \int w \otimes w(X_1 \leq X_2) \, d\nu(w)$$

$$= \int \int w(X_1 \leq x_2) \, dw(x_2) \, d\nu(w)$$

$$= \int \int x_2 \, dw(x_2) \, d\nu(w)$$

$$= \int_0^1 x \, d\bar{\nu}(x) ,$$

where $X_1, X_2: [0,1]^2 \longrightarrow [0,1]$ denote the two projections.

More generally, for different $\;j,j_1,...,j_n\in\mathbb{N}$

$$\mu(j_1 \leq j, j_2 \leq j, ..., j_n \leq j)$$

$$= \mu(\{V \in \mathcal{V} | (j_i, j) \in V \text{ for } i = 1, ..., n\})$$

$$= \int w^{n+1}(X_{j_1} \leq X_j, ..., X_{j_n} \leq X_j) d\nu(w)$$

$$= \int \int w^n(X_{j_1} \leq x, ..., X_{j_n} \leq x) dw(x) d\nu(w)$$

$$= \int \int (w([0, x]))^n dw(x) d\nu(w)$$

$$= \int \int x^n dw(x) d\nu(w)$$

$$= \int_0^1 x^n d\bar{\nu}(x)$$

still is a function of $\,\bar{\nu}\,.$

References.

 Hirth, U. and Ressel, P.: Exchangeable Random Orders and Almost Uniform Distributions. J. Theoretical Probability, Vol. 13 nº 3, 2000, pp. 609 - 634.