SMOOTHNESS OF THE LAW OF THE SUPREMUM OF THE FRACTIONAL BROWNIAN MOTION

NOUREDDINE LANJRI ZADI
Universit Ibn Tofal, Facult des Sciences
Dpartement de Mathmatiques
B.P. 133, 14001, Knitra, Maroc
email: nour@mixmail.com
DAVID NUALART ${ }^{1}$
Universitat de Barcelona, Facultat de Matemtiques
Gran via, 585, 08007, Barcelona, Spain
email: nualart@mat.ub.es

Submitted 5 May 2003, accepted in final form 25 July 2003
AMS 2000 Subject classification: 60H07, 60G18
Keywords: Malliavin calculus, fractional Brownian motion, fractional calculus

Abstract

This note is devoted to prove that the supremum of a fractional Brownian motion with Hurst parameter $H \in(0,1)$ has an infinitely differentiable density on $(0, \infty)$. The proof of this result is based on the techniques of the Malliavin calculus.

1 Introduction

A fractional Brownian motion (fBm for short) of Hurst parameter $H \in(0,1)$ is a centered Gaussian process $B=\left\{B_{t}, t \in[0,1]\right\}$ with the covariance function

$$
\begin{equation*}
R_{H}(t, s)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) \tag{1}
\end{equation*}
$$

Notice that if $H=\frac{1}{2}$, the process B is a standard Brownian motion. From (1) it follows that

$$
E\left|B_{t}-B_{s}\right|^{2}=|t-s|^{2 H}
$$

and, as consequence, B has α-Hölder continuous paths for any $\alpha<H$.
The Malliavin calculus is a suitable tool for the study of the regularity of the densities of functionals of a Gaussian process. We refer to [7] and [8] for a detailed presentation of this theory. This approach is particularly useful when analytical methods are not available. In [5] the Malliavin calculus has been applied to derive the smoothness of the law of the supremum

[^0]of the Brownian sheet. In order to obtain this result, the authors establish a general criterion for the smoothness of the density, assuming that the random variable is locally in \mathbb{D}^{∞}. The aim of this paper is to study the smoothness of the law of the supremum of a fBm using the general criterion obtained in [5].
The organization of this note is as follows. In Section 2 we present some preliminaries on the fBm and we review the basic facts on the Malliavin calculus and on the fractional calculus that will be used in the sequel. In Section 3 we state the general criterion for the smoothness of densities and we apply it to the supremum of the fBm .

2 Preliminaries

2.1 Fractional Brownian motion

Fix $H \in(0,1)$ and let $B=\left\{B_{t}, t \in[0,1]\right\}$ be a fBm with Hurst parameter H. That is, B is a zero mean Gaussian process with covariance function given by (1). Let $\left\{\mathcal{F}_{t}, t \in[0,1]\right\}$ be the family of sub- σ-fields of \mathcal{F} generated by B and the P-null sets of \mathcal{F}. We denote by $\mathcal{E} \subset \mathcal{H}$ the class of step functions on $[0,1]$. Let \mathcal{H} be the Hilbert space defined as the closure of \mathcal{E} with respect to the scalar product

$$
\left\langle 1_{[0, t]}, 1_{[0, s]}\right\rangle_{\mathcal{H}}=R_{H}(s, t) .
$$

The mapping $\mathbf{1}_{[0, t]} \longrightarrow B_{t}$ can be extended to an isometry between \mathcal{H} and the Gaussian space $H_{1}(B)$ associated with B.
The covariance kernel $R_{H}(t, s)$ can be written as

$$
R_{H}(t, s)=\int_{0}^{t \wedge s} K_{H}(t, r) K_{H}(s, r) d r
$$

where K_{H} is a square integrable kernel given by (see [4]):

$$
K_{H}(t, s)=\Gamma\left(H+\frac{1}{2}\right)^{-1}(t-s)^{H-\frac{1}{2}} F\left(H-\frac{1}{2}, \frac{1}{2}-H, H+\frac{1}{2}, 1-\frac{t}{s}\right)
$$

$F(a, b, c, z)$ being the Gauss hypergeometric function. Consider the linear operator K_{H}^{*} from \mathcal{E} to $L^{2}([0,1])$ defined by

$$
\begin{equation*}
\left(K_{H}^{*} \varphi\right)(s)=K_{H}(1, s) \varphi(s)+\int_{s}^{1}(\varphi(r)-\varphi(s)) \frac{\partial K_{H}}{\partial r}(r, s) d r \tag{2}
\end{equation*}
$$

For any pair of step functions φ and ψ in \mathcal{E} we have (see [3])

$$
\begin{equation*}
\left\langle K_{H}^{*} \varphi, K_{H}^{*} \psi\right\rangle_{L^{2}([0,1])}=\langle\varphi, \psi\rangle_{\mathcal{H}} \tag{3}
\end{equation*}
$$

As a consequence, the operator K_{H}^{*} provides an isometry between the Hilbert spaces \mathcal{H} and $L^{2}([0,1])$. Hence, the process $W=\left\{W_{t}, t \in[0, T]\right\}$ defined by

$$
\begin{equation*}
W_{t}=B^{H}\left(\left(K_{H}^{*}\right)^{-1}\left(\mathbf{1}_{[0, t]}\right)\right) \tag{4}
\end{equation*}
$$

is a Wiener process, and the process B^{H} has an integral representation of the form

$$
\begin{equation*}
B_{t}^{H}=\int_{0}^{t} K_{H}(t, s) d W_{s} \tag{5}
\end{equation*}
$$

because $\left(K_{H}^{*} \mathbf{1}_{[0, t]}\right)(s)=K_{H}(t, s)$.

2.2 Fractional calculus

We refer to [9] for a complete survey of the fractional calculus. Let us introduce here the main definitions. If $f \in L^{1}([0,1])$ and $\alpha>0$, the right and left-sided fractional Riemann-Liouville integrals of f of order α on $[0,1]$ are given almost surely for all $t \in[0,1]$ by

$$
\begin{equation*}
I_{0^{+}}^{\alpha} f(t)=\frac{(-1)^{-\alpha}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) d s \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1-}^{\alpha} f(t)=\frac{(-1)^{-\alpha}}{\Gamma(\alpha)} \int_{t}^{1}(s-t)^{\alpha-1} f(s) d s \tag{7}
\end{equation*}
$$

respectively, where Γ denotes the Gamma function.
Fractional differentiation can be introduced as an inverse operation. For any $p>1$ and $\alpha>0, I_{0^{+}}^{\alpha}\left(L^{p}\right)\left(\right.$ resp. $\left.I_{1^{-}}^{\alpha}\left(L^{p}\right)\right)$ will denote the class of functions $f \in L^{p}([0,1])$ which may be represented as an $I_{0^{+}}^{\alpha}$ (resp. $I_{1^{-}}^{\alpha}$)- integral of some function Φ in $L^{p}([0,1])$. If $f \in I_{0^{+}}^{\alpha}\left(L^{p}\right)$ (resp. $I_{1^{-}}^{\alpha}\left(L^{p}\right)$), the function Φ such that $f=I_{0^{+}}^{\alpha} \Phi\left(\right.$ resp. $\left.I_{1^{-}}^{\alpha} \Phi\right)$ is unique in $L^{p}([0,1])$ and is given by

$$
\begin{gather*}
D_{0^{+}}^{\alpha} f(t)=\frac{(-1)^{\alpha+1}}{\Gamma(1-\alpha)}\left(\frac{f(s)}{s^{\alpha}}-\alpha \int_{0}^{t} \frac{f(t)-f(s)}{(t-s)^{\alpha+1}} d s\right) \tag{8}\\
\left(D_{1^{-}}^{\alpha} f(t)=\frac{(-1)^{\alpha+1}}{\Gamma(1-\alpha)}\left(\frac{f(s)}{(1-s)^{\alpha}}-\alpha \int_{t}^{1} \frac{f(s)-f(t)}{(s-t)^{\alpha+1}} d s\right)\right) \tag{9}
\end{gather*}
$$

where the convergence of the integrals at the singularity $t=s$ holds in the L^{p} - sense.
When $\alpha p>1$ any function in $I_{a^{+}}^{\alpha}\left(L^{p}\right)$ is $\left(\alpha-\frac{1}{p}\right)$ - Hölder continuous. On the other hand, any Hölder continuous function of order $\beta>\alpha$ has fractional derivative of order α. That is, $C^{\beta}([a, b]) \subset I_{a^{+}}^{\alpha}\left(L^{p}\right)$ for all $p>1$.
Recall that by construction for $f \in I_{a^{+}}^{\alpha}\left(L^{p}\right)$,

$$
I_{a^{+}}^{\alpha}\left(D_{a^{+}}^{\alpha} f\right)=f
$$

and for general $f \in L^{1}([a, b])$ we have

$$
D_{a^{+}}^{\alpha}\left(I_{a^{+}}^{\alpha} f\right)=f
$$

The operator K_{H}^{*} can be expressed in terms of fractional integrals or derivatives. In fact, if $H>\frac{1}{2}$, we have

$$
\begin{equation*}
\left(K_{H}^{*} \varphi\right)(s)=c_{H} \Gamma\left(H-\frac{1}{2}\right) s^{\frac{1}{2}-H}\left(I_{1-}^{H-\frac{1}{2}} u^{H-\frac{1}{2}} \varphi(u)\right)(s) \tag{10}
\end{equation*}
$$

where $c_{H}=\left[\frac{H(2 H-1)}{\beta\left(2-2 H, H-\frac{1}{2}\right)}\right]^{1 / 2}$, and if $H<\frac{1}{2}$, we have

$$
\begin{equation*}
\left(K_{H}^{*} \varphi\right)(s)=d_{H} s^{\frac{1}{2}-H}\left(D_{1-}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \varphi(u)\right)(s) \tag{11}
\end{equation*}
$$

where $d_{H}=c_{H} \Gamma\left(H+\frac{1}{2}\right)$.

2.3 Malliavin calculus

We briefly recall some basic elements of the stochastic calculus of variations with respect to the $\mathrm{fBm} B$. For more complete presentation on the subject, see [7] and [8].
The process $B=\left\{B_{t}, t \in[0,1]\right\}$ is Gaussian and, hence, we can develop a stochastic calculus of variations (or Malliavin calculus) with respect to it. Let $C_{b}^{\infty}(\mathbb{R})$ be the class of infinitely differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that f and all its partial derivatives are bounded. We denote by \mathcal{S} the class of smooth cylindrical random variables F of the form

$$
\begin{equation*}
F=f\left(B\left(h_{1}\right), \ldots, B\left(h_{n}\right)\right), \tag{12}
\end{equation*}
$$

where $n \geq 1, f \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$ and $h_{1}, \ldots, h_{n} \in \mathcal{H}$.
The derivative operator D of a smooth and cylindrical random variable F of the form (12) is defined as the \mathcal{H}-valued random variable

$$
D F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(B\left(h_{1}\right), \ldots, B\left(h_{n}\right) h_{i}\right.
$$

In this way the derivative $D F$ is an element of $L^{2}(\Omega ; \mathcal{H})$. The iterated derivative operator of D is denoted by D^{k}. It is a closable unbounded operator from $L^{p}(\Omega)$ into $\left.L^{p}\left(\Omega ; \mathcal{H}^{\otimes k}\right)\right)$ for each $k \geq 1$, and each $p \geq 1$. We denote by $\mathbb{D}^{k, p}$ the closure of \mathcal{S} with respect to the norm defined by

$$
\|F\|_{k, p}^{p}=E\left(|F|^{p}\right)+E \sum_{j=1}^{k}\left\|D^{j} F\right\|_{\mathcal{H} \otimes j}^{p}
$$

We set $\mathbb{D}^{\infty}=\cap_{k, p} \mathbb{D}^{k, p}$.
For any given Hilbert space V, the corresponding Sobolev space of V-valued random variables can also be introduced. More precisely, let \mathcal{S}_{V} denote the family of V-valued smooth random variables of the form

$$
F=\sum_{j=1}^{n} F_{j} v_{j}, \quad\left(v_{j}, F_{j}\right) \in V \times \mathcal{S}
$$

We define

$$
D^{k} F=\sum_{j=1}^{n} D^{k} F_{j} \otimes v_{j}, k \geq 1
$$

Then D^{k} is a closable operator from $\mathcal{S}_{V} \subset L^{p}(\Omega ; V)$ into $L^{p}\left(\Omega ; \mathcal{H}^{\otimes k} \otimes V\right)$ for any $p \geq 1$. For any integer $k \geq 1$ and for any real number $p \geq 1$, a norm is defined on \mathcal{S}_{V} by

$$
\|F\|_{k, p, V}^{p}=E\left(\|F\|_{V}^{p}\right)+\sum_{j=1}^{k} E\left(\left\|D^{j} F\right\|_{\mathcal{H} \otimes j \otimes V}^{p}\right)
$$

We denote by $\mathbb{D}^{k, p}(V)$ the completion of \mathcal{S}_{V} with respect to the norm $\|\cdot\| k, p, V$. We set $\mathbb{D}^{\infty}(V)=\cap_{k, p} \mathbb{D}^{k, p}(V)$.
Our main result will be based on the application of the following general criterion for smoothness of densities for one-dimensional random variable established in [5].

Theorem 1 Let F be a random variable in $\mathbb{D}^{1,2}$. Let A be an open subset of \mathbb{R}. Suppose that there exist an \mathcal{H}-valued random variable u_{A} and a random variable G_{A} such that
(i) $u_{A} \in \mathbb{D}^{\infty}(\mathcal{H})$,
(ii) $G_{A} \in \mathbb{D}^{\infty}$ and $G_{A}^{-1} \in L^{p}(\Omega)$ for any $p \geq 2$ and,
(iii) $\left\langle D F, u_{A}\right\rangle_{\mathcal{H}}=G_{A}$ on $\{F \in A\}$.

Then the random variable F possesses an infinitely differentiable density on the set A.

3 Supremum of the fractional Brownian motion

The process B has a version with continuous paths as result of being α-Hölder continuous for any $\alpha<H$. Set

$$
M=\sup _{0 \leq s \leq 1} B_{s}
$$

From results of [10] we know that M possesses an absolutely continuous density on $(0, \infty)$. In order to apply Theorem 1, we will first recall some results on this supremum .

Lemma 2 The process B attains its maximum on a unique random point T.
Proof. The proof of this lemma would follow by the same arguments as the proof of Lemma 3.1 of [5], applying the criterion for absolute continuity of the supremum of a Gaussian process established in [10].
The following lemma will ensure the weak differentiability of the supremum of the fBm and give the value of its derivative.

Lemma 3 The random variable M belongs to $\mathbb{D}^{1,2}$ and it holds $D_{t} M=\mathbf{1}_{[0, T]}(t)$, for any $t \in[0,1]$, where T is the point where the supremum is attained.

Proof. Similar to the proof of Lemma 3.2. in [5].
With the above results in hands, we are in position to prove our main result.
Proposition 4 The random variable $M=\sup _{0 \leq s \leq 1} B_{s}$ possesses an infinitely differentiable density on $(0, \infty)$.

Proof. Fix $a>0$ and set $A=(a, \infty)$. Define the following random variable

$$
T_{a}=\inf \left\{t \in[0,1] \text { such that } \sup _{0 \leq s \leq t} B_{s}>a\right\}
$$

Recall that T_{a} is a stopping time with respect to the filtration $\left\{\mathcal{F}_{t}, t \in[0,1]\right\}$ and notice that $T_{a} \leq T$ on the set $\{M>a\}$. Hence, by Lemma 3 , it holds that

$$
\begin{equation*}
\left\{M>a, t \leq T_{a}\right\} \subset\left\{D_{t} M=1\right\} \tag{13}
\end{equation*}
$$

Set

$$
\Delta=\left\{(p, \gamma) \in \mathbb{N}^{*} \times(0, \infty) \text { such that } \frac{1}{2 p}<\gamma<H\right\}
$$

For any $(p, \gamma) \in \Delta$, we define the process Y on $[0,1]$ by setting, for any $t \in[0,1]$

$$
Y_{t}=\int_{0}^{t} \int_{0}^{t} \frac{\left|B_{s}-B_{r}\right|^{2 p}}{|s-r|^{2 p \gamma+1}} d s d r
$$

We will need the following property: There exists a constant R depending on a, γ and p such that

$$
\begin{equation*}
Y_{t}<R \text { implies that } \sup _{0 \leq s \leq t} B_{s} \leq a \tag{14}
\end{equation*}
$$

To prove this fact we use the Garsia, Rodemich and Rumsey Lemma in [6]. This lemma applied to the function $s \in[0, t] \rightarrow B_{s}$, with the hypothesis that $Y_{t}<R$, implies

$$
\left|B_{s}-B_{r}\right| \leq C_{p, \gamma} R^{\frac{1}{2 p}}|s-r|^{\gamma-\frac{1}{2 p}} \text { for all } s, r \text { in }[0, t]
$$

This implies that $\sup _{0 \leq s \leq t}\left|B_{s}\right| \leq C_{p, \gamma} R^{\frac{1}{2 p}}$. It suffices to choose R in such a way that $C_{p, \gamma} R^{\frac{1}{2 p}}<a$.
Let $\psi: \mathbb{R}^{+} \rightarrow[0,1]$ be an infinitely differentiable function such that

$$
\psi(x)= \begin{cases}0 & \text { if } \quad x>R \\ \psi(x) \in[0,1] & \text { if } x \in\left[\frac{R}{2}, R\right] \\ 1 & \text { if } x \leq \frac{R}{2}\end{cases}
$$

Consider the \mathcal{H}-valued random variable given by

$$
\begin{equation*}
u_{A}=\left(K_{H}^{*}\right)^{-1}\left(K_{H}^{*, a d j}\right)^{-1}(\psi(Y .)) \tag{15}
\end{equation*}
$$

where K_{H}^{*} is the operator defined in (2) and $K_{H}^{*, \text { adj }}$ denotes its adjoint in $L^{2}([0,1])$. We claim that the random element u_{A} introduced in (15) and the random variable $G_{A}=\int_{0}^{1} \psi\left(Y_{t}\right) d t$ satisfy the conditions of Theorem 1.
Let us first show that u_{A} belongs to $\mathbb{D}^{\infty}(\mathcal{H})$. Fix an integer $j \geq 0$. It suffices to show that for any $q \geq 1$,

$$
\begin{equation*}
E\left\|D^{j} u_{A}\right\|_{\mathcal{H}^{\otimes(j+1)}}^{q}<\infty . \tag{16}
\end{equation*}
$$

The j-th order derivative D^{j} of the function $\psi\left(Y_{t}\right)$ is evaluated with the help of the Faà di Bruno formula, see formula [24.1.2] in [1], as follows

$$
D^{j} \psi\left(Y_{t}\right)=\sum_{n=1}^{j} \psi^{(n)}\left(Y_{t}\right) \sum_{i, l_{i}: \sum_{i=1}^{j} l_{i}=n, \sum_{i=1}^{j} i l_{i}=j} \prod_{i=1}^{j} \frac{1}{i!}\left(\frac{D^{i} Y_{t}}{l_{i}!}\right)^{l_{i}}
$$

Hence, in order to show (16) it suffices to check that

$$
\begin{equation*}
E\left\|\left(K_{H}^{*}\right)^{-1}\left(K_{H}^{*, a d j}\right)^{-1}\left[\psi^{(n)}\left(Y_{t}\right) \prod_{i=1}^{j}\left(D^{i} Y_{t}\right)^{l_{i}}\right]\right\|_{\mathcal{H} \otimes(j+1)}^{q}<\infty \tag{17}
\end{equation*}
$$

for all $1 \leq n \leq j, \sum_{i=1}^{j} l_{i}=n, \sum_{i=1}^{j} i l_{i}=j$. Set

$$
\Lambda_{t}=\psi^{(n)}\left(Y_{t}\right) \prod_{i=1}^{j}\left(D^{i} Y_{t}\right)^{l_{i}}
$$

By (3)

$$
\begin{equation*}
\left\|\left(K_{H}^{*}\right)^{-1}\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t}\right\|_{\mathcal{H}^{\otimes(j+1)}}=\left\|\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t}\right\|_{\mathcal{H}^{\otimes j} \otimes L^{2}([0,1])} \tag{18}
\end{equation*}
$$

From (10), if $H>\frac{1}{2}$, we obtain

$$
\begin{aligned}
\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t} & =d_{H} t^{H-\frac{1}{2}} D_{0+}^{H-\frac{1}{2}} t^{\frac{1}{2}-H} \Lambda_{t} \\
& =\frac{d_{H}}{\Gamma\left(\frac{3}{2}-H\right)}\left(t^{\frac{1}{2}-H} \Lambda_{t}-\left(H-\frac{1}{2}\right) t^{H-\frac{1}{2}} \int_{0}^{t} \frac{t^{\frac{1}{2}-H} \Lambda_{t}-s^{\frac{1}{2}-H} \Lambda_{s}}{(t-s)^{H+\frac{1}{2}}} d s\right)
\end{aligned}
$$

where $d_{H}=\left(c_{H} \Gamma\left(H-\frac{1}{2}\right)\right)^{-1}$. After some computations we get

$$
\begin{equation*}
\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t}=\beta(t) \Lambda_{t}+\int_{0}^{t} R(t, \theta) \Lambda_{\theta}^{\prime} d \theta \tag{19}
\end{equation*}
$$

where

$$
\beta(t)=\frac{d_{H}}{\Gamma\left(\frac{3}{2}-H\right)}\left(t^{\frac{1}{2}-H}-\left(H-\frac{1}{2}\right) t^{H-\frac{1}{2}} \int_{0}^{t} \frac{t^{\frac{1}{2}-H}-s^{\frac{1}{2}-H}}{(t-s)^{H+\frac{1}{2}}} d s\right)
$$

and

$$
R(t, \theta)=-\frac{d_{H}\left(H-\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}-H\right)} \int_{0}^{\theta} s^{\frac{1}{2}-H}(t-s)^{-H-\frac{1}{2}} d s
$$

On the other hand, if $H<\frac{1}{2}$, from (11) we obtain

$$
\begin{equation*}
\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t}=e_{H} t^{H-\frac{1}{2}} I_{0+}^{\frac{1}{2}-H} t^{\frac{1}{2}-H} \Lambda_{t} \tag{20}
\end{equation*}
$$

where $e_{H}=\left(c_{H} \Gamma\left(H+\frac{1}{2}\right)\right)^{-1}$.
In the sequel C_{H} will denote a generic constant depending on H. If $H>\frac{1}{2}$, (19) yields

$$
\begin{align*}
\left\|\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t}\right\|_{\mathcal{H} \otimes j \otimes L^{2}([0,1])}^{2}= & \left\|\beta(t) \Lambda_{t}+\int_{0}^{t} R(t, \theta) \Lambda_{\theta}^{\prime} d \theta\right\|_{\mathcal{H}^{\otimes j \otimes L^{2}([0,1])}}^{2} \\
\leq & 2 \int_{0}^{1} \beta(t)^{2}\left\|\Lambda_{t}\right\|_{\mathcal{H}^{\otimes j}}^{2} d t \\
& +C_{H} \int_{0}^{1}\left\|\Lambda_{t}^{\prime}\right\|_{\mathcal{H} \otimes j}^{2} d t \tag{21}
\end{align*}
$$

and for $H<\frac{1}{2}$, (20) yields

$$
\begin{equation*}
\left\|\left(K_{H}^{*, a d j}\right)^{-1} \Lambda_{t}\right\|_{\mathcal{H}^{\otimes j} \otimes L^{2}([0,1])}^{2} \leq C_{H} \int_{0}^{1}\left\|\Lambda_{t}\right\|_{\mathcal{H} \otimes j}^{2} d t \tag{22}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|\Lambda_{t}\right\|_{\mathcal{H} \otimes j} \leq \prod_{i=1}^{j}\left\|D^{i} Y_{t}\right\|_{\mathcal{H} \otimes i}^{l_{i}} \tag{23}
\end{equation*}
$$

Taking into account that

$$
D^{i} Y_{t}=\int_{[0, t]^{2}} \frac{\left(B_{r}-B_{s}\right)^{2 p-i}}{|r-s|^{2 p \gamma+1}} \mathbf{1}_{[r, s]^{i}} d r d s
$$

we obtain

$$
\left\|D^{i} Y_{t}\right\|_{\mathcal{H}^{\otimes i}} \leq \int_{[0, t]^{2}} \frac{\left|B_{r}-B_{s}\right|^{2 p-i}}{|r-s|^{2 p \gamma+1-i H}} d r d s
$$

and this implies that

$$
\begin{equation*}
\sup _{0 \leq t \leq 1} E\left\|D^{i} Y_{t}\right\|_{\mathcal{H}^{\otimes i}}^{q}<\infty \tag{24}
\end{equation*}
$$

for any $q \geq 1$.
On the other hand, from

$$
\begin{aligned}
\Lambda_{t}^{\prime}= & \frac{d}{d t}\left(\psi^{(n)}\left(Y_{t}\right) \prod_{i=1}^{j}\left(D^{i} Y_{t}\right)^{l_{i}}\right) \\
= & \psi^{(n)}\left(Y_{t}\right) \sum_{m=1}^{j} l_{m}\left(D^{m} Y_{t}\right)^{l_{m}-1} D^{m} Y_{t}^{\prime} \prod_{\substack{i=1 \\
i \neq m}}^{j}\left(D^{i} Y_{t}\right)^{l_{i}} \\
& +\psi^{(n+1)}\left(Y_{t}\right) Y_{t}^{\prime} \prod_{i=1}^{j}\left(D^{i} Y_{t}\right)^{l_{i}}
\end{aligned}
$$

we get

$$
\begin{align*}
\left\|\Lambda_{t}^{\prime}\right\|_{\mathcal{H}^{\otimes j}} \leq & \sum_{m=1}^{j} l_{m}\left\|D^{m} Y_{t}\right\|_{\mathcal{H}^{\otimes m}}^{l_{m}-1}\left\|D^{m} Y_{t}^{\prime}\right\|_{\mathcal{H} \otimes m} \prod_{\substack{i=1 \\
i \neq m}}^{j}\left\|D^{i} Y_{t}\right\|_{\mathcal{H}^{\otimes i}}^{l_{i}} \\
& +\left|Y_{t}^{\prime}\right| \prod_{i=1}^{j}\left\|D^{i} Y_{t}\right\|_{\mathcal{H}^{\otimes i}}^{l_{i}} . \tag{25}
\end{align*}
$$

From

$$
D^{i} Y_{t}^{\prime}=\int_{0}^{t} \frac{\left(B_{t}-B_{s}\right)^{2 p-i}}{|t-s|^{2 p \gamma+1}} \mathbf{1}_{[t, s]^{i}} d s
$$

we obtain

$$
\left\|D^{i} Y_{t}^{\prime}\right\|_{\mathcal{H} \otimes i} \leq \int_{0}^{t} \frac{\left|B_{t}-B_{s}\right|^{2 p-i}}{|t-s|^{2 p \gamma+1-i H}} d s
$$

and this implies that

$$
\begin{equation*}
\sup _{0 \leq t \leq 1} E\left\|D^{i} Y_{t}^{\prime}\right\|_{\mathcal{H} \otimes i}^{q}<\infty \tag{26}
\end{equation*}
$$

for any $q \geq 1$.
Finally, (24), (23), (21), (22), (18), (26) and (25) imply (17). This shows condition (i) of Theorem 1.
In order to show condition (iii) notice that

$$
\begin{aligned}
\left\langle D M, u_{A}\right\rangle_{\mathcal{H}} & =\left\langle 1_{[0, T]}, u_{A}\right\rangle_{\mathcal{H}}=\left\langle K_{H}^{*} 1_{[0, T]}, K_{H}^{*} u_{A}\right\rangle_{L^{2}([0,1])} \\
& =\left\langle 1_{[0, T]}, K_{H}^{*, a d j} K_{H}^{*} u_{A}\right\rangle_{L^{2}([0,1])} \\
& =\int_{0}^{T} \psi\left(Y_{t}\right) d t
\end{aligned}
$$

On the other hand, on the set $\{M>a\}$, taking into account (13) and (14), it holds that

$$
\psi\left(Y_{t}\right)>0 \Longrightarrow t \leq T
$$

and, as a consequence, $\int_{0}^{T} \psi\left(Y_{t}\right) d t=G_{A}$.
Finally, it remains to show condition (ii), that is, $G_{A}^{-1} \in L^{q}(\Omega)$ for any $q \geq 2$. We have

$$
\begin{aligned}
G_{A} & \geq \int_{0}^{1} \psi\left(Y_{t}\right) \mathbf{1}_{\left\{Y_{t}<\frac{R}{2}\right\}} d t \\
& =\int_{0}^{1} \mathbf{1}_{\left\{Y_{t}<\frac{R}{2}\right\}} d t \\
& =\lambda\left\{t \in[0,1]: Y_{t}<\frac{R}{2}\right\} \\
& =Y_{t}^{-1}\left(\frac{R}{2}\right)
\end{aligned}
$$

because Y is non-decreasing and is continuous. For any $\varepsilon>0$ we get

$$
\begin{aligned}
P\left(Y_{t}^{-1}\left(\frac{R}{2}\right)<\varepsilon\right) & =P\left(\frac{R}{2}<Y_{\varepsilon}\right) \\
& \leq\left(\frac{2}{R}\right)^{p} E\left|Y_{\varepsilon}\right|^{p} \\
& \leq\left(\frac{2}{R}\right)^{p}\left[\int_{[0, \varepsilon]^{2}} \frac{\left\|\left|B_{r}-B_{s}\right|^{2 p}\right\|_{L^{p}(\Omega)}}{|r-s|^{2 p \gamma+1}} d r d s\right]^{p}, \\
& \leq R^{-p} C_{p}\left[\int_{[0, \varepsilon]^{2}}|r-s|^{2 p H-2 p \gamma-1} d r d s\right]^{p} \\
& =R^{-p} C_{p} \varepsilon^{(2 p(H-\gamma)+1) p} .
\end{aligned}
$$

This completes the proof of the proposition.

References

[1] Albramowitz, A. and Stegun, S., Handbook of mathematical functions. Nauka, Moskow (1979).
[2] Airault, H. and Malliavin, P., Integration géometrique sur l'espace de Wiener. Bull. Sci. Math. 112 (1988) 3-52.
[3] Alòs, E. and Nualart, D., Stochastic calculus with respect to the fractional Brownian motion. To appear in Stochastics and Stochastics Reports.
[4] Decreusefond, L. and Üstünel, A.S., Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1998) 177-214.
[5] Florit, C. and Nualart, D., A local criterion for smoothness of densities and application to the supremum of the Brownian sheet. Statistics and Probability Letters 22 (1995) 25-31.
[6] Garsia, A., Rodemich, E. and Rumsey, H., A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. Journal 20 (1970/71) 565-578.
[7] Nualart, D., The Malliavin calculus and related topics. Springer Verlag (1995).
[8] Nualart, D., Analysis onWeiner space and anticipating stochastic calculus. Lecture Notes in Math. 1690 (1998) 123-227.
[9] Samko, S. G., Kilbas, A.A. and Mariachev, O. I., Fractional integrals and derivatives. Gordon and Breach Sience (1993).
[10] Vives, J. and Nualart, D., Continuité absolue de la loi du maximum d'un processus continu. C. R. Acad. Sci. Paris. 307 (1988) 349-354.

[^0]: ${ }^{1}$ SUPPORTED BY THE DGES GRANT BFM2000-0598

