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Abstract

In this work, we approximate a diffusion process by its Euler scheme and we study the conver-
gence of the density of the marginal laws. We improve previous estimates especially for small
time.

1 Introduction

Let us consider a d-dimensional diffusion process (Xs)0≤s≤T and a q-dimensional Brownian
motion (Ws)0≤s≤T . X satisfies the following SDE

dXi
s = bi(s,Xs)ds +

q
∑

j=1

σij(s,Xs)dW j
s , Xi

0 = xi,∀i ∈ {1, · · · , d}. (1.1)

We approximate X by its Euler scheme with N (N ≥ 1) time steps, say XN , defined as follows.
We consider the regular grid {0 = t0 < t1 < · · · < tN = T} of the interval [0, T ], i.e. tk = k T

N .
We put XN

0 = x and for all i ∈ {1, · · · , d} we define

XN,i
u = XN,i

tk
+ bi(tk,XN

tk
)(u − tNk ) +

q
∑

j=1

σij(tk,XN
tk

)(W j
u − W j

tk
), for u ∈ [tk, tk+1[. (1.2)
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The continuous Euler scheme is an Itô process verifying

XN
u = x +

∫ u

0

b(ϕ(s),XN
ϕ(s))ds +

∫ u

0

σ(ϕ(s),XN
ϕ(s))dWs

where ϕ(u) := sup{tk : tk ≤ u}. If σ is uniformly elliptic, the Markov process X admits a
transition probability density p(0, x; s, y). Concerning XN (which is not Markovian except at
times (tk)k), XN

s has a probability density pN (0, x; s, y), for any s > 0. We aim at proving
sharp estimates of the difference p(0, x; s, y) − pN (0, x; s, y).

It is well known (see Bally and Talay [2], Konakov and Mammen [5], Guyon [4]) that this
difference is of order 1

N . However, the known upper bounds of this difference are too rough for
small values of s. In this work, we provide tight upper bounds of |p(0, x; s, y) − pN (0, x; s, y)|
in s (see Theorem 2.3), so that we can estimate quantities like

E[f(XN
T )] − E[f(XT )] or E

[

∫ T

0

f(XN
ϕ(s))ds

]

− E

[

∫ T

0

f(Xs)ds

]

(1.3)

(without any regularity assumptions on f) more accurately than before (see Theorem 2.5).
For other applications, see Labart [7]. Unlike previous references, we allow b and σ to be
time-dependent and assume they are only C3 in space. Besides, we use Malliavin’s calculus
tools.

Background results

The difference p(0, x; s, y)− pN (0, x; s, y) has been studied a lot. We can found several results
in the literature on expansions w.r.t. N . First, we mention a result from Bally and Talay [2]
(Corollary 2.7). The authors assume

Hypothesis 1.1. σ is elliptic (with σ only depending on x) and b, σ are C∞(Rd) functions
whose derivatives of any order greater or equal to 1 are bounded.

By using Malliavin’s calculus, they show that

p(0, x;T, y) − pN (0, x;T, y) =
1

N
πT (x, y) +

1

N2
RN

T (x, y), (1.4)

with |πT (x, y)| + |RN
T (x, y)| ≤ K(T )

T α exp(−c |x−y|2

T ), where c > 0, α > 0 and K(·) is a non
decreasing function. We point out that α is unknown, which doesn’t enable to deduce the
behavior of p − pN when T → 0.

Besides that, Konakov and Mammen [5] have proposed an analytical approach based on the
so-called parametrix method to bound p(0, x; 1, y) − pN (0, x; 1, y) from above. They assume

Hypothesis 1.2. σ is elliptic and b, σ are C∞(Rd) functions whose derivatives of any order
are bounded.

For each pair (x, y) they get an expansion of arbitrary order j of pN (0, x; 1, y). The coefficients
of the expansion depend on N

p(0, x; 1, y) − pN (0, x; 1, y) =

j−1
∑

i=1

1

N i
πN,i(0, x; 1, y) + O(

1

N j
). (1.5)
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The coefficients have Gaussian tails : for each i they find constants c1 > 0, c2 > 0 s.t. for
all N ≥ 1 and all x, y ∈ R

d, |πN,i(0, x; 1, y)| ≤ c1 exp(−c2|x − y|2). To do so, they use upper
bounds for the partial derivatives of p (coming from Friedman [3]) and prove analogous results
on the derivatives of pN . Strong though this result may be, nothing is said when replacing 1
by t, for t → 0. That’s why we present now the work of Guyon [4].

Guyon [4] improves (1.4) and (1.5) in the following way.

Definition 1.3. Let Gl(R
d), l ∈ Z be the set of all measurable functions π : R

d×(0, 1]×R
d → R

s.t.

• for all t ∈ (0, 1], π(·; t, ·) is infinitely differentiable,

• for all α, β ∈ N
d, there exist two constants c1 ≥ 0 and c2 > 0 s.t. for all t ∈ (0, 1] and

x, y ∈ R
d,

|∂α
x ∂β

y π(x; t, y)| ≤ c1t
−(|α|+|β|+d+l)/2 exp(−c2|x − y|2/t).

Under Hypothesis 1.2 and for T = 1, the author has proved the following expansions

pN − p =
π

N
+

πN

N2
, (1.6)

pN − p =

j−1
∑

i=1

πN,i

N i
+

j
∑

i=2

(

t − ⌊Nt⌋
N

)i

π′
N,i +

π′′
N,j

N j
, (1.7)

where π ∈ G1(R
d) and (πN , N ≥ 1) is a bounded sequence in G4(R

d). For each i ≥ 1,
(πN,i, N ≥ 1) is a bounded family in G2i−2(R

d), and (π′
N,i, N ≥ 1), (π′′

N,i, N ≥ 1) are two

bounded families in G2i(R
d). These expansions can be seen as improvements of (1.4) and (1.5)

: it also allows infinite differentiations w.r.t. x and y and makes precise the way the coefficients
explode when t tends to 0.

As a consequence (see Guyon [4], Corollary 22), one gets

|p(0, x; s, y) − pN (0, x; s, y)| ≤ c1

Ns
d+2
2

e−c2
|x−y|2

s , (1.8)

for two positive constants c1 and c2, and for any x, y and s ≤ 1. This result should be compared
with the one of Theorem 2.3 (when T = 1), in which the upper bound is tighter (s has a smaller
power).

2 Main Results

Before stating the main result of the paper, we introduce the following notation

Definition 2.1. Ck,l
b denotes the set of continuously differentiable bounded functions φ :

(t, x) ∈ [0, T ] × R
d with uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to or-

der k (resp. up to order l).

The main result of the paper, whose proof is postponed to Section 4, is established under the
following Hypothesis
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Hypothesis 2.2. σ is uniformly elliptic, b and σ are in C1,3
b and ∂tσ is in C0,1

b .

Theorem 2.3. Assume Hypothesis 2.2. Then, there exist a constant c > 0 and a non de-
creasing function K, depending on the dimension d and on the upper bounds of σ, b and their
derivatives s.t. ∀(s, x, y) ∈]0, T ] × R

d × R
d, one has

|p(0, x; s, y) − pN (0, x; s, y)| ≤ K(T )T

Ns
d+1
2

exp

(

−c|x − y|2
s

)

.

Corollary 2.4. Assume Hypothesis 2.2. From the last inequality and Aronson’s inequality
(A.1), we deduce

∣

∣

∣

∣

p(0, x;T, x) − pN (0, x;T, x)

p(0, x;T, x)

∣

∣

∣

∣

≤ K(T )

N

√
T . (2.1)

This inequality yields p(0, x;T, x) ∼ pN (0, x;T, x) when T → 0.

Theorem 2.3 enables to bound quantities like in (1.3) in the following way

Theorem 2.5. Assume Hypothesis 2.2. For any function f such that |f(x)| ≤ c1e
c2|x|, it

holds

∣

∣E[f(XN
T )] − E[f(XT )]

∣

∣ ≤ c1e
c2|x|K(T )

√
T

N
,

∣

∣

∣

∣

∣

E

[

∫ T

0

f(XN
ϕ(s))ds

]

− E

[

∫ T

0

f(Xs)ds

]∣

∣

∣

∣

∣

≤ c1e
c2|x|K(T )

T

N
.

Had we used the results stated by Guyon [4] (and more precisely the one recalled in (1.8)),
we would have obtained E[f(XN

T )]−E[f(XT )] = O( 1
N ). Intuitively, this result is not optimal:

the right hand side doesn’t tend to 0 when T goes to 0 while it should. Analogously, regarding

E

[

∫ T

0
f(XN

ϕ(s))ds
]

− E

[

∫ T

0
f(Xϕ(s))ds

]

, we would obtain O(T ln N
N ) instead of O( T

N ).

Proof of Theorem 2.5. Writing E[f(XN
T )]−E[f(XT )] as

∫

Rd f(y)(pN (0, x;T, y)−p(0, x;T, y))dy
and using Theorem 2.3 yield the first result.

Concerning the second result, we split E

[

∫ T

0
(f(XN

ϕ(s)) − f(Xs))ds
]

in two terms :

E

[

∫ T

0
(f(XN

ϕ(s)) − f(Xϕ(s)))ds
]

and E

[

∫ T

0
(f(Xϕ(s)) − f(Xs))ds

]

. First, using Theorem 2.3

leads to
∣

∣

∣

∣

∣

E

[

∫ T

0

(f(XN
ϕ(s)) − f(Xϕ(s)))ds

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Rd

dy

∫ T

T
N

dsf(y)(pN (0, x;ϕ(s), y) − p(0, x;ϕ(s), y))

∣

∣

∣

∣

∣

,

≤ K(T )T

N
c1e

c2|x|

∫ T

T
N

ds
√

ϕ(s)
,

where we use the easy inequality
∫

Rd ec2|y| e
−c|x−y|2

s

sd/2 dy ≤ K(T )ec2|x|. Since ϕ(s) ≥ s − T
N , we

get
∣

∣

∣
E

[

∫ T

0
(f(XN

ϕ(s)) − f(Xϕ(s)))ds
]∣

∣

∣
≤ K(T )T 3/2

N c1e
c2|x|. Second, we write

∣

∣

∣

∣

∣

E

[

∫ T

0

(f(Xϕ(s)) − f(Xs))ds

]∣

∣

∣

∣

∣

≤ c1e
c2|x|

T

N
+

∫

Rd

dy

∫ T

T
N

dsc1e
c2|y|

∫ s

ϕ(s)

du|∂up(0, x;u, y)|.
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Then, Proposition A.2 yields
∣

∣

∣E

[

∫ T

0
(f(Xϕ(s)) − f(Xs))ds

]∣

∣

∣ ≤ c1e
c2|x|

(

T
N + C

∫ T
T
N

ln( s
ϕ(s) )ds

)

.

Moreover,
∫ T

T
N

ln( s
ϕ(s) )ds =

∑N−1
k=1

∫ tk+1

tk
ln( s

tk
)ds = T

N

∑N−1
k=1 ((k+1) ln(k+1

k )−1) ≤ C T
N , using

a second order Taylor expansion. This gives
∣

∣

∣
E

[

∫ T

0
(f(Xϕ(s)) − f(Xs))ds

]∣

∣

∣
≤ c1e

c2|x|K(T ) T
N .

In the next section, we give results related to Malliavin’s calculus, that will be useful for the
proof of Theorem 2.3.

3 Basic results on Malliavin’s calculus

We refer the reader to Nualart [8], for more details. Fix a filtered probability space
(Ω,F , (Ft), P) and let (Wt)t≥0 be a q-dimensional Brownian motion. For h(·) ∈ H =

L
2([0, T ], Rq), W (h) is the Wiener stochastic integral

∫ T

0
h(t)dWt. Let S denote the class

of random variables of the form F = f(W (h1), · · · ,W (hn)) where f is a C∞ function with
derivatives having a polynomial growth, (h1, · · · , hn) ∈ Hn and n ≥ 1. For F ∈ S, we define
its derivative DF = (DtF := (D1

t F, · · · ,Dq
t F ))t∈[0,T ] as the H valued random variable given

by

DtF =
n

∑

i=1

∂xi
f(W (h1), · · · ,W (hn))hi(t).

The operator D is closable as an operator from L
p(Ω) to L

p(Ω;H), for p ≥ 1. Its domain is
denoted by D

1,p w.r.t. the norm ‖F‖1,p = [E|F |p +E(‖DF‖p
H)]1/p. We can define the iteration

of the operator D, in such a way that for a smooth random variable F , the derivative DkF is
a random variable with values on H⊗k. As in the case k = 1, the operator Dk is closable from
S ⊂ L

p(Ω) into L
p(Ω;H⊗k), p ≥ 1. If we define the norm

‖F‖k,p = [E|F |p +

k
∑

j=1

E(
∥

∥DjF
∥

∥

p

H⊗j )]
1/p,

we denote its domain by D
k,p. Finally, set D

k,∞ = ∩p≥1D
k,p, and D

∞ = ∩k,p≥1D
k,p. One has

the following chain rule property

Proposition 3.1. Fix p ≥ 1. For f ∈ C1
b (Rd, R), and F = (F1, · · · , Fd)

∗ a random vector
whose components belong to D

1,p, f(F ) ∈ D
1,p and for t ≥ 0, one has Dt(f(F )) = f ′(F )DtF,

with the notation

DtF =







DtF1

...
DtFd






∈ R

d ⊗ R
q.

We now introduce the Skorohod integral δ, defined as the adjoint operator of D.

Proposition 3.2. δ is a linear operator on L
2([0, T ] × Ω, Rq) with values in L

2(Ω) s.t.

• the domain of δ (denoted by Dom(δ)) is the set of processes u ∈ L
2([0, T ] × Ω, Rq) s.t.

|E(
∫ T

0
DtF · utdt)| ≤ c(u)|F |L2 for any F ∈ D

1,2.
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• If u belongs to Dom(δ), then δ(u) is the one element of L
2(Ω) characterized by the

integration by parts formula

∀F ∈ D
1,2, E(Fδ(u)) = E

(

∫ T

0

DtF · utdt

)

.

Remark 3.3. If u is an adapted process belonging to L
2([0, T ] × Ω, Rq), then the Skorohod

integral and the Itô integral coincide : δ(u) =
∫ T

0
utdWt, and the preceding integration by parts

formula becomes

∀F ∈ D
1,2, E

(

F

∫ T

0

utdWt

)

= E

(

∫ T

0

DtF · utdt

)

. (3.1)

This equality is also called the duality formula.

This duality formula is the corner stone to establish general integration by parts formula of
the form

E[∂αg(F )G] = E[g(F )Hα(F,G)]

for any non degenerate random variables F . We only give the formulation in the case of interest
F = XN

t .

Proposition 3.4. We assume that σ is uniformly elliptic and b and σ are in C0,3
b . For

all p > 1, for all multi-index α s.t. |α| ≤ 2, for all t ∈]0, T ], all u, r, s ∈ [0, T ] and for

any functions f and g in C
|α|
b , there exist a random variable Hα ∈ L

p and a function K(T )
(uniform in N,x, s, u, r, t, f and g) s.t.

E[∂α
x f(XN

t )g(XN
u ,XN

r ,XN
s )] = E[f(XN

t )Hα], (3.2)

with

|Hα|Lp
≤ K(T )

t
|α|
2

‖g‖
C

|α|
b

. (3.3)

These results are given in the article of Kusuoka and Stroock [6]: (3.3) is owed to Theorem
1.20 and Corollary 3.7.
Another consequence of the duality formula is the derivation of an upper bound for pN .

Proposition 3.5. Assume σ is uniformly elliptic and b and σ are in C0,2
b . Then, for any

x, y ∈ R
d, s ∈]0, T ], one has

pN (0, x; s, y) ≤ K(T )

sd/2
e−c

|x−y|2

s , (3.4)

for a positive constant c and a non decreasing function K, both depending on d and on the
upper bounds for b, σ and their derivatives.

Although this upper bound seems to be quite standard, to our knowledge such a result has
not appeared in the literature before, except in the case of time homogeneous coefficients (see
Konakov and Mammen [5], proof of Theorem 1.1).
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Proof. The inequality (1.32) of Kusuoka and Stroock [6], Theorem 1.31 gives pN (0, x; s, y) ≤
K(T )
sd/2 for any x and y. This implies the required upper bound when |x − y| ≤ √

s. Let us
now consider the case |x − y| >

√
s. Using the same notations as in Kusuoka and Stroock [6],

we denote ψ(y) = ρ( |y−x|
r ) where r > 0 and ρ is a C∞

b function such that 1{[3/4,∞[} ≤ ρ ≤
1{[1/2,∞[}. Then, combining inequality (1.33) of Kusuoka and Stroock [6], Theorem 1.31 and
Corollary 3.7 leads to

sup
|y−x|≥r

pN (0, x; s, y) ≤ K(T )
e−c r2

s

sd/2

(

1 +

√

s

r2

)

,

where we use
∥

∥ψ(XN
s )

∥

∥

1,q
≤ K(T )e−c r2

s

(

1 +
√

s
r2

)

. This easily completes the proof in the

case |x − y| ≥ √
s.

4 Proof of Theorem 2.3

In the following, K(·) denotes a generic non decreasing function (which may depend on d, b
and σ). To prove Theorem 2.3, we take advantage of Propositions 3.4 and 3.5. The scheme of
the proof is the following

• Use a PDE and Itô’s calculus to write the difference pN (0, x; s, y) − p(0, x; s, y)

=

∫ s

0

E

[

d
∑

i=1

(bi(ϕ(r),XN
ϕ(r)) − bi(r,X

N
r ))∂xi

p(r,XN
r ; s, y)

+
1

2

d
∑

i,j=1

(aij(ϕ(r),XN
ϕ(r)) − aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y)



 dr := E1 + E2. (4.1)

• Prove the intermediate result ∀(r, x, y) ∈ [0, s[×R
d × R

d and c > 0

E

[

exp

(

−c
|y − XN

r |2
s − r

)]

≤ K(T )

(

s − r

s

)
d
2

exp

(

−c′
|x − y|2

s

)

, (4.2)

where c′ > 0.

• Use Malliavin’s calculus, Proposition 3.5 and the intermediate result, to show that each

term E1 and E2 (see (4.1)) is bounded by K(T )T
N

1

s
d+1
2

exp(−c |x−y|2

s ).

Definition 4.1. We say that a term E(x, s, y) satisfies property P if ∀(x, s, y) ∈ R
d×]0, T ]×R

d

|E(x, s, y)| ≤ K(T )T

N

1

s
d+1
2

exp

(

−c
|x − y|2

s

)

. (P)

4.1 Proof of equality (4.1)

First, the transition density function (r, x) 7−→ p(r, x; s, y) satisfies the PDE

(∂r + L(r,x))p(r, x; s, y) = 0, ∀r ∈ [0, s[,∀x ∈ R
d,
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where L(r,x) is defined by L(r,x) =
∑

i,j aij(r, x)∂2
xixj

+
∑

i bi(r, x)∂xi
, and aij(r, x) = 1

2 [σσ∗]ij(r, x). The function, as well as
its first derivatives, are uniformly bounded by a constant depending on ǫ for |s − r| ≥ ǫ (see
Appendix A).
Second, since pN (0, x; s, y) is a continuous function in s and y (convolution of Gaussian den-
sities), we observe that

pN (0, x; s, y) − p(0, x; s, y) = lim
ǫ→0

E[p(s − ǫ,XN
s−ǫ; s, y) − p(0, x; s, y)].

Then, for any ǫ > 0, Itô’s formula leads to

E[p(s − ǫ,XN
s−ǫ; s, y) − p(0, x; s, y)] =E

[∫ s−ǫ

0

∂rp(r,XN
r ; s, y)dr

]

+ E

[

∫ s−ǫ

0

d
∑

i=1

bi(ϕ(r),XN
ϕ(r))∂xi

p(r,XN
r ; s, y)dr

+
1

2

∫ s−ǫ

0

d
∑

i,j=1

aij(ϕ(r),XN
ϕ(r))∂

2
xixj

p(r,XN
r ; s, y)dr



 .

From the PDE, the above equality becomes

E[p(s − ǫ,XN
s−ǫ; s, y) − p(0, x; s, y)] =

E

[

∫ s−ǫ

0

d
∑

i=1

(bi(ϕ(r),XN
ϕ(r)) − bi(r,X

N
r ))∂xi

p(r,XN
r ; s, y)dr

]

+
1

2
E





∫ s−ǫ

0

d
∑

i,j=1

(aij(ϕ(r),XN
ϕ(r)) − aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y)dr



 ,

:=

∫ s−ǫ

0

E[φ(r)]dr,

where φ(r) =
∑d

i=1(bi(ϕ(r),XN
ϕ(r))− bi(r,X

N
r ))∂xi

p(r,XN
r ; s, y)+ 1

2

∑d
i,j=1(aij(ϕ(r),XN

ϕ(r))−
aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y). To get (4.1), it remains to prove that E(φ(r)) is integrable over
[0, s]. We check it by looking at the rest of the proof.

4.2 Proof of the intermediate result (4.2)

We prove inequality (4.2). E[exp(−c
|y−XN

r |2

s−r )] =
∫

Rd exp(−c |y−z|2

s−r )pN (0, x; r, z)dz. Using
Proposition 3.5, we get

E

[

exp

(

−c
|y − XN

r |2
s − r

)]

≤ K(T )

r
d
2

∫

Rd

exp

(

−c
|y − z|2
s − r

)

exp

(

−c′
|x − z|2

r

)

dz

≤ K(T )Πd
i=1

∫

R

1√
r

exp

(

−c
|yi − zi|2

s − r

)

exp

(

−c′
|xi − zi|2

r

)

dzi,

and

∫

R

1
√

2π (s−r)
2c

exp(−c
|yi − zi|2

s − r
)

1
√

2π r
2c′

exp(−c′
|xi − zi|2

r
)dzi is the convolution product

of the density of two independant Gaussian random variables N (−xi,
r

2c′ ) and N (yi,
s−r
2c )
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computed at 0. Hence, the integral is equal to
1

√

2π( r
2c′ + s−r

2c )
exp

(

−|xi − yi|2
r
c′ + s−r

c

)

. Then,

∫

R

1√
r

exp

(

−c
|yi − zi|2

s − r

)

exp

(

−c′
|xi − zi|2

r

)

dzi ≤ C

(

s − r

s

)
1
2

exp

(

−c′′
|xi − yi|2

s

)

and (4.2) follows.

4.3 Upper bound for E1

We recall that E1 =
∫ s

0
E

[

∑d
i=1(bi(ϕ(r),XN

ϕ(r)) − bi(r,X
N
r ))∂xi

p(r,XN
r ; s, y)

]

dr. For each i,

we apply Itô’s formula to bi(u,XN
u ) between u = ϕ(r) and u = r. We get

bi(ϕ(r),XN
ϕ(r)) − bi(r,X

N
r ) =

∫ r

ϕ(r)

αi
udu +

∫ r

ϕ(r)

q
∑

k=1

βi,k
u dW k

u , (4.3)

where αi
u depends on ∂tb, ∂xb, ∂2

xb, σ, and βi
u = −∇xbi(u,XN

u )σ(ϕ(r),XN
ϕ(r)). Since b, σ belong

to C1,3
b , αi and (βi,k)1≤k≤q are uniformly bounded. Using (4.3) and the duality formula (3.1)

yield

E1 =
d

∑

i=1

∫ s

0

{E[

∫ r

ϕ(r)

∂xi
p(r,XN

r ; s, y)αi
udu + E[

∫ r

ϕ(r)

Du(∂xi
p(r,XN

r ; s, y)) · βi
udu]}dr

:= E11 + E12, (4.4)

where βi
u is a row vector of q components. We upper bound E11 and E12.

Bound for E11 =
∑d

i=1

∫ s

0
E[

∫ r

ϕ(r)
∂xi

p(r,XN
r ; s, y)αi

udu]dr.

Since |∑d
i=1 ∂xi

p(r,XN
r ; s, y)αi

u| ≤ |αu||∂xp(r,XN
r ; s, y)| and αu is uniformly bounded in u,

we have

|E11| ≤ C
T

N

∫ s

0

E|∂xp(r,XN
r ; s, y)|dr.

Besides that, from Proposition A.2, |∂xp(r,XN
r ; s, y)| ≤ K(T )

(s−r)
d+1
2

exp
(

− c
|y−XN

r |2

s−r

)

. Then,

|E11| ≤ K(T )
T

N

∫ s

0

1

(s − r)
d+1
2

E

[

exp

(

−c
|y − XN

r |2
s − r

)]

dr.

Using the intermediate result (4.2) yields

|E11| ≤ K(T )
T

N

∫ s

0

1√
s − r

1

s
d
2

exp

(

−c
|x − y|2

s

)

dr ≤ K(T )
T

N

1

s
d−1
2

exp

(

−c
|x − y|2

s

)

and thus, E11 satisfies property P (see Definition 4.1).

Bound for E12 =
∑d

i=1

∫ s

0
E[

∫ r

ϕ(r)
Du(∂xi

p(r,XN
r ; s, y)) · βi

udu]dr.
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To rewrite E12, we use the expression of βi
u and Proposition 3.1, which gives

Du(∂xi
p(r,XN

r ; s, y)) = ∇x(∂xi
p(r,XN

r ; s, y))σ(ϕ(r),XN
ϕ(r)). Then,

E12 = −
∫ s

0

dr

∫ r

ϕ(r)

d
∑

i,k=1

E[∂2
xixk

p(r,XN
r ; s, y)[(σσ∗)(ϕ(r),XN

ϕ(r))(∇xbi(u,XN
u ))∗]k]du. (4.5)

Using the integration by parts formula (3.2), we get that

E12 = −
∫ s

0

dr

∫ r

ϕ(r)

d
∑

i,k=1

E[∂xi
p(r,XN

r ; s, y)Hek
(i)]du

where ek is a vector whose k-th component is 1 and other components are 0. From (3.3), we

deduce E[|Hek
(i)|p]1/p ≤ C K(T )

r1/2 , where C only depends on |σ|∞, |∂xσ|∞, |∂xb|∞, |∂2
xxb|∞. By

the Hölder inequality, it follows that

|E12| ≤ K(T )

∫ s

0

dr

∫ r

ϕ(r)

1

r1/2
E[|∂xp(r,XN

r ; s, y)| d+1
d ]

d
d+1 du.

Using Proposition A.2 leads to |∂xp(r,XN
r ; s, y)| ≤ K(T )

(s−r)
d+1
2

exp(−c
|y−XN

r |2

s−r ), and combining

this inequality with the intermediate result (4.2) yields

E[|∂xp(r,XN
r ; s, y)| d+1

d ]d/(d+1) ≤ K(T )

(s − r)
d+1
2

(

s − r

s

)
d2

2(d+1)

exp

(

−c
|y − x|2

s

)

. (4.6)

Hence, E12 is bounded by

K(T )

s
d2

2(d+1)

T

N
exp

(

−c
|y − x|2

s

)∫ s

0

1

r1/2

1

(s − r)
d+1
2 − d2

2(d+1)

dr.

The above integral equals s
1
2−

d+1
2 + d2

2(d+1) B( 1
2 , 1

2(d+1) ) where B is the function Beta. Thus

|E12| ≤ K(T )
sd/2

T
N exp(−c |y−x|2

s ), and E12 satisfies property P.

4.4 Upper bound for E2

We recall E2 =
1

2

∫ s

0

E[

d
∑

i,j=1

(aij(ϕ(r),XN
ϕ(r)) − aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y)]dr. As we did

for E1, we apply Itô’s formula to aij(u,XN
u ) between ϕ(r) and r. We get aij(ϕ(r),XN

ϕ(r)) −
aij(r,X

N
r ) =

∫ r

ϕ(r)
γij

u du +
∫ r

ϕ(r)
δij
u dWu, where γij

u depends on σ, ∂tσ, ∂xσ, b, ∂2
xxσ and δij

u is

a row vector of size q, with l-th component (δij
u )l = −∑d

k=1 ∂xk
aij(u,XN

u )σkl(ϕ(r),XN
ϕ(r)).

Then, the duality formula (3.1) leads to

E2 =

d
∑

i,j=1

∫ s

0

{E[

∫ r

ϕ(r)

∂2
xixj

p(r,XN
r ; s, y)γij

u du + E[

∫ r

ϕ(r)

Du(∂2
xixj

p(r,XN
r ; s, y)) · δij

u du]}dr

:= E21 + E22.
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Bound for E21 =
∑d

ij=1

∫ s

0
E[

∫ r

ϕ(r)
∂2

xixj
p(r,XN

r ; s, y)γij
u du]dr.

As σ, b, ∂tσ, ∂xσ, ∂2
xσ are C1

b in space, γij
u has the same smoothness properties as the term

[(σσ∗)(ϕ(r),XN
ϕ(r))(∇xbi(u,XN

u ))∗]k appearing in (4.5). Thus, E21 can be treated as E12 and
satisfies to the same estimate.

Bound for E22 =
∑d

i,j=1

∫ s

0
E[

∫ r

ϕ(r)
Du(∂2

xixj
p(r,XN

r ; s, y)) · δij
u du]dr.

To rewrite E22, we use the expression of δij
u and Proposition 3.1, which asserts

Du(∂2
xixj

p(r,XN
r ; s, y)) = ∇x(∂2

xixj
p(r,XN

r ; s, y))σ(ϕ(r),XN
ϕ(r)). Thus,

E22 = −
d

∑

i,j,k=1

∫ s

0

dr

∫ r

ϕ(r)

E[∂3
xixjxk

p(r,XN
r ; s, y)[(σσ∗)(ϕ(r),XN

ϕ(r))(∇xaij(u,XN
u ))∗]k]du.

To complete this proof, we split E22 in two terms : E1
22 (resp E2

22) corresponds to the integral
in r from 0 to s

2 (resp. from s
2 to s).

• On [0, s
2 ], E1

22 is bounded by C T
N

∫ s
2

0
E[|∂3

xixjxk
p(r,XN

r ; s, y)|]dr. Using Proposition A.2
and (4.2), it gives

|E1
22| ≤

K(T )T

N

1

sd/2
exp

(

−c
|x − y|2

s

)∫ s
2

0

1

(s − r)3/2
dr.

Hence, E22 satisfies P.

• On [ s
2 , s], we use the integration by parts formula (3.2) of Proposition 3.4, with |α| = 2.

E2
22 = −

d
∑

i,j,k=1

∫ s

s
2

dr

∫ r

ϕ(r)

E[∂xi
p(r,XN

r ; s, y)Hejk
(i)]du,

where ejk is a vector full of zeros except the j-th and the k-th components. Using

Hölder’s inequality and (3.3) (remember that σ ∈ C1,3
b ), we obtain

|E2
22| ≤ K(T )

T

N

∫ s

s
2

1

r
E[|∂xp(r,XN

r ; s, y)| d+1
d ]

d
d+1 dr. (4.7)

By applying (4.6), we get

|E2
22| ≤ K(T )

T

N

1

s1+ d2

2(d+1)

exp

(

−c
|x − y|2

s

) ∫ s

s
2

1

(s − r)
2d+1
2d+2

dr,

and the result follows.

A Bounds for the transition density function and its
derivatives

We bring together classical results related to bounds for the transition probability density of
X defined by (1.1).
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Proposition A.1 (Aronson [1]). Assume that the coefficients σ and b are bounded measurable
functions and that σ is uniformly elliptic. There exist positive constants K,α0, α1 s.t. for any
x, y in R

d and any 0 ≤ t < s ≤ T , one has

K−1

(2πα1(s − t))
d
2

e
−

|x−y|2

2α1(s−t) ≤ p(t, x; s, y) ≤ K
1

(2πα2(s − t))
d
2

e
−

|x−y|2

2α2(s−t) . (A.1)

Proposition A.2 (Friedman [3]). Assume that the coefficients b and σ are Hölder continuous
in time, C2

b in space and that σ is uniformly elliptic. Then, ∂m+a
x ∂b

yp(t, x; s, y) exist and are
continuous functions for all 0 ≤ |a| + |b| ≤ 2, |m| = 0, 1. Moreover, there exist two positive
constants c and K s.t. for any x, y in R

d and any 0 ≤ t < s ≤ T , one has

|∂m+a
x ∂b

yp(t, x; s, y)| ≤ K

(s − t)(|m|+|a|+|b|+d)/2
exp

(

−c
|y − x|2
s − t

)

.
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