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Abstract

This note is devoted to prove that the supremum of a fractional Brownian motion with Hurst
parameter H ∈ (0, 1) has an infinitely differentiable density on (0,∞). The proof of this result
is based on the techniques of the Malliavin calculus.

1 Introduction

A fractional Brownian motion (fBm for short) of Hurst parameter H ∈ (0, 1) is a centered
Gaussian process B = {Bt, t ∈ [0, 1]} with the covariance function

RH (t, s) =
1

2

(

t2H + s2H − |t− s|
2H
)

. (1)

Notice that if H = 1
2 , the process B is a standard Brownian motion. From (1) it follows that

E |Bt −Bs|
2
= |t− s|

2H
,

and, as consequence, B has α-Hölder continuous paths for any α < H.
The Malliavin calculus is a suitable tool for the study of the regularity of the densities of
functionals of a Gaussian process. We refer to [7] and [8] for a detailed presentation of this
theory. This approach is particularly useful when analytical methods are not available. In [5]
the Malliavin calculus has been applied to derive the smoothness of the law of the supremum
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Smoothness of the law of the supremum of the fractional Brownian motion 103

of the Brownian sheet. In order to obtain this result, the authors establish a general criterion
for the smoothness of the density, assuming that the random variable is locally in D∞. The
aim of this paper is to study the smoothness of the law of the supremum of a fBm using the
general criterion obtained in [5].
The organization of this note is as follows. In Section 2 we present some preliminaries on the
fBm and we review the basic facts on the Malliavin calculus and on the fractional calculus
that will be used in the sequel. In Section 3 we state the general criterion for the smoothness
of densities and we apply it to the supremum of the fBm.

2 Preliminaries

2.1 Fractional Brownian motion

Fix H ∈ (0, 1) and let B = {Bt, t ∈ [0, 1]} be a fBm with Hurst parameter H. That is, B is a
zero mean Gaussian process with covariance function given by (1). Let {Ft, t ∈ [0, 1]} be the
family of sub-σ-fields of F generated by B and the P -null sets of F . We denote by E ⊂ H the
class of step functions on [0, 1]. Let H be the Hilbert space defined as the closure of E with
respect to the scalar product

〈

1[0,t], 1[0,s]
〉

H
= RH(s, t).

The mapping 1[0,t] −→ Bt can be extended to an isometry between H and the Gaussian space
H1(B) associated with B.
The covariance kernel RH(t, s) can be written as

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel given by (see [4]):

KH(t, s) = Γ(H +
1

2
)−1(t− s)H−

1
2F (H −

1

2
,
1

2
−H,H +

1

2
, 1−

t

s
),

F (a, b, c, z) being the Gauss hypergeometric function. Consider the linear operator K∗
H from

E to L2([0, 1]) defined by

(K∗Hϕ)(s) = KH(1, s)ϕ(s) +

∫ 1

s

(ϕ(r)− ϕ(s))
∂KH

∂r
(r, s)dr. (2)

For any pair of step functions ϕ and ψ in E we have (see [3])

〈K∗Hϕ,K
∗
Hψ〉L2([0,1]) = 〈ϕ,ψ〉H . (3)

As a consequence, the operator K∗H provides an isometry between the Hilbert spaces H and
L2([0, 1]). Hence, the process W = {Wt, t ∈ [0, T ]} defined by

Wt = BH((K∗H)
−1

(1[0,t])) (4)

is a Wiener process, and the process BH has an integral representation of the form

BH
t =

∫ t

0

KH(t, s)dWs, (5)

because
(

K∗H1[0,t]
)

(s) = KH(t, s).
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2.2 Fractional calculus

We refer to [9] for a complete survey of the fractional calculus. Let us introduce here the main
definitions. If f ∈ L1([0, 1]) and α > 0, the right and left-sided fractional Riemann-Liouville
integrals of f of order α on [0, 1] are given almost surely for all t ∈ [0, 1] by

Iα0+f(t) =
(−1)

−α

Γ (α)

∫ t

0

(t− s)
α−1

f (s) ds (6)

and

Iα1−f(t) =
(−1)

−α

Γ (α)

∫ 1

t

(s− t)
α−1

f (s) ds (7)

respectively, where Γ denotes the Gamma function.
Fractional differentiation can be introduced as an inverse operation. For any p > 1 and
α > 0, Iα0+(L

p) (resp. Iα1−(L
p)) will denote the class of functions f ∈ Lp([0, 1]) which may

be represented as an Iα0+(resp. I
α
1−)- integral of some function Φ in Lp([0, 1]). If f ∈ Iα0+(L

p)
(resp. Iα1−(L

p)), the function Φ such that f = Iα0+Φ (resp. Iα1−Φ) is unique in Lp([0, 1]) and is
given by

Dα
0+f(t) =

(−1)
α+1

Γ (1− α)

(

f(s)

sα
− α

∫ t

0

f(t)− f (s)

(t− s)
α+1 ds

)

(8)

(

Dα
1−f(t) =

(−1)
α+1

Γ (1− α)

(

f(s)

(1− s)
α − α

∫ 1

t

f(s)− f (t)

(s− t)
α+1 ds

))

, (9)

where the convergence of the integrals at the singularity t = s holds in the Lp- sense.

When αp > 1 any function in Iαa+(Lp) is
(

α− 1
p

)

- Hölder continuous. On the other hand,

any Hölder continuous function of order β > α has fractional derivative of order α. That is,
Cβ([a, b]) ⊂ Iαa+(Lp) for all p > 1.
Recall that by construction for f ∈ Iαa+(Lp),

Iαa+(Dα
a+f) = f

and for general f ∈ L1([a, b]) we have

Dα
a+(Iαa+f) = f.

The operator K∗H can be expressed in terms of fractional integrals or derivatives. In fact, if
H > 1

2 , we have

(K∗Hϕ) (s) = cHΓ(H −
1

2
)s

1
2−H(I

H− 1
2

1− uH−
1
2ϕ(u))(s), (10)

where cH =
[

H(2H−1)

β(2−2H,H− 1
2 )

]1/2

, and if H < 1
2 , we have

(K∗Hϕ) (s) = dH s
1
2−H(D

1
2−H
1− uH−

1
2ϕ(u))(s), (11)

where dH = cHΓ(H + 1
2 ).
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2.3 Malliavin calculus

We briefly recall some basic elements of the stochastic calculus of variations with respect to
the fBm B. For more complete presentation on the subject, see [7] and [8].
The process B = {Bt, t ∈ [0, 1]} is Gaussian and, hence, we can develop a stochastic calculus
of variations (or Malliavin calculus) with respect to it. Let C∞b (R) be the class of infinitely
differentiable functions f : Rn → R such that f and all its partial derivatives are bounded.
We denote by S the class of smooth cylindrical random variables F of the form

F = f(B(h1), . . . , B(hn)), (12)

where n ≥ 1, f ∈ C∞b (Rn) and h1, ..., hn ∈ H.
The derivative operator D of a smooth and cylindrical random variable F of the form (12) is
defined as the H-valued random variable

DF =
n
∑

i=1

∂f

∂xi
(B(h1), . . . , B(hn)hi.

In this way the derivative DF is an element of L2(Ω;H). The iterated derivative operator of
D is denoted by Dk. It is a closable unbounded operator from Lp(Ω) into Lp

(

Ω;H⊗k)
)

for
each k ≥ 1, and each p ≥ 1. We denote by Dk,p the closure of S with respect to the norm
defined by

‖ F ‖pk,p= E(|F |
p
) + E

k
∑

j=1

∥

∥DjF
∥

∥

p

H⊗j .

We set D∞ = ∩k,pDk,p.

For any given Hilbert space V , the corresponding Sobolev space of V -valued random variables
can also be introduced. More precisely, let SV denote the family of V -valued smooth random
variables of the form

F =

n
∑

j=1

Fjvj , (vj , Fj) ∈ V × S.

We define

DkF =

n
∑

j=1

DkFj ⊗ vj , k ≥ 1.

Then Dk is a closable operator from SV ⊂ Lp(Ω;V ) into Lp(Ω;H⊗k ⊗ V ) for any p ≥ 1. For
any integer k ≥ 1 and for any real number p ≥ 1, a norm is defined on SV by

‖F‖
p
k,p,V = E(‖F‖

p
V ) +

k
∑

j=1

E
(

∥

∥DjF
∥

∥

p

H⊗j⊗V

)

.

We denote by Dk,p(V ) the completion of SV with respect to the norm ‖.‖ k,p,V . We set
D∞(V ) = ∩k,pDk,p(V ).
Our main result will be based on the application of the following general criterion for smooth-
ness of densities for one-dimensional random variable established in [5].

Theorem 1 Let F be a random variable in D1,2. Let A be an open subset of R. Suppose that
there exist an H-valued random variable uA and a random variable GA such that
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(i) uA ∈ D∞(H),

(ii) GA ∈ D∞ and G−1A ∈ Lp(Ω) for any p ≥ 2 and,

(iii) 〈DF, uA 〉H = GA on {F ∈ A}.

Then the random variable F possesses an infinitely differentiable density on the set A.

3 Supremum of the fractional Brownian motion

The process B has a version with continuous paths as result of being α-Hölder continuous for
any α < H. Set

M = sup
0≤s≤1

Bs.

From results of [10] we know that M possesses an absolutely continuous density on (0,∞). In
order to apply Theorem 1, we will first recall some results on this supremum .

Lemma 2 The process B attains its maximum on a unique random point T.

Proof. The proof of this lemma would follow by the same arguments as the proof of Lemma
3.1 of [5], applying the criterion for absolute continuity of the supremum of a Gaussian process
established in [10].
The following lemma will ensure the weak differentiability of the supremum of the fBm and
give the value of its derivative.

Lemma 3 The random variable M belongs to D1,2 and it holds DtM = 1[0,T ] (t) , for any
t ∈ [0, 1] , where T is the point where the supremum is attained.

Proof. Similar to the proof of Lemma 3.2. in [5].
With the above results in hands, we are in position to prove our main result.

Proposition 4 The random variable M = sup0≤s≤1Bs possesses an infinitely differentiable
density on (0,∞).

Proof. Fix a > 0 and set A = (a,∞). Define the following random variable

Ta = inf

{

t ∈ [0, 1] such that sup
0≤s≤t

Bs > a

}

.

Recall that Ta is a stopping time with respect to the filtration {Ft, t ∈ [0, 1]} and notice that
Ta ≤ T on the set {M > a} . Hence, by Lemma 3, it holds that

{M > a, t ≤ Ta} ⊂ {DtM = 1} . (13)

Set

∆ =

{

(p, γ) ∈ N∗ × (0,∞) such that
1

2p
< γ < H

}

.

For any (p, γ) ∈ ∆, we define the process Y on [0, 1] by setting, for any t ∈ [0, 1]

Yt =

∫ t

0

∫ t

0

|Bs −Br|
2p

|s− r|
2pγ+1 dsdr.
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We will need the following property: There exists a constant R depending on a, γ and p such
that

Yt < R implies that sup
0≤s≤t

Bs ≤ a. (14)

To prove this fact we use the Garsia, Rodemich and Rumsey Lemma in [6]. This lemma
applied to the function s ∈ [0, t]→ Bs, with the hypothesis that Yt < R, implies

|Bs −Br| ≤ Cp,γR
1
2p |s− r|

γ− 1
2p for all s, r in [0, t] .

This implies that sup0≤s≤t |Bs| ≤ Cp,γR
1
2p . It suffices to choose R in such a way that

Cp,γR
1
2p < a.

Let ψ : R+ → [0, 1] be an infinitely differentiable function such that

ψ (x) =







0 if x > R,

ψ (x) ∈ [0, 1] if x ∈
[

R
2 , R

]

,

1 if x ≤ R
2 .

Consider the H-valued random variable given by

uA = (K∗H)
−1
(

K
∗,adj
H

)−1

(ψ (Y·)) , (15)

where K∗H is the operator defined in (2) and K∗,adjH denotes its adjoint in L2([0, 1]). We claim

that the random element uA introduced in (15) and the random variable GA =
∫ 1

0
ψ (Yt) dt

satisfy the conditions of Theorem 1.
Let us first show that uA belongs to D∞ (H). Fix an integer j ≥ 0. It suffices to show that for
any q ≥ 1,

E
∥

∥DjuA
∥

∥

q

H⊗(j+1) <∞. (16)

The j-th order derivative Dj of the function ψ (Yt) is evaluated with the help of the Faà di
Bruno formula, see formula [24.1.2] in [1], as follows

Djψ (Yt) =

j
∑

n=1

ψ(n) (Yt)
∑

i,li:
∑j

i=1 li=n,
∑j

i=1 ili=j

j
∏

i=1

1

i!

(

DiYt

li!

)li

.

Hence, in order to show (16) it suffices to check that

E

∥

∥

∥

∥

∥

(K∗H)
−1
(

K
∗,adj
H

)−1
[

ψ(n) (Yt)

j
∏

i=1

(

DiYt
)li

]∥

∥

∥

∥

∥

q

H⊗(j+1)

<∞. (17)

for all 1 ≤ n ≤ j,
∑j

i=1 li = n,
∑j

i=1 ili = j. Set

Λt = ψ(n) (Yt)

j
∏

i=1

(

DiYt
)li
.

By (3)
∥

∥

∥

∥

(K∗H)
−1
(

K
∗,adj
H

)−1

Λt

∥

∥

∥

∥

H⊗(j+1)

=

∥

∥

∥

∥

(

K
∗,adj
H

)−1

Λt

∥

∥

∥

∥

H⊗j⊗L2([0,1])

. (18)
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From (10), if H > 1
2 , we obtain

(

K
∗,adj
H

)−1

Λt = dHt
H− 1

2D
H− 1

2
0+ t

1
2−HΛt

=
dH

Γ
(

3
2 −H

)

(

t
1
2−HΛt −

(

H −
1

2

)

tH−
1
2

∫ t

0

t
1
2−HΛt − s

1
2−HΛs

(t− s)
H+ 1

2

ds

)

where dH =
(

cHΓ(H − 1
2 )
)−1

. After some computations we get

(

K
∗,adj
H

)−1

Λt = β(t)Λt +

∫ t

0

R(t, θ)Λ′θdθ, (19)

where

β(t) =
dH

Γ
(

3
2 −H

)

(

t
1
2−H −

(

H −
1

2

)

tH−
1
2

∫ t

0

t
1
2−H − s

1
2−H

(t− s)
H+ 1

2

ds

)

,

and

R(t, θ) = −
dH
(

H − 1
2

)

Γ
(

3
2 −H

)

∫ θ

0

s
1
2−H (t− s)

−H− 1
2 ds.

On the other hand, if H < 1
2 , from (11) we obtain

(

K
∗,adj
H

)−1

Λt = eHt
H− 1

2 I
1
2−H
0+ t

1
2−HΛt, (20)

where eH =
(

cHΓ(H + 1
2 )
)−1

.
In the sequel CH will denote a generic constant depending on H. If H > 1

2 , (19) yields

∥

∥

∥

∥

(

K
∗,adj
H

)−1

Λt

∥

∥

∥

∥

2

H⊗j⊗L2([0,1])

=

∥

∥

∥

∥

β(t)Λt +

∫ t

0

R(t, θ)Λ′θdθ

∥

∥

∥

∥

2

H⊗j⊗L2([0,1])

≤ 2

∫ 1

0

β(t)2 ‖Λt‖
2
H⊗j dt

+CH

∫ 1

0

‖ Λ′t‖
2
H⊗j dt, (21)

and for H < 1
2 , (20) yields

∥

∥

∥

∥

(

K
∗,adj
H

)−1

Λt

∥

∥

∥

∥

2

H⊗j⊗L2([0,1])

≤ CH

∫ 1

0

‖Λt‖
2
H⊗j dt. (22)

We have

‖Λt‖H⊗j ≤

j
∏

i=1

∥

∥DiYt
∥

∥

li

H⊗i . (23)

Taking into account that

DiYt =

∫

[0,t]2

(Br −Bs)
2p−i

|r − s|
2pγ+1 1[r,s]idrds,
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we obtain
∥

∥DiYt
∥

∥

H⊗i ≤

∫

[0,t]2

|Br −Bs|
2p−i

|r − s|
2pγ+1−iH

drds,

and this implies that
sup
0≤t≤1

E
∥

∥DiYt
∥

∥

q

H⊗i <∞, (24)

for any q ≥ 1.
On the other hand, from

Λ′t =
d

dt

(

ψ(n) (Yt)

j
∏

i=1

(

DiYt
)li

)

= ψ(n) (Yt)

j
∑

m=1

lm (DmYt)
lm−1DmY ′t

j
∏

i=1
i6=m

(

DiYt
)li

+ψ(n+1) (Yt)Y
′
t

j
∏

i=1

(

DiYt
)li

we get

‖Λ′t‖H⊗j ≤

j
∑

m=1

lm ‖D
mYt‖

lm−1
H⊗m ‖D

mY ′t ‖H⊗m

j
∏

i=1
i6=m

∥

∥DiYt
∥

∥

li

H⊗i

+ |Y ′t |

j
∏

i=1

∥

∥DiYt
∥

∥

li

H⊗i . (25)

From

DiY ′t =

∫ t

0

(Bt −Bs)
2p−i

|t− s|
2pγ+1 1[t,s]ids,

we obtain
∥

∥DiY ′t
∥

∥

H⊗i ≤

∫ t

0

|Bt −Bs|
2p−i

|t− s|
2pγ+1−iH

ds,

and this implies that
sup
0≤t≤1

E
∥

∥DiY ′t
∥

∥

q

H⊗i <∞, (26)

for any q ≥ 1.
Finally, (24), (23), (21), (22), (18), (26) and (25) imply (17). This shows condition (i) of
Theorem 1.
In order to show condition (iii) notice that

〈DM,uA〉H =
〈

1[0,T ], uA
〉

H
=
〈

K∗H1[0,T ],K
∗
HuA

〉

L2([0,1])

=
〈

1[0,T ],K
∗,adj
H K∗HuA

〉

L2([0,1])

=

∫ T

0

ψ (Yt) dt.
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On the other hand, on the set {M > a}, taking into account (13) and (14), it holds that

ψ (Yt) > 0 =⇒ t ≤ T,

and, as a consequence,
∫ T

0
ψ (Yt) dt = GA.

Finally, it remains to show condition (ii), that is, G−1A ∈ Lq (Ω) for any q ≥ 2. We have

GA ≥

∫ 1

0

ψ (Yt)1{Yt<
R
2 }
dt

=

∫ 1

0

1{Yt<
R
2 }
dt

= λ

{

t ∈ [0, 1] : Yt <
R

2

}

= Y −1t

(

R

2

)

,

because Y is non-decreasing and is continuous. For any ε > 0 we get

P

(

Y −1t

(

R

2

)

< ε

)

= P

(

R

2
< Yε

)

≤

(

2

R

)p

E |Yε|
p

≤

(

2

R

)p







∫

[0,ε]2

∥

∥

∥
|Br −Bs|

2p
∥

∥

∥

Lp(Ω)

|r − s|
2pγ+1 drds







p

,

≤ R−pCp

[

∫

[0,ε]2
|r − s|

2pH−2pγ−1
drds

]p

,

= R−pCpε
(2p(H−γ)+1)p.

This completes the proof of the proposition.
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