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Abstract

In Aldous and Shields (1988) a model for a rooted, growing random binary tree with edge lengths

1 was presented. For some c > 0, an external vertex splits at rate c−i (and becomes internal) if

its distance from the root (depth) is i. We reanalyse the tree profile for c > 1, i.e. the numbers of

external vertices in depth i = 1,2, .... Our main result are concrete formulas for the expectation

and covariance-structure of the profile. In addition, we present the application of the model to

cellular ageing. Here, we say that nodes in depth h+ 1 are senescent, i.e. do not split. We obtain

a limit result for the proportion of non-senesced vertices for large h.

1 Introduction

Trees arise in several applied sciences: In linguistics and biology, trees describe the relationship

of items (languages, species) and in computer science, trees are used as data structures, e.g.

for sorting. Randomizing the input leads to random trees, which are subject of a large body of

research. For applications in biology, see e.g. [6, 14]. Here, important examples are trees arising

from branching processes (e.g. Yule trees). In computer science, prominent examples are search

trees; see e.g. [18, 10].

In this note, we are concerned with an application of random trees to cellular biology. In the

1960s it was known that eukaryotic cells have a limited replication capacity ([16]). The number

of generations until cells do not proliferate any more is today known as the Hayflick limit and the

phenomenon that cells lose their ability to proliferate is called cellular senescence. The molecular

bases for cellular senescence were uncovered starting in the 1970s. During each round of repli-

cation, the telomeres (which are the end part of each chromosome) are shortened due to physical
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476 2 MODEL AND RESULTS

constraints of the DNA copying mechanism [20]. In humans, these telomeres are a multiple (i.e.

more than 1000-fold) repetition of the base pairs TTAGGG and up to 200 bases are lost in each

replication round [17]. Most importantly, telomeres have a stabilizing effect on the DNA. The

DNA repair mechanism of a cell must be able to distinguish between usual DNA breaks (which it

is assumed to repair) and the telomeres (which it is assumed to ignore). Hence, when telomeres

become shorter this stabilizing effect seizes and ageing occurs. In human cells, telomeres shrink

from 15 kilobases at birth to less than 5 kilobases during a lifetime [24]. However, the enzyme

telomerase can decrease the loss of telomeres during replication. This enzyme is active in stem

cells and cancer cells, which both are cell types with an (almost) unbounded replication potential.

The deeper understanding of the role of telomeres and telomerase is an active field of research

because of the medical implications for ageing and cancer. In particular, it was awarded the Nobel

prize in medicine in 2009 [25].

We study the model of random trees introduced in Aldous and Shields in [1] (hereafter referred

to as [AS]) and extend it for an application to cellular ageing. Given some c > 0 and a full binary

tree T, the model introduced in [AS] describes the evolution of the vertices of the tree. Here,

we distinguish internal and external vertices. At t = 0, the root is the only external vertex (and

there are no internal vertices). An external vertex u ∈ T in depth |u| becomes internal at rate c−|u|.
At the time it becomes internal, the two daughter vertices in depth |u|+ 1 become external. We

present our results on the Aldous-Shields model in Theorem 1.

For our application to cellular senescence, we will analyze a relative of the Aldous-Shields model

for c > 1. Here, a critical depth h is fixed, and only external vertices in depth at most h can become

internal. External vertices in depth h+ 1 never become internal. Hereby, external vertices can be

thought of as cells. The depth of a vertex is the number of generations from the first cell. Vertices

in depth at most h represent proliferating cells, because they are able to produce offspring (i.e.

daughter cells). Vertices in depth h+ 1 represent senescent cells. This model has two features,

which appear to be realistic in cellular senescence. First, the rate of cell proliferation decreases

with the generation of a cell, parameterized by c > 1. Second, cells which have already split too

often lose their ability to proliferate at all. For this model, we obtain a limit result for the frequency

of proliferating cells in Theorem 2.

The paper is organized as follows: In Section 2, we state our results on the Aldous-Shields model.

The application to cellular senescence is carried out in Section 3, where we also give an overview

of other models for cellular senescence in the literature. Section 4 contains the proofs for our

results on the Aldous-Shields model (Theorem 1), and in Section 5, we give proofs for the results

on the model of cellular ageing (Theorem 2).

2 Model and results

We start by introducing some notation. Let T be the complete binary tree, given through

T =

∞⋃

n=0

Tn

and

T0 = {;}, Tn = {0,1}n for n= 1,2, ...
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We refer to elements in T by vertices and identify u ∈ Tn by a word of length n over the alphabet

{0,1}, whose ith letter is ui , n ≥ 1. The vertex ; is the root of the tree and vertex u ∈ T has two

daughter vertices, u0 and u1. (We make the convention that ;0 := 0,;1 := 1.) For u ∈ T we set

|u|= n iff u ∈ Tn.

We say that u is an ancestor of v if |u|< |v| and there are i1, ..., i|v|−|u| ∈ {0,1}with v = ui1 · · · i|v|−|u|.
This induces a partial order on T if we write u≺ v iff u is ancestor of v.

Definition 2.1 (Aldous-Shields model). Fix c > 0. The (time-continuous) Aldous-Shields model

with parameter c is a a Markov jump process Y = (Y (t))t≥0, Y (t) = (Yu(t))u∈T with state space

{0,1}T, starting in Y (0) = (1u=;)u∈T. Given Y (t) = y ∈ {0,1}T and u ∈ T with yu = 1, it jumps to

(eyv)v∈T, given by

eyv =





0, v = u,

1, v = u0 or v = u1,

yv , else,

at rate c−|u|. In this case, we say that vertex u splits.

Remark 2.2 (Internal and external vertices). Let Y = (Y (t))t≥0 be the Aldous-Shields model

and Y = Y (t) for some t ≥ 0. It is important to note that the dynamics is such that any path

;, i1, i1i2, ... ∈ T with i1, i2, ... ∈ {0,1}, starting at the root, has exactly one element u with Yu = 1.

In particular, the sets

{u : there is v with u≺ v and Yv = 1}
of internal vertices and

{u : Yu = 1}
of external vertices are disjoint.

Definition 2.3 (Profile). Let Y = (Y (t))t≥0 be the Aldous-Shields model and Y = Y (t) for some

t ≥ 0. We define

Xn :=
∑

u∈Tn

Yu, bXn := 2−nXn, (2.1)

the total number of external vertices and the relative proportion of external vertices in depth n,

respectively. The vector (Xn)n=0,1,2,... is also called the profile and

X =

∞∑

n=0

Xn

is the total number of external vertices.

Remark 2.4 (Dependence on c). The behaviour of the Aldous-Shields model strongly depends on

c: A larger c implies the profile being more concentrated around certain depths. The reason is that

the difference in the splitting rate between external vertices at different depths is increasing in c.

Therefore, external vertices in smaller depth can easily catch up with external vertices in larger

depth for large c. See Figure 1 for an illustration.

Two values of c are of particular importance in applications from computer science: for c = 1, and

if X = n, the set of external vertices is a binary search tree with n external vertices. For c = 2 and

X = n, the set of external vertices is a digital search tree with n external vertices; see e.g. [10].
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Figure 1: Two realizations of the Aldous-Shields model at the time when 500 vertices are external

for c = 1.05 (A) and c = 3 (B). Only depths 0, ..., 10 are drawn and the external vertices are

marked.

Remark 2.5 (Relative frequencies). We observe that

∞∑

n=0

bXn(t) = 1 (2.2)

for all t, almost surely. To see this, note that bX0(0) = 1 and bXn(0) = 0 for n > 0, i.e. (2.2) holds

at t = 0. Additionally, assume that some u with |u| = n splits at time t. Then, we have that
bXn(t) − bXn(t−) = −2−n and bXn+1(t) − bXn+1(t−) = 2 · 2−(n+1) = 2−n. In particular, every split

leaves
∑∞

n=0
bXn unchanged which shows (2.2).

Remark 2.6 (Notation). In our results, we will give asymptotics of moments of Xn+i(tcn) for

large n. Generally, for two sequences (xn)n=1,2,... and (yn)n=1,2,..., which may depend on other

parameters, we write

xn

n→∞≈ yn ⇐⇒ lim
n→∞

xn

yn

= 1.

In our exposition, several products appear. Throughout, we take the convention that an empty

product equals 1.

Theorem 1 (Moments of the profile and their limits). Let c > 1. Define for k ∈ Z+

ak = (−1)k
ck

(c − 1) · · · (ck − 1)
, bk :=

c1 · · · ck

(c − 1) · · · (ck − 1)
(2.3)

and a0 = b0 = 1. For k < 0, we set ak = bk = 0. Moreover,

b∞ :=
� ∞∏

l=1

(1− c−l)
�−1

∈ (1;∞).
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Then, for t > 0 and i >−n,

E[Xn+i(tcn)] = 2n+i ·
n∑

k=0

ak bn−ke−c−i+k t n→∞≈ b∞ · 2n+i ·
∞∑

k=0

ake−c−i+k t . (2.4)

Moreover, for i, i′ ∈ Z, i ≤ i′,

COV[Xn+i(tcn), Xn+i′(tcn)]
n→∞≈ ai,i′ ·





2

2− c2

�2
c

�2n+i+i′

, c <
p

2

2nn
p

2
i+i′

, c =
p

2,

c4

2(c2 − 1)(c2 − 2)
2n+i′ c i−i′ , c >

p
2.

(2.5)

where

ai,i′ := b2
∞

∞∑

k,k′=0

akak′ e
−c−i+k−c−i′+k′ t ck+k′ . (2.6)

Remark 2.7 (Convergence and covariance). 1. It is immediate from the Theorem and the def-

inition of bXn that limn→∞V[bXn+i(tcn)] = 0 and hence

lim
n→∞
bXn+i(tcn) = b∞ ·

∞∑

k=0

ake−c−i+k t (2.7)

in probability, for all t > 0 and all c > 1.

2. The covariances given in (2.5) show a phase transition at c =
p

2. Such a phase transition

is already known from results by [AS] and [9]. However, these papers do not give explicit

formulas for the covariance structure.

3. Using (4.4), (4.6) and (4.10) it is also possible to obtain exact results for the covariance on

the left hand side of (2.5).

Remark 2.8 (Connection to results from Aldous and Shields (1988)). In [AS], the evolution of

the vector (bXn(t))n=0,1,2,... is studied. In their Theorems, a law of large numbers for Xn(t) to some

deterministic limit xn(t) is stated and proved using martingale methods. Their result implies that

(2.7) holds even almost surely on compact time intervals. In particular, they claim that the limit

x i(t) of bXn+i(tcn) must satisfy x i(t) = x i+1(c t), which clearly holds for the right hand side of

(2.7). In addition, they show that a suitably rescaled process, 2n/2(bXn+i(t)− x i(t))t≥0, converges

weakly to a diffusion for c >
p

2. The rescaling factor 2n/2 can also be recognized in the above

Theorem. Moreover, (2.5) shows that a convergence of cn(bXn+i(t)− x i(t))t≥0 to a diffusion can

be conjectured for 1< c <
p

2.

Remark 2.9 (Comparison to work of Dean and Majumdar (2006)). In [9], the total number X

of external vertices was studied in the context of the Aldous-Shields model on an m-ary tree. In

the binary case, a functional equation (their equation (2)) for the Laplace transform of X (t) was

shown to hold true. This equation uses the following fact: Given that T is the random time of the

first split in the model, it is clear that T is mean one exponential and, in addition,

X (t)
d
= 1T≥t + 1T≤t

�
X ′
� t−T

c

�
+ X ′′
� t−T

c

��

where X ′ and X ′′ are independent of T and of each other and distributed like X . From their

identity on Laplace transforms, [9] show the phase transition for the variance of the number of

occupied vertices at c =
p

2, which is also seen from Theorem 1.
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3 Application: cellular ageing

The first mathematical model for cellular senescence was given in [17]. It takes several biological

facts into account. When DNA is copied, the double helix is unfolded and both strands of DNA

are copied. Only in one of the two strands there are physical constraints by which the end of

a chromosome cannot be perfectly copied. This shortening of telomeres is independent for all

chromosomes. In [17], it is assumed that (i) the telomeres are of fixed length, (ii) they decrease by

a fixed length at each proliferation event for one of the daughter cells and (iii) proliferation occurs

along a full binary tree. If the telomere length of a single chromosome falls below a threshold, a

cell cannot replicate any more and becomes senescent. This threshold takes the Hayflick limit into

account, which states that a cell line can only live for a limited number of generations before it

becomes senescent.

The model in [17] was extended in several directions. A stochastic amount of loss of telomeres

was studied in [2]. In [3] and [19], the binary tree of proliferating cells considered in [17] was

replaced by the tree of a branching process. In particular, [19] included cell death into their model,

with different death rates above and below a critical threshold of telomere length. Age structure of

cells (i.e. structure which phase of the cell cycle the cell is in) is considered in [11, 12]. Moreover,

[4] extends the model of [17] by making telomerase activity (which is present in stem cells and

cancer cells) explicit.

The idea to use the Aldous-Shields model for cellular ageing was influenced by the following

recent results:

1. In [7], a model is proposed which distinguishes two states of telomeres: capped and un-

capped. Only in the capped state, proliferation of the cell is still possible. In somatic cells, an

uncapped telomere cannot be transformed to the capped state any more leading to senesced

cells; see [22]. In stem and tumor cells, telomerase is (among other things) responsible for

transitions from uncapped back to capped telomeres. Following [23], the transition rate of

the uncapped to the capped state in stem cell decreases with shorter telomeres.

2. In data, it has been observed that proliferating cells can behave differently. Motivated by

data from [5, 8, 15], it is argued in [21] that the rate of proliferation decreases for shorter

telomeres. Their model produces a Gompertzian growth model which is known to fit to

empirical data for somatic and tumor cells.

In stem cells, the decreasing rate for an uncapped telomere to re-enter the capped state for shorter

telomeres follows the behaviour of the Aldous-Shields model as shown in [23] remarkably well:

cells with a long replicative history proliferate slower. While [21] uses a linear decrease in repli-

cation rate, depending on the telomere length, the Aldous-Shields model uses a geometric decay

of the proliferation rate.

Note that short telomeres can be seen as a form of damage. In [13], models for cellular damage

were introduced. In their model, cells pass on damage to the daughter cells. This model, as well

as the Aldous-Shields model are among the analytically tractable ones.

We state our model of cellular ageing:

Definition 3.1. Fix h ∈ N, r > 0 and c > 1 and let Th :=
⋃h+1

n=0
Tn. The processZ = (Z(t))t≥0, where

Z(t) = (Zu(t))u∈Th is a Markov jump process with state space {0,1}Th

, starting in Z(0) = (1u=;)u∈Th .
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Given Z(t) = z ∈ {0,1}Th

and u ∈ Th \Th+1 with zu = 1, it jumps to (ezv)v∈T, given by

ezv =





0, v = u,

1, v = u0 or v = u1,

zv , else,

at rate rc−|u|. (Note that vertices u ∈ Th+1 do not split.)

Informally, every external vertex u in this process represents a cell. If |u| = n, we say that the cell

is in generation n. The process starts with a single mother cell. It proliferates at rate r. All cells

up to generation h from the mother cell follow the usual dynamics of the Aldous-Shields model

(with time rescaled by a factor of r), such that cells in generation n proliferate at rate r · c−n. If a

cell is in generation h+ 1 from the mother cell, its telomeres have reached the Hayflick limit and

the cell is not able to proliferate any more.

Definition 3.2 (Relative frequency of proliferating cells). In applications, the relative frequency of

proliferating cells,

L(t) :=
Z p(t)

Z p(t) + Z s(t)
(3.1)

with

Z p(t) :=
∑

u∈Th\Th+1

Zu(t), Z s(t) :=
∑

u∈Th+1

Zu(t),

is of particular importance. Here, Z p(t) and Z s(t) is the number of proliferating and senescent cells

at time t, respectively.

Theorem 2 (Frequency of replicating cells). For Z and L as in Definition 3.1 and 3.2,

lim
h→∞

L(tch) =

∑∞
i=0

∑∞
k=0

2−iake−c i+k t/r

∑∞
i=0

∑∞
k=0

ak(2
−ie−c i+k t/r + 2e−c−i−1+k t/r)

(3.2)

in probability, for all t > 0.

Remark 3.3 (Simulations). In our model for cellular senescence, Theorem 2 describes the de-

crease in the frequency of proliferating cells. This frequency has been measured empirically; see

e.g. [4, Figure 5] and [3, Figure 2]. As can be seen from the Theorem, every c gives a specific

curve of decrease; see also Figure 2. These curves can be fit to data in order to estimate c. As the

figure shows, the limiting result of Theorem 2 already gives a good fit for simulations which use

h= 20.

4 Proof of Theorem 1

4.1 Preliminaries

The key ingredient in the proof is the quantity

yn(t) := E[Y0n
(t)] with 0n := 0 · · ·0︸ ︷︷ ︸

n times

. (4.1)
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Figure 2: The decrease of the frequency of proliferating cells strongly depends on c. The figure

shows simulations for c = 1.2,1.3,1.5 and h= 20. The grey lines show the limit result (3.2) from

Theorem 2 with r = 1.

Note that the dynamics of (Y0n
)n=0,1,2,... (taking values in {0,1}{0,1,2,...} with only one entry being 1)

is autonomous. It is given by the following rule: if Y0n
(t) = 1, then, at rate c−n a transition occurs

to the configuration Y0n
(t) = 0, Y0n+1

(t) = 1. From the dynamics of the Aldous-Shields model, it is

clear that y(t) = (yn(t))n=0,1,2,... follows the differential equations

ẏn = c−(n−1) yn−1 − c−n yn, n≥ 0 (4.2)

with y−1 = 0; compare (2.1) in [AS]. We rewrite the equation to obtain

ẏ = C y

with

C =




−1

1 −c−1

c−1 −c−2

c−2 −c−3

c−3 −c−4

c−4 −c−5

· · · · · ·




Our first Lemma provides essential facts about the matrix C . Recall ak and bk from (2.3).

Lemma 4.1. Let A= (ai j)i, j=0,1,2,... and B = (bi j)i, j=0,1,2,... be given by

ai j := ai− j , bi j := bi− j .

The matrix A contains the eigenvectors of C to the eigenvalues λi = −c−i , i = 0,1,2, ... and A and B

are inverse to each other.
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Proof. To see that A contains the eigenvectors of C , note that for i ≥ j

(CA)i j = c−i+1ai−1− j − c−iai− j = (c
−i+1

1− c i− j

c
− c−i) ai− j = −c− jai− j .

To see that A and B are inverse to each other, it follows from the definition of ak and bk that

(BA)ii = a0 · b0 = 1 and (BA)i j = 0 for i < j.

For i > j, we set n := i − j > 0 and obtain

(BA)i j =

i∑

k= j

bi−kak− j =

n+ j∑

k= j

b j+n−kak− j =

n∑

k=0

bn−kak

=

n∑

k=0

(−1)k
c · · · cn−k · ck

(c − 1) · · · (cn−k − 1) · (c − 1) · · · (ck − 1)

=
cn

(c − 1) · · · (cn − 1)

n∑

k=0

(−1)k
c1+···+(n−k−1)

(c − 1) · · · (cn−k − 1)
(ck+1 − 1) · · · (cn − 1)

=
(−c)n

(c − 1) · · · (cn − 1)

n∑

k=0

(−1)k
c(

k

2)

(c − 1) · · · (ck − 1)
(cn−k+1 − 1) · · · (cn − 1),

where we have reversed the order of the summands in the last equality. We rewrite the product

(c l − 1) · · · (c l ′ − 1) =
l ′∏

j=l

(c j − 1) = 1 for l > l ′ and claim that for all n> 0

n∑

k=0

(−1)k
c(

k

2)

(c − 1) · · · (ck − 1)
(cn−k+1 − 1) · · · (cn − 1) = 0 (4.3)

which implies that A and B are inverse to each other. We use induction and note that the assertion

is clear for n= 1. Given it is true for n, we have

n+1∑

k=0

(−1)k
c(

k

2)

(c − 1) · · · (ck − 1)
(cn−k+2 − 1) · · · (cn+1 − 1)

= 1+

n+1∑

k=1

(−1)k
c(

k

2)

(c − 1) · · · (ck − 1)
(cn−k+2 − 1) · · · (cn − 1)[(cn+1 − cn+1−k) + (cn−k+1 − 1)]

=

n+1∑

k=1

(−1)k
c(

k

2)

(c − 1) · · · (ck − 1)
cn+1−k(ck − 1)(cn−k+2 − 1) · · · (cn − 1)

= −
n+1∑

k=1

(−1)k−1
c(

k−1

2 )ck

(c − 1) · · · (ck−1 − 1)
cn+1c−k(cn−k+2 − 1) · · · (cn − 1)

= −cn+1

n+1∑

k=1

(−1)k−1
c(

k−1

2 )

(c − 1) · · · (ck−1 − 1)
(cn−(k−1)+1 − 1) · · · (cn − 1) = 0

where we have used the induction hypothesis in the second and in the last equality. Hence, we

have shown (4.3) and the proof is complete.
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4.2 First order structure; proof of (2.4)

By linearity, we can now explicitly solve (4.2) using Lemma 4.1. Since A contains the eigenvalues

of C and A is inverse to B, we immediately write, using y(t) := (y0(t), y1(t), y2(t), ...) and D :=

diag(−1,−c−1,−c−2, ...)

�
2−n
E[Xn(t)]
�

n=0,1,2,... = y(t) = eC t y(0)† = AeDt B y(0)† = AeDt(b0, b1, ...)†

=
� n∑

k=0

an−k bke−c−k t
�

n=0,1,2,...

because z(0) = (1,0,0, ...) as the process starts with (Y (0)) = (1u=;)u∈T. We have shown the first

part of (2.4) and in order to prove the second part, fix i, k, t and note that n 7→ |ak|bn+i−ke−c−i+k t

is increasing with a summable limit. Hence, by dominated convergence,

yn+i(tcn) =

∞∑

k=0

ak bn+i−ke−c−n−i+k tcn n→∞≈ b∞

∞∑

k=0

ake−c−i+k t .

4.3 Second order structure; proof of (2.5)

Now we come to the second order structure. Similar to the definition of yn in (4.1), we set for

n≤ n′

yn,n′,m(t) := COV[Y0n
(t), Y0m1n′−m

(t)] with 0m1n′−m := 0 · · ·0︸ ︷︷ ︸
m times

1 · · ·1︸ ︷︷ ︸
n′−m times

.

In order to see the connection of yn,n′,m(t) and COV[Xn(t), Xn′(t)], we define the depth of the

most recent common ancestor of u,u′ as

Mu,u′ := sup{|v| : v � u, v � u′}, u,u′ ∈ T,

where v � u if v ≺ u or v = u. Let U , U ′ be two random variables, where U is uniformly distributed

on Tn and U ′ uniformly distributed on Tn′ , independent of all the rest. The distribution of MU ,U ′

is given by (recall n≤ n′)

P[MU ,U ′ = m] = 2−((m+1)∧n), m= 0, ..., n.

We write

COV[Xn(t), Xn′(t)] =
∑

u∈Tn

∑

u′∈Tn′

�
E[Yu(t)Yu′(t)]−E[Yu(t)] ·E[Yu′(t)]

�

= 2n+n′
COV[YU(t), YU ′(t)]

= 2n+n′�
E
�
COV[YU(t), YU ′(t)|MU ,U ′]

�
+COV
�
E[YU |MU ,U ′],E[YU ′ |MU ,U ′]

��

= 2n+n′
E
�
COV[YU(t), YU ′(t)|MU ,U ′]

�

= 2n+n′
n∑

m=0

2−((m+1)∧n) yn,n′,m(t).

(4.4)

The second to last equality holds as E[YU |MU ,U ′] = E[YU] and E[YU ′ |MU ,U ′] = E[YU ′]. In order

to use the last expression, note that for yn,n′,m the vertices 0n and 0m1n′−m have the vertex 0m as
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their most recent common ancestor and so M0n,0m1n′−m
= m. We let Tm be the last time when Y0m

is external, equivalently the time when Y0m+1
becomes external, i.e. Tm is the sum of exponentials

with parameters 1, c−1, c−2, ..., c−m. Hence,

E[e−λTm] =

m∏

l=1

c−l

c−l +λ
=

m∏

l=1

1

1+λc l
. (4.5)

Using the last equations we now prove (2.5) in three steps. First, we give a representation of

yn,n′,m in terms of a functional of Tm. Second, we derive the asymptotics of yn+i,n+i′,m(tcn) for

large n using this representation. Last, we plug this asymptotics into (4.4).

Step 1 (Exact representation of yn,n′,m(t)). In this step we show that for m< n≤ n′

yn,n′,m(t) =

n−m∑

k=0

n′−m∑

k′=0

akak′ bn−m−k bn′−m−k′

·COV[e−c−n+k(t−Tm)1t≥Tm
, e−c−n′+k′ (t−Tm)1t≥Tm

]

(4.6)

and for m= n≤ n′

yn,n′,m(t) = δn,n′ yn(t)− yn(t)yn′(t), (4.7)

where δn,n′ is Kronecker’s δ.

Proof. For (4.6), observe that Y0n
(t) and Y0m1n′−m

(t) are independent, given Tm. Moreover, it is

clear that E[Y0n
(t)|Tm] = yn−m(c

−m(t − Tm))1t≥Tm
. Hence, by (2.4),

COV[Y0n
(t), Y0m1n′−m

(t)]

= E[COV[Y0n
(t), Y0m1n′−m

(t)|Tm]]

+COV[E[Y0n
(t)|Tm],E[Y0m1n′−m

(t)|Tm]]

= COV[yn−m(c
−m(t − Tm))1t≥Tm

, yn′−m(c
−m(t − Tm))1t≥Tm

]

=

n−m∑

k=0

n′−m∑

k′=0

akak′ bn−m−k bn′−m−k′COV[e
−c−n+k(t−Tm)1t≥Tm

, e−c−n′+k′ (t−Tm)1t≥Tm
].

For (4.7), note that m= n implies that Y0n
(t)Y0m1n′−m

(t) = δn,n′Y0n
(t) and the result follows.

Step 2 (Asymptotics of yn+i,n+i′,m(tcn) for large n). The aim of this step is to establish that for

i, i′ ∈ Z and m ∈ Z+,

yn+i,n+i′,m(tcn)
n→∞≈ b2

∞

∞∑

k=0

∞∑

k′=0

akak′ e
−t(c−i+k+c−i′+k′ )c−2n−i−i′+k+k′ c

2(m+1) − 1

c2 − 1
. (4.8)

Proof. For large n, we have tcn > Tm and so, by (4.6), (4.7) and dominated convergence,

yn+i,n+i′,m(tcn)
n→∞≈ b2

∞

∞∑

k=0

∞∑

k′=0

akak′COV[e
−c−n−i+k(tcn−Tm), e−c−n−i′+k′ (tcn−Tm)]

= b2
∞

∞∑

k=0

∞∑

k′=0

akak′ e
−t(c−i+k+c−i′+k′ )

COV[ec−n−i+k Tm , ec−n−i′+k′ Tm].

(4.9)
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Now, for all j, j′ ∈ Z, using (4.5), for n large enough,

COV[ec−n− j Tm , ec−n− j′ Tm]

=

m∏

l=0

1

1− c−n− j+l − c−n− j′+l
−

m∏

l=0

1

1− c−n− j+l − c−n− j′+l + c−2n− j− j′+2l

n→∞≈
m∏

l=0

(1+ c−n− j+l + c−n− j′+l + c−2n−2 j+2l + 2c−2n− j− j′+2l + c−2n−2 j′+2l)

−
m∏

l=0

(1+ c−n− j+l + c−n− j′+l + c−2n−2 j+2l + c−2n− j− j′+2l + c−2n−2 j′+2l)

n→∞≈
m∑

l=0

c−2n− j− j′+2l

= c−2n− j− j′ c
2(m+1) − 1

c2 − 1
.

(4.10)

Plugging the last expression into (4.9) gives (4.8).

Step 3 (Combining (4.8) and (4.4)). We write immediately, using j = i − k and j′ = i′ − k′,

COV[Xn+i(tcn), Xn+i′(tcn)]

n→∞≈ b2
∞

�2
c

�2n+i+i′ n+i+1∑

m=1

∞∑

k,k′=0

akak′ e
−t(c−i+k+c−i′+k′ )ck+k′2−m

c2m − 1

c2 − 1
.

(4.11)

Noting that
∑∞

k=0
|ak|ck <∞, we see that for ai,i′(t) given by (2.6)

COV[Xn+i(tcn), Xn+i′(tcn)]
n→∞≈ ai,i′(t)
�2

c

�2n+i+i′ n+i+1∑

m=1

2−m(c2m − 1)

c2 − 1

n→∞≈ ai,i′(t) ·





2

2− c2

�2
c

�2n+i+i′

, c <
p

2

2nn
p

2
i+i′

, c =
p

2,

c4

2(c2 − 1)(c2 − 2)
2n+i′ c i−i′ , c >

p
2.

This finally shows (2.5) and finishes the proof of Theorem 1.

5 Proof of Theorem 2

The parameter r is only a rescaling of time. Hence, we can safely assume r = 1 in our proof. Let

Y = (Y (t))t≥0 be the Aldous-Shields model with parameter c and Xn(t) as in (2.1). Defining

eXh+1(t) :=

∞∑

n=h+1

2h+1−nXn(t),



REFERENCES 487

it is important to note that

eXh+1(t) = #{u ∈ Th+1 : ∃v : u� v, Yv(t) = 1},

almost surely; see also Remark 2.5. This implies that we can couple Y and Z in the sense that

(X1(t), ..., Xh(t), eXh+1(t))t≥0

d
=
�∑

u∈T1

Zu(t), ...,
∑

u∈Th+1

Zu(t)
�

t≥0
.

By Theorem 1, for n≤ h and i = 0,1,2, ...

Z p(tch)
d
=

h∑

i=0

X i(tch) =

h∑

i=0

Xh−i(tch)
h→∞≈ b∞ · 2h

∞∑

i=0

∞∑

k=0

2−iake−c i+k t ,

Z s(tch)
d
= eXh+1(tch) =

∞∑

i=1

2−i+1Xh+i(tch)
h→∞≈ b∞ · 2h

∞∑

i=1

∞∑

k=0

2ake−c−i+k t

in probability, for all t > 0. Using the last two limits in the definition of L in (3.1) gives the result.

Acknowledgements

This research was supported by the BMBF through FRISYS (Kennzeichen 0313921).

References

[1] D. Aldous and P. Shields. A diffusion limit for a class of randomly-growing binary trees. Prob.

Theo. Rel. Fields, 79(4):509–542, 1988. MR0966174

[2] T. Antal, K. B. Blagoev, S. A. Trugman, and S. Redner. Aging and immortality in a cell

proliferation model. J. Theor. Biol., 248(3):411–417, 2007.

[3] O. Arino, M. Kimmel, and G. F. Webb. Mathematical modeling of the loss of telomere se-

quences. J. Theor. Biol., 177(1):45–57, 1995.

[4] N. Arkus. A mathematical model of cellular apoptosis and senescence through the dynamics

of telomere loss. J. Theor. Biol., 235(1):13–32, 2005. MR2139011

[5] Melissa A. Baxter, R. F. Wynn, S. N. Jowitt, J. Ed Wraith, L. J. Fairbairn, and I. Bellantuono.

Study of telomere length reveals rapid aging of human marrow stromal cells following in

vitro expansion. Stem Cells, 22(5):675–682, 2004.

[6] N. Berestycki. Recent progress in coalescent theory. Ensaios Matematicos, 16:1–193, 2009.

MR2574323

[7] E. H. Blackburn. Telomere states and cell fates. Nature, 408:53–56, 2000.

[8] M. Bonab, K. Alimoghaddam, F. Talebian, S. Ghaffari, A. Ghavamzadeh, and B. Nikbin. Aging

of mesenchymal stem cell in vitro. BMC Cell Biology, 7(1):14, 2006.

[9] D. S. Dean and S. N. Majumdar. Phase Transition in a Generalized Eden Growth Model on a

Tree. J. Stat. Phys., 124(6):1351–1376, 2006. MR2266447

http://www.ams.org/mathscinet-getitem?mr=0966174
http://www.ams.org/mathscinet-getitem?mr=2139011
http://www.ams.org/mathscinet-getitem?mr=2574323
http://www.ams.org/mathscinet-getitem?mr=2266447


488 REFERENCES

[10] M. Drmota. Random Trees. Springer, 2009. MR2484382

[11] J. Dyson, E. Sánchez, R. Villella-Bressan, and G. F. Webb. Stabilization of telomeres in non-

linear models of proliferating cell lines. J. Theor. Biol., 244(3):400–408, 2007. MR2293122

[12] J. Dyson, R. Villella-Bressan, and G. F. Webb. Asynchronous exponential growth in an age

structured population of proliferating and quiescent cells. Math. Biosci., 177-178:73–83,

2002. MR1923804

[13] S. N. Evans and D. Steinsaltz. Damage segregation at fissioning may increase growth rates:

A superprocess model. Theo. Pop. Biol., 71(4):473–490, 2007.

[14] J. Felsenstein. Inferring Phylogenies. Palgrave Macmillan, 2002.

[15] N. Gupta, R. Taneja, A. Pandey, M. Mukesh, H. Singh, and S. C. Gupta. Replicative senes-

cence, telomere shortening and cell proliferation rate in gaddi goat’s skin fibroblast cell line.

Cell Biol. Int., 31:1257–1264, 2007.

[16] L. Hayflick and P. S. Moorhead. The serial cultivation of human diploid cell strains. Exp. Cell

Res., 25:585–621, 1961.

[17] M. Z. Levy, R. C. Allsopp, A. B. Futcher, C. W. Greider, and C. B. Harley. Telomere end-

replication problem and cell aging. J. Mol. Biol., 225(4):951–960, 1992.

[18] R. Neininger. Stochastische Analyse von Algorithmen, Fixpunktgleichungen und ideale

Metriken, Habilitationsschrift, University of Frankfurt, 2004.

[19] P. Olofsson and M. Kimmel. Stochastic models of telomere shortening. Math. Biosci.,

158(1):75–92, 1999. MR1681442

[20] A. M. Olovnikov. Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol.,

31:443–448, 1996.

[21] R. D. Portugal, M. G. Land, and B. F. Svaiter. A computational model for telomere-dependent

cell-replicative aging. BioSystems, 91(1):262–267, 2008.

[22] C. J. Proctor and T. B. Kirkwood. Modelling cellular senescence as a result of telomere state.

Aging Cell, 2(3):151–157, 2003.

[23] I. A. Rodriguez-Brenes and C. S. Peskin. Quantitative theory of telomere length regulation

and cellular senescence. Proc. Natl. Acad. Sci., 107(12):5387–5392, 2010.

[24] J. W. Shay and W. E. Wright. Senescence and immortalization: role of telomeres and telom-

erase. Carcinogenesis, 26:867–874, 2005.

[25] G. Vogel, E. Pennisi, E. Blackburn, C. Greider, and J. Szostak. Physiology Nobel. U.S. Re-

searchers recognized for work on telomeres. Science, 326:212–213, 2009.

http://www.ams.org/mathscinet-getitem?mr=2484382
http://www.ams.org/mathscinet-getitem?mr=2293122
http://www.ams.org/mathscinet-getitem?mr=1923804
http://www.ams.org/mathscinet-getitem?mr=1681442

	1 Introduction
	2 Model and results
	3 Application: cellular ageing
	4 Proof of Theorem 1
	4.1 Preliminaries
	4.2 First order structure; proof of (2.4)
	4.3 Second order structure; proof of (2.5)

	5 Proof of Theorem 2
	References

