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Abstract

We show how to recover Euler’s formula for ζ(2n), as well as Lχ4(2n + 1), for any integer n,
from the knowledge of the density of the product C1, C2 . . . , Ck, for any k ≥ 1, where the Ci’s
are independent standard Cauchy variables.

1 Introduction

Consider both the zeta function

ζ(s) =

∞
∑

j=1

1

js
(ℜs > 1)

and the L function associated with the quadratic character χ4 :

Lχ4(s) =
∞
∑

j=0

(−1)j

(2j + 1)s
(ℜs > 0) .

The following formulae are very classical (see for example [9]) :

Lχ4(2n + 1) =
1

2

(π

2

)2n+1 A
(1)
n

Γ(2n + 1)
, (1)

(

1 −
1

22n+2

)

ζ(2n + 2) =
1

2

(π

2

)2n+2 A
(2)
n

Γ(2n + 2)
. (2)
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Here, the coefficients (A
(t)
n ), t = 1, 2, are featured in the series developments

1

(cos(θ))
t =

∞
∑

n=0

A
(t)
n

(2n)!
θ2n

(

|θ| <
π

2

)

.

These coefficients
(

A
(1)
n , n ≥ 0

)

and
(

A
(2)
n , n ≥ 0

)

are well known to be A
(1)
n = A2n and

A
(2)
n = A2n+1, respectively the Euler or secant numbers, and the tangent numbers (more

information about A2n and A2n+1 can be found in [7]).
The most popular ways to prove (1) and (2) make use of Fourier inversion and Parseval’s
theorem, or of non trivial expansions of functions such as cotan (see for example [9]). In this
paper, we show that formulae (1) and (2) may be obtained simply via either of the following
methods :

(M1) In section 2, we compute in two different ways the moments E
(

(Λ1)
2n
)

and E
(

(Λ2)
2n
)

,
where Λ1 = log (|C1|) and Λ2 = log (|C1C2|), with C1 and C2 two independent standard
Cauchy variables.

• On one hand, these moments can be computed explicitly in terms of Lχ4 and ζ
respectively, thanks to explicit formulae for the densities of Λ1 and Λ2.

• On the other hand, these moments may be obtained via the representation

|C1|
law
= e

π
2 Ĉ1 , (3)

where Ĉ1 is a random variable whose distribution is characterized by

E

(

eiλĈ1

)

=
1

coshλ
(λ ∈ R)

or

E

(

eθĈ1

)

=
1

cos θ

(

|θ| <
π

2

)

. (4)

More properties about Ĉ1 or even the Lévy process (Ĉt, t ≥ 0) can be found in [7].
This process (Ĉt, t ≥ 0) entertains deep relations with, but is different from, the
Cauchy process (see, e.g., [8], for such relations).

(M2) In section 3, we derive the formulae for ζ(2n) and Lχ4(2n + 1) from the identification
of the density of the law of the product Πk = C1C2 . . . Ck of k independent standard
Cauchy variables, by exploiting the fact that the integral of this density is equal to 1.

Section 4 is devoted to an interpretation of (3) and (4) in terms of planar Brownian motion.
In a final appendix, we indicate briefly how the preceding discussion may be generalized when
the (square of a) Cauchy variable is replaced by a ratio of two independent unilateral stable(µ)
variables (0 < µ < 1).

2 From the even moments of Λ1 and Λ2 to the derivation

of Euler’s formulae

As is well known, the density of C1 is

Ψ1(x) =
1

π(1 + x2)
.
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It is not difficult to show that Ψ2, the density of C1C2, is

Ψ2(x) =
2 log |x|

π2(x2 − 1)
.

From the knowledge of Ψ1 and Ψ2 we deduce the following result.

Proposition 1. The even moments of Λ1 and Λ2 are given by

E
[

(Λ1)
2n
]

=
4

π
Γ(2n + 1)Lχ4(2n + 1), (5)

E
[

(Λ2)
2n
]

=
8

π2
Γ(2n + 2)

(

1 −
1

22n+2

)

ζ(2n + 2). (6)

Proof. The LHS of (5) equals

2

π

∫ ∞

0

(log x)2ndx

1 + x2
=

4

π

∫ ∞

1

(log x)2ndx

1 + x2
.

Then, making the change of variables x = eu, followed by the series expansion 1
1+e−2u =

∑∞
k=0(−1)ke−2ku, we obtain formula (5).

The proof of formula (6) relies on the same argument, starting from the expression of Ψ2.

Let us now assume formula (3), and define a variable Ĉ2 such that

e
π
2 Ĉ2

law
= |C1C2|.

We note that Ĉ1
law
= 2

π log |C1|
law
= 2

π Λ1 and likewise Ĉ2
law
= 2

π Λ2. Then, from formula (4) and

the definition of the coefficients A
(t)
n , we see that the even moments of Ĉ1 and Ĉ2 are given by

E

[

(Ĉt)
2n
]

= A(t)
n (t = 1, 2)

so that, from the relations between Ĉt and Λt, we get

E
[

(Λt)
2n
]

=
(π

2

)2n

A(t)
n (t = 1, 2). (7)

Putting together formulae (7)-(8) on one hand, and formula (9) on the other hand, we obtain
the desired results (1) and (2).

To finish completely our proof, it now remains to show formula (3), that is, starting with C1,
to show that

E

[

eiλ 2
π log |C1|

]

=
1

coshλ
(λ ∈ R). (8)

The LHS of (8) is E

[

|C1|
2iλ
π

]

. To compute this quantity we use the fact that C1
law
= N/N ′,

where N and N ′ are two standard independent Gaussian variables. We shall also use the fact

that N2 law
= 2γ1/2 where γa is a gamma(a) variable. Thus, we have

E

[

|C1|
2iλ
π

]

=
∣

∣

∣E

[

(

γ1/2

)
iλ
π

]∣

∣

∣

2

=

∣

∣Γ
(

1
2 + iλ

π

)∣

∣

2

(

Γ(1
2 )
)2 =

1

cosh(λ)
(λ ∈ R).

For a proof of this last identity see [5], Problem 1 p. 14.



76 Electronic Communications in Probability

3 Another proof for Euler’s formulae

In this section, we first give the density of the law of Πk = C1C2 . . .Ck for any k ≥ 0. We
need to distinguish the odd and even cases.

Proposition 2.

• The density of Π2n+1 := C1C2 . . . C2n+1 is equal to

Ψ2n+1(x) =
22n

π(2n)!





n
∏

j=1

(

(

j −
1

2

)2

+
(log |x|)2

π2

)





1

1 + x2
. (9)

• The density of Π2n := C1C2 . . . C2n is equal to

Ψ2n(x) =
22n−1

π2(2n − 1)!





n−1
∏

j=1

(

j2 +
(log |x|)2

π2

)





log |x|

x2 − 1
. (10)

Proof. From the formula

E

[

eiλ 2
π log |C1|

]

=
1

coshλ
(λ ∈ R),

we easily deduce the Mellin transform of Πk, and once inverted and integrated twice by parts,
we get a recurrence relation between Ψk+2(x) and Ψk(x) :

Ψk+2(x) =
4

k(k + 1)

(

(

k

2

)2

+

(

log |x|

π

)2
)

Ψk(x).

As we know Ψ1 and Ψ2 (see the previous section), an easy induction gives (9) and (10).

The explicit densities of Proposition 2 allow us to obtain very simply the following recurrence
relations for the ζ(2n)’s and the Lχ4(2n + 1)’s.

Proposition 3. Let the coefficients p
(t)
n,k (t = 1 or 2) be defined through the expansion

n−1
∏

j=0

(

(

j +
t

2

)2

+ X

)

=
n
∑

k=0

p
(t)
n,kXk.

Then the following recurrence relations for ζ(2n) and Lχ4(2n + 1) hold :

22n+2

(2n)!

n
∑

j=0

p
(1)
n,j

(2j)!

π2j+1
Lχ4(2j + 1) = 1, (11)

22n+3

(2n + 1)!

n
∑

j=0

p
(2)
n,j

(2j + 1)!

π2(j+1)

(

1 −
1

22(j+1)

)

ζ(2j + 2) = 1. (12)
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Proof. Knowing the density of Π2n from (10), and the moments of log |Π2| in terms of ζ,
equation (12) is just the transcription of the relation

1 =

∫

R

Ψ2n+2(x)dx =
22n

(2n + 1)!

n
∑

j=0

p
(2)
n,j

π2j
E
(

(log |Π2|)
2j
)

.

Equation (11) is a transcription of the similar identity,

1 =

∫

R

Ψ2n+1(x)dx =
22n

(2n)!

n
∑

j=0

p
(1)
n,j

π2j
E
(

(log |Π1|)
2j
)

.

with the moments of log |Π1| then written in terms of Lχ4 .

From the previous recurrence relations one can easily deduce Euler’s formulae (2) as well as
(1). Indeed, as relations (11) (resp (12)) determine the values of Lχ4(2n + 1) (resp ζ(2n)) for

all n, it is sufficient to check that the A
(t)
n ’s (t = 1 or 2) satisfy the relation

22n

Γ(2n + t)

n
∑

j=0

p
(t)
n,j

A
(t)
j

22j
= 1.

This is implied by the more general relation, evaluated for θ = 0, where ft(θ) = 1
(cos θ)t :

n−1
∏

j=0

[

(2j + t)2 + ∂2
θ

]

ft(θ) = (t)2n ft(θ)
1+ 2n

t .

Here (a)n = a(a+1) . . . (a+n−1) is the Pochhammer symbol notation. The previous relation
can easily be shown by induction on n.

Remark. We have been looking for a generalization of our approach for continuous values
of t ∈ [1, 2], which would yield Euler-kind of expressions for certain functions of “ type L”.
This would be possible if “elementary” expressions for the density of (Ĉt, t ∈]1, 2[) (see [7] for
more details about this process) were known. In fact, that density is known to be (see, e.g.
Pitman-Yor [7])

2t−2

πΓ(t)

∣

∣

∣

∣

Γ

(

t + ix

2

)∣

∣

∣

∣

2

.

This simplifies only for t = 1 and t = 2 (see [1]) hence with the help of the functional equation
of the gamma function, for any integer t, which corresponds to the above formulae (9) and
(10).

4 Understanding the relation (3) in terms of planar Brow-

nian motion

Since our derivation of the identity (8) is rather analytical, it seems of interest to provide a
more probabilistic proof of it.
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• x

y

•
Rt

θt

1

Zt

Consider Zt = Xt + iYt a C−valued Brownian motion,
starting from 1+i0. Denote Rt = |Zt| = (X2

t +Y 2
t )1/2,

and (θt, t ≥ 0) a continuous determination of the ar-
gument of (Zu, u ≤ t) around 0, with θ0 = 0.

Recall that there exist two independent one-
dimensional Brownian motions (βu, u ≥ 0) and
(γu, u ≥ 0) such that

log Rt = βHt , and θt = γHt . (13)

Next, we consider T = inf {t : Xt = 0} = inf
{

t : |θt| = π
2

}

.

Now, from (13) we obtain, on the one hand,

HT = inf
{

u : |γu| =
π

2

}

def
= T γ,∗

π/2,

and, on the other hand, it is well known that YT is distributed as C1; therefore, using (13), we

obtain log |C1|
law
= βT γ,∗

π/2
, so that

2

π
log |C1|

law
= βT γ,∗

1
.

Consequently, thanks to the independence of β and γ, we obtain

E

[

eiλ 2
π log |C1|

]

= E

[

e
iλβ

T
γ,∗
1

]

= E

[

e−
λ2

2 T γ,∗
1

]

=
1

coshλ
,

as is well known.

5 Conclusion

This paper gives two new probabilistic proofs of the celebrated formulae (1) and (2), in relation
with the process Ĉt for t ∈ N. More details and applications to the asymptotic study of jumps
of the Cauchy process are provided in [8].

Another discussion about the links between some probability laws and L-functions can be
found in [2]. In a similar vein, the reader will find some closely related computations by
Paul Lévy [6] who, for the same purpose as ours, uses Fourier inversion of the characteristic
functions 1/ coshλ, λ sinhλ and 1/(coshλ)2.

Appendix : a slight generalization in terms of the stable

one-sided laws

Let Xµ =
Tµ

T ′

µ
, with Tµ and T ′

µ two independent, unilateral, stable variables with exponent µ :

E
[

e−λTµ
]

= e−λµ

.
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Although, except for µ = 1/2, the density of Tµ does not admit a simple expression, we know
from Lamperti [4] (see also Chaumont-Yor [3] exercise 4.21) that

E [(Xµ)s] =
sin πs

µ sin
(

πs
µ

) , (14)

P ((Xµ)µ ∈ dy) =
sin(πµ)

πµ

dy

y2 + 2y cos(πµ) + 1
. (15)

As in the previous sections, we may calculate E
[

(log Xµ
µ)2n

]

in two different ways.

• If we define the sequence (a
(µ)
n , n ≥ 0) via the Taylor series sin πs

µ sin(πs
µ )

=
∑

n≥0
a(µ)

n

(2n)!(πs)2n

then, from (14),

E
[

(log(Xµ)µ)2n
]

= π2na(µ)
n . (16)

• We rewrite (15) as P ((Xµ)µ ∈ dy) = dy
2iπµ

(

1
y+e−iπµ − 1

y+eiπµ

)

. With the usual series

expansion we get

E
[

(log(Xµ)µ)2n
]

=
2Γ(2n + 1)

πµ

∑

k≥1

(−1)k+1 sin(kµπ)

k2n+1
. (17)

Formulae (16) and (17) give

∑

k≥1

(−1)k+1 sin(kµπ)

k2n+1
=

π2n+1µ

2Γ(2n + 1)
a(µ)

n . (18)

We now make somme comments, essentially about formula (18).

• Formula (18) with µ = 1/2 gives Lχ4(2n + 1) = π2n+1

4Γ(2n+1) a
(1/2)
n , which is consistent with

formula (1).

• Formula (2) about ζ may also be generalized via the random variable Xµ. We consider

now the product of two independent copies Xµ and X̃µ. We then need to introduce the

Taylor expansion of

(

sin πs

µ sin(πs
µ )

)2

and the density of (Xµ)µ(X̃µ)µ, which is

P

(

(Xµ)µ(X̃µ)µ ∈ dy
)

=
dy

(2πµ)2

(

− log y − 2iπµ

y − e−2iπµ
+

− log y + 2iπµ

y − e2iπµ
+

2 log y

y − 1

)

.

The straightforward calculations for E

[

(log((Xµ)µ(X̃µ)µ))2n
]

are left to the reader.

• Formula (18) looks like the famous formula

∞
∑

k=0

sin((2k + 1)µπ)

(2k + 1)2n+1
=

(−1)nπ2n+1

4(2n)!
E2n(µ), (19)
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where E2n is the 2nth Euler polynomial. Formula (18) (with µ replaced by 2µ) taken
together with (19) gives the explicit expression (for all µ ∈ R and n ∈ N)

∑

k≥1

sin(kµπ)

k2n+1
=

(−1)n+1(2π)2n+1

2(2n + 1)!
B2n+1(µ/2), (20)

where B2n+1 is the (2n + 1)th Bernoulli polynomial. The derivative of (20) with respect
to µ gives the explicit expression

∑

k≥1

cos(kµπ)

k2n
=

(−1)n+1(2π)2n

2(2n)!
B2n(µ/2). (21)

For µ = 0, we get an expression for ζ(2n). More details about formulae (19), (20) and
(21) can be found, e.g., in [10].

To summarize, we have found a third way to prove formula (2) by making use of the one
parameter family (Xµ) generalizing the Cauchy variable (or, more precisely, its square).
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