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Abstract

We study the localization/delocalization phase transition in a class of directed models for a ho-
mogeneous linear chain attracted to a defect line. The self-interaction of the chain is of mixed
gradient and Laplacian kind, whereas the attraction to the defect line is of δ-pinning type, with
strength ε ≥ 0. It is known that, when the self-interaction is purely Laplacian, such models un-
dergo a non-trivial phase transition: to localize the chain at the defect line, the reward ε must
be greater than a strictly positive critical threshold εc > 0. On the other hand, when the self-
interaction is purely gradient, it is known that the transition is trivial: an arbitrarily small reward
ε > 0 is sufficient to localize the chain at the defect line (εc = 0). In this note we show that in the
mixed gradient and Laplacian case, under minimal assumptions on the interaction potentials, the
transition is always trivial, that is εc = 0.

1 Introduction

We consider a simple directed model for a homogeneous linear chain {(i,ϕi)}0≤i≤N , such as a
polymer, which is randomly distributed in space and is attracted to the line {(i, 0)}0≤i≤N through
a pinning interaction, see Figure 1. We will often refer to {ϕi}i as the field. We discuss the
localization properties of the model as a function of the attraction strength ε ≥ 0 and of the
characteristics of the chains, that are embodied in two potentials V1 and V2.
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{ϕi}i

−1 0 N

Figure 1: A sample trajectory of the model Pε,N .

1.1 The model

We first define the Hamiltonian, which describes the self-interaction of the field ϕ = {ϕi}i:

H[−1,N+1](ϕ) = H[−1,N+1](ϕ−1, ...,ϕN+1) :=
N+1
∑

i=1

V1(∇ϕi) +
N
∑

i=0

V2(∆ϕi) , (1)

where N represents the length of the chain. The discrete gradient and Laplacian of the field are
defined respectively by ∇ϕi := ϕi − ϕi−1 and ∆ϕi := ∇ϕi+1 −∇ϕi = ϕi+1 + ϕi−1 − 2ϕi . The
precise assumptions on the potentials V1 and V2 are stated below.
Given the strength of the pinning attraction ε ≥ 0 between the chain and the defect line, we define
our model Pε,N as the following probability measure on RN−1:

Pε,N (dϕ1 , . . . , dϕN−1) :=
exp(−H[−1,N+1](ϕ))

Zε,N

N−1
∏

i=1

(εδ0(dϕi) + dϕi) (2)

where we denote by δ0(·) the Dirac mass at zero, by dϕi = Leb(dϕi) the Lebesgue measure on
R and we choose for simplicity zero boundary conditions: ϕ−1 = ϕ0 = ϕN = ϕN+1 = 0 (see
Figure 1). The normalization constant Zε,N appearing in (2) plays an important role, as we are
going to see in a moment: it is called partition function and is given by

Zε,N =
∫

RN−1

e−H[−1,N+1](ϕ)
N−1
∏

i=1

(εδ0(dϕi) + dϕi) . (3)

We assume that the potentials V1, V2 : R→ R appearing in (1) are measurable functions satisfying
the following conditions:

(C1) V1 is bounded from below (infx∈R V1(x) > −∞), symmetric (V1(x) = V1(−x) for every
x ∈ R), such that lim|x |→∞ V1(x) = +∞ and

∫

R e−2V1(x) dx <∞.

(C2) V2 is bounded from below (infx∈R V2(x) > −∞), bounded from above in a neighborhood of
zero (sup|x |≤γ V2(x)<∞ for some γ > 0) and such that

∫

R |x | e
−V2(x) dx <∞.

We stress that no continuity assumption is made. The symmetry of V1 ensures that there is no
“local drift” for the gradient of the field (remarkably, no such assumption on V2 is necessary; see
also Remark 7 below). We point out that the hypothesis that both V1 and V2 are finite everywhere
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could be relaxed, allowing them to take the value +∞ outside some interval (−M , M), but we
stick for simplicity to the above stated assumptions.

The model Pε,N is an example of a random polymer model, more precisely a (homogeneous) pinning
model. A lot of attention has been devoted to this class of models in the recent mathematical
literature (see [8, 7] for two beautiful monographs).
The main question, for models like ours, is whether the pinning reward ε ≥ 0 is strong enough to
localize the field at the defect line for large N . The case when the self-interaction of the field is
of purely gradient type, i.e., when V2 ≡ 0 in (1), has been studied in depth [1, 3, 6, 2], as well
as the purely Laplacian case when V1 ≡ 0, cf. [4, 5]. We now consider the mixed case when both
V1 6≡ 0 and V2 6≡ 0, which is especially interesting from a physical viewpoint, because of its direct
relevance in modeling semiflexible polymers, cf. [9]. Intuitively, the gradient interaction penalizes
large elongations of the chain while the Laplacian interaction penalizes curvature and bendings.

1.2 Free energy and localization properties

The standard way to capture the localization properties of models like ours is to look at the ex-
ponential rate of growth (Laplace asymptotic behavior) as N →∞ of the partition function Zε,N .
More precisely, we define the free energy F(ε) of our model as

F(ε) := lim
N→∞

1

N
log

�

Zε,N
Z0,N

�

, (4)

where the limit is easily shown to exist by a standard super-additivity argument [8].
The function ε 7→ Zε,N is non-decreasing for fixed N (cf. (3)), hence ε 7→ F(ε) is non-decreasing
too. Recalling that F(0) = 0, we define the critical value εc as

εc := sup{ε ≥ 0 : F(ε) = 0} = inf{ε ≥ 0 : F(ε)> 0} ∈ [0,∞] , (5)

and we say that our model {Pε,N}N∈N is

• delocalized if ε < εc;

• localized if ε > εc .

This seemingly mysterious definition of localization and delocalization does correspond to sharply
different behaviors of the typical trajectories of our model. More precisely, denoting by `N :=
#{1 ≤ i ≤ N − 1 : ϕi = 0} the number of contacts between the linear chain and the defect line, it
is easily shown by convexity arguments that

• if ε < εc , for every δ > 0 there exists cδ > 0 such that

Pε,N (`N/N > δ)≤ e−cδN , for all N ∈ N ; (6)

• if ε > εc , there exists δε > 0 and cε > 0 such that

Pε,N (`N/N < δε)≤ e−cεN , for all N ∈ N . (7)

In words: if the model is delocalized then typically `N = o(N), while if the model is localized then
typically `N ≥ δε N with δε > 0. We refer, e.g., to [4, Appendix A] for the proof of these facts. We
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point out that the behavior of the model at the critical point is a much more delicate issue, which
is linked to the regularity of the free energy.

Coming back to the critical value, it is quite easy to show that εc < ∞ (it is a by-product of our
main result), that is, the localized regime is non-empty. However, it is not a priori clear whether
εc > 0, i.e. whether the delocalized regime is non-empty. For instance, in the purely Laplacian
case (V1 ≡ 0, cf. [4]), one has ε∆c > 0. On the other hand, in the purely gradient case (V2 ≡ 0,
cf. [2]) one has ε∇c = 0 and the model is said to undergo a trivial phase transition: an arbitrarily
small pinning reward is able to localize the linear chain.
The main result of this note is that in the general case of mixed gradient and Laplacian interaction
the phase transition is always trivial.

Theorem 1. For any choice of the potentials V1, V2 satisfying assumptions (C1) and (C2) one has
εc = 0, i.e., F(ε)> 0 for every ε > 0.

Generally speaking, it may be expected that the gradient interaction terms should dominate over
the Laplacian ones, at least when V1 and V2 are comparable functions. Therefore, having just
recalled that ε∇c = 0, Theorem 1 does not come as a surprise. Nevertheless, our assumptions (C1)
and (C2) are very general and allow for strikingly different asymptotic behavior of the poten-
tials: for instance, one could choose V1 to grow only logarithmically and V2 exponentially fast (or
even more). The fact that the gradient interaction dominates even in such extreme cases is quite
remarkable.

Remark 2. Our proof yields actually an explicit lower bound on the free energy, which is however
quite poor. This issue is discussed in detail in Remark 9 in section 3 below.

Remark 3. Theorem 1 was first proved in the Ph.D. thesis [1] in the special case when both
interaction potentials are quadratic: V1(x) =

α

2
x2 and V2(x) =

β

2
x2, for any α,β > 0. We point

out that, with such a choice for the potentials, the free model P0,N is a Gaussian law and several
explicit computations are possible.

1.3 Organization of the paper

The rest of the paper is devoted to the proof of Theorem 1, which is organized in two parts:

• in section 2 we give a basic representation of the free model (ε = 0) as the bridge of an
integrated Markov chain, and we study some asymptotic properties of this hidden Markov
chain;

• in section 3 we give an explicit lower bound on the partition function Zε,N which, together
with the estimates obtained in section 2, yields the positivity of the free energy F(ε) for
every ε > 0, hence the proof of Theorem 1.

Some more technical points are deferred to Appendix A.

1.4 Some recurrent notation and basic results

We set R+ = [0,∞), N := {1, 2,3, . . .} and N0 := N ∪ {0} = {0,1, 2, . . .}. We denote by Leb the
Lebesgue measure on R.
We denote by Lp(R), for p ∈ [1,∞], the Banach space of (equivalence classes of) measurable
functions f : R → R such that ‖ f ‖p < ∞, where ‖ f ‖p := (

∫

R | f (x)|
p dx)1/p for p ∈ [1,∞) and

‖ f ‖∞ := ess supx∈R | f (x)|= inf{M > 0 : Leb{x ∈ R : | f (x)|> M}= 0}.
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Given two measurable functions f , g : R → R+, their convolution is denoted as usual by ( f ∗
g)(x) :=

∫

R f (x − y) g(y)dy . We recall that if f ∈ L1(R) and g ∈ L∞(R) then f ∗ g is bounded
and continuous, cf. Theorem D.4.3 in [11].

2 A Markov chain viewpoint

We are going to construct a Markov chain which will be the basis of our analysis. Consider the
linear integral operator f 7→ K f defined (for a suitable class of functions f ) by

(K f )(x) :=

∫

R
k(x , y) f (y)dy , where k(x , y) := e−V1(y)−V2(y−x) . (8)

The idea is to modify k(x , y) with boundary terms to make K a probability kernel.

2.1 Integrated Markov chain

By assumption (C1) we have ‖e−2V1‖1 <∞. It also follows by assumption (C2) that e−V2 ∈ L1(R),
because we can write

‖e−V2‖1 =

∫

R
e−V2(x) dx ≤ 2 sup

x∈[−1,1]
e−V2(x) +

∫

R\[−1,1]

|x | e−V2(x) dx < ∞ .

Since we also have e−V2 ∈ L∞(R), again by (C2), it follows that e−V2 ∈ Lp(R) for all p ∈ [1,∞], in
particular ‖e−2V2‖1 <∞. We then obtain

∫

R×R
k(x , y)2 dx dy =

∫

R
e−2V1(y)

�
∫

R
e−2V2(y−x) dx

�

dy = ‖e−2V1‖1 ‖e−2V2‖1 < ∞ .

This means that K is Hilbert-Schmidt, hence a compact operator on L2(R). Since k(x , y) ≥ 0 for
all x , y ∈ R, we can then apply an infinite dimensional version of the celebrated Perron-Frobenius
Theorem. More precisely, Theorem 1 in [13] ensures that the spectral radius λ > 0 of K is
an isolated eigenvalue, with corresponding right and left eigenfunctions v, w ∈ L2(R) satisfying
w(x)> 0 and v(x)> 0 for almost every x ∈ R:

v(x) =
1

λ

∫

R
k(x , y) v(y)dy , w(x) =

1

λ

∫

R
w(y) k(y, x)dy . (9)

These equations give a canonical definition of v(x) and w(x) (up to a multiplicative constant) for
every x ∈ R. Since k(x , y) > 0 for all x , y ∈ R, it is then clear that w(x) > 0 and v(x) > 0 for
every x ∈ R. We also point out that the symmetry assumption on V1 (cf. (C1)) entails that w(x) is
a constant multiple of e−V1(x)v(−x), cf. Remark 7 below.
We can now define a probability kernel P (x , dy) by setting

P (x , dy) := p(x , y)dy :=
1

λ

1

v(x)
k(x , y) v(y)dy . (10)

Since P (x ,R) =
∫

R p(x , y)dy = 1 for every x ∈ R, we can define a Markov chain on R with

transition kernel P (x , dy). More precisely, for a, b ∈ R let (Ω,A , P(a,b)) be a probability space on
which is defined a Markov chain Y = {Yi}i∈N0

on R such that

Y0 = a , P(a,b)(Yn+1 ∈ dy |Yn = x) = P (x , dy) , (11)
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and we define the corresponding integrated Markov chain W = {Wi}i∈N0
setting

W0 = b , Wn = b+ Y1 + . . .+ Yn . (12)

The reason for introducing such processes is that they are closely related to our model, as we show
in Proposition 5 below. We first need to compute explicitly the finite dimensional distributions of
the process W .

Proposition 4. For every n ∈ N, setting w−1 := b− a and w0 := b, we have

P(a,b) �(W1, ..., Wn) ∈ (dw1, ..., dwn)
�

=
v(wn −wn−1)
λn v(a)

e−H[−1,n](w−1,...,wn)
n
∏

i=1

dwi . (13)

Proof. Since Yi = Wi −Wi−1 for all i ≥ 1, the law of (W1, ..., Wn) is determined by the law of
(Y1, ..., Yn). If we set yi := wi − wi−1 for i ≥ 2 and y1 := w1 − b, it then suffices to show that the
right hand side of equation (13) is a probability measure under which the variables (yi)i=1,...,n are
distributed like the first n steps of a Markov chain starting at a with transition kernel p(x , y). To
this purpose, the Hamiltonian can be rewritten as

H[−1,n](w−1, ..., wn) = V1(y1) + V2(y1 − a) +
n
∑

i=2

�

V1(yi) + V2(yi − yi−1)
�

.

Therefore, recalling the definitions (8) of k(x , y) and (10) of p(x , y), we can write

v(wn −wn−1)
λn v(a)

e−H[−1,n](w−1,...,wn) =
v(yn)
λn v(a)

k(a, y1)
n
∏

i=2

k(yi−1, yi)

= p(a, y1)
n
∏

i=2

p(yi−1, yi) ,

which is precisely the density of (Y1, ..., Yn) under P(a,b) with respect to the Lebesgue measure
dy1 · · ·dyn. Since the map from (wi)i=1,...,n to (yi)i=1,...,n is linear with determinant one, the proof
is completed.

For n≥ 2 we denote by ϕ(a,b)
n (·, ·) the density of the random vector (Wn−1, Wn):

ϕ(a,b)
n (w1, w2) :=

P(a,b) �(Wn−1, Wn) ∈ (dw1, dw2)
�

dw1dw2
, for w1, w2 ∈ R . (14)

We can now show that our model Pε,N in the free case, that is for ε = 0, is nothing but a bridge of
the integrated Markov chain W .

Proposition 5. For every N ∈ N the following relations hold:

P0,N (.) = P(0,0) � (W1, ..., WN−1) ∈ ·
�

�WN =WN+1 = 0
�

, (15)

Z0,N = λ
N+1ϕ

(0,0)
N+1(0, 0) . (16)

Proof. By Proposition 4, for every measurable subset A⊆ RN−1 we can write

P(0,0) �(W1, ..., WN−1) ∈ A
�

�WN =WN+1 = 0
�

=
1

λN+1ϕ
(0,0)
N+1(0,0)

∫

A

e−H[−1,N+1](w−1,...,wN+1)
N−1
∏

i=1

dwi ,
(17)
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where we set w−1 = w0 = wN = wN+1 = 0. Choosing A= RN−1 and recalling the definition (3) of
the partition function Zε,N , we obtain relation (16). Recalling the definition (2) of our model Pε,N
for ε = 0, we then see that (17) is nothing but (15).

2.2 Some asymptotic properties

We now discuss some basic properties of the Markov chain Y = {Yi}i∈N0
, defined in (11). We recall

that the underlying probability measure is denoted by P(a,b) and we have a = Y0. The parameter
b denotes the starting point W0 of the integrated Markov chain W = {Wi}i∈N0

and is irrelevant for
the study of Y , hence we mainly work under P(a,0).

Since p(x , y) > 0 for all x , y ∈ R, cf. (10) and (8), the Markov chain Y is ϕ-irreducible with
ϕ = Leb: this means (cf. [11, §4.2]) that for every measurable subset A⊆ R with Leb(A) > 0 and
for every a ∈ R there exists n ∈ N, possibly depending on a and A, such that P(a,0)(Yn ∈ A) > 0. In
our case we can take n= 1, hence the chain Y is also aperiodic.
Next we observe that

∫

R v(x)w(x)dx ≤ ‖v‖2 ‖w‖2 < ∞, because v, w ∈ L2(R) by construction.
Therefore we can define the probability measure π on R by

π(dx) :=
1

c
v(x)w(x)dx , where c :=

∫

R
v(x)w(x)dx . (18)

The crucial observation is that π is an invariant probability for the transition kernel P (x , dy):
from (10) and (9) we have

∫

x∈R
π(dx)P (x , dy) =

∫

x∈R

v(x)w(x)
c

dx
k(x , y) v(y)
λ v(x)

dy

=
w(y) v(y)

c
dy = π(dy) .

(19)

Beingϕ-irreducible and admitting an invariant probability measure, the Markov chain Y = {Yi}i∈N0

is positive recurrent. For completeness, we point out that Y is also Harris recurrent, hence it is a
positive Harris chain, cf. [11, §10.1], as we prove in Appendix A (where we also show that Leb is
a maximal irreducibility measure for Y ).

Next we observe that the right eigenfunction v is bounded and continuous: in fact, spelling out the
first relation in (9), we have

v(x) =
1

λ

∫

R
e−V2(y−x) e−V1(y) v(y)dy =

1

λ

�

e−V2 ∗ (e−V1 v)
�

(x) . (20)

By construction v ∈ L2(R) and by assumption (C1) e−V1 ∈ L2(R), hence (e−V1 v) ∈ L1(R). Since
e−V2 ∈ L∞(R) by assumption (C2), it follows by (20) that v, being the convolution of a function
in L∞(R) with a function in L1(R), is bounded and continuous. In particular, inf|x |≤M v(x)> 0 for
every M > 0, because v(x) > 0 for every x ∈ R, as we have already remarked (and as it is clear
from (20)).

Next we prove a suitable drift condition on the kernel P . Consider the function

U(x) :=
|x | eV1(x)

v(x)
, (21)
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and note that

(P U)(x) =

∫

R
p(x , y)U(y)dy =

1

λ v(x)

∫

R
e−V2(y−x) |y|dy

=
1

λ v(x)

∫

R
e−V2(z) |z+ x |dz ≤

c0 + c1 |x |
λ v(x)

,

(22)

where c0 :=
∫

R |z| e
−V2(z) dz <∞ and c1 :=

∫

R e−V2(z) dz <∞ by our assumption (C2). Then we fix
M ∈ (0,∞) such that

U(x) − (P U)(x) =
|x | eV1(x)

v(x)
−

c1 |x | + c0

λ v(x)
≥

1+ |x |
v(x)

, for |x |> M .

This is possible because V1(x)→∞ as |x | →∞, by assumption (C1). Next we observe that

b := sup
|x |≤M

�

(P U)(x)− U(x)
�

< ∞ ,

as it follows from (21) and (22) recalling that v is bounded and inf|x |≤M v(x) > 0 for all M > 0.
Putting together these estimates, we have shown in particular that

(P U)(x) − U(x) ≤ −
1+ |x |
v(x)

+ b 1[−M ,M](x) . (23)

This relation is interesting because it allows to prove the following result.

Proposition 6. There exists a constant C ∈ (0,∞) such that for all n ∈ N we have

E(0,0) �|Yn|
�

≤ C , E(0,0)
�

1

v(Yn)

�

≤ C . (24)

Proof. In Appendix A we prove that Y = {Yi}i∈N0
is a T -chain (see Chapter 6 in [11] for the

definition of T -chains). It follows by Theorem 6.0.1 in [11] that for irreducible T -chains every
compact set is petite (see §5.5.2 in [11] for the definition of petiteness). We can therefore apply
Theorem 14.0.1 in [11]: relation (23) shows that condition (iii) in that theorem is satisfied by the
function U . Since U(x) <∞ for every x ∈ R, this implies that for every starting point x0 ∈ R and
for every measurable function g : R→ R with |g(x)| ≤ (const.)(1+ |x |)/v(x) we have

lim
n→∞

E(x0,0) �g(Yn)
�

=

∫

R
g(z)π(dz) < ∞ . (25)

The relations in (24) are obtained by taking x0 = 0 and g(x) = |x | or g(x) = 1/v(x).

As a particular case of (25), we observe that for every measurable subset A ⊆ R and for every
x0 ∈ R we have

lim
n→∞

P(x0,0)(Yn ∈ A) = π(A) =
1

c

∫

A

v(x)w(x)dx . (26)

This is actually a consequence of the classical ergodic theorem for aperiodic Harris recurrent
Markov chains, cf. Theorem 113.0.1 in [11].
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Remark 7. Although we do not use this fact explicitly, it is interesting to observe that the invariant
probability π is symmetric. To show this, we set ev(x) := e−V1(x)v(−x) and we note that by the first
relation in (9), with the change of variables y 7→ −y , we can write

ev(x) =
1

λ

∫

R
e−V1(x) k(−x , y) v(y)dy =

1

λ

∫

R
e−V1(x) k(−x ,−y) eV1(y)

ev(y)dy .

However e−V1(x) k(−x ,−y) eV1(y) = k(y, x), as it follows by (8) and the symmetry of V1 (recall our
assumption (C1)). Therefore ev satisfies the same functional equation ev(x) = 1

λ

∫

R ev(y) k(y, x)dy
as the right eigenfunction w, cf. the second relation in (9). Since the right eigenfunction is
uniquely determined up to constant multiples, there must exist C > 0 such that w(x) = C ev(x) for
all x ∈ R. Recalling (18), we can then write

π(dx) =
1

ec
e−V1(x) v(x) v(−x)dx , ec :=

c

C
, (27)

from which the symmetry of π is evident. From the symmetry of π and (25) it follows in particular
that E(0,0)(Yn) → 0 as n → ∞, whence the integrated Markov chain W = {Wi}i∈N0

is somewhat
close to a random walk with zero-mean increments.
We stress that the symmetry of π follows just by the symmetry of V1, with no need of an analogous
requirement on V2. Let us give a more intuitive explanation of this fact. When V1 is symmetric,
one can easily check from (10) and (8) that the transition density p(x , y) (or equivalently k(x , y))
is invariant under the joint application of time reversal and space reflection: by this we mean that
for all n ∈ N and x1, . . . , xn ∈ R

p(x1, x2) · · · p(xn−1, xn) · p(xn, x1) = p(−xn,−xn−1) · · · p(−x2,−x1) · p(−x1,−xn) . (28)

Note that V2 plays no role for the validity of (28). The point is that, whenever relation (28) holds,
the invariant measure of the kernel p(x , y) is symmetric. In fact, (28) implies that the function
h(x) := p(x , x)/p(−x ,−x), where x ∈ R is an arbitrary fixed point, satisfies

h(x) p(x , y) = h(y) p(−y,−x) , ∀x , y ∈ R . (29)

It is then an immediate consequence of (29) that h(−x) = h(x) for all x ∈ R and that the measure
h(x)dx is invariant. (For our model one computes easily h(x) = (const.) e−V1(x) v(x) v(−x), in
accordance with (27).)

2.3 Some bounds on the density

We close this section with some bounds on the behavior of the density ϕ(0,0)
n (x , y) at (x , y) =

(0,0).

Proposition 8. There exist positive constants C1, C2 such that for all odd N ∈ N

C1

N
≤ ϕ(0,0)

N (0,0) ≤ C2 . (30)

The restriction to odd values of N is just for technical convenience. We point out that neither of
the bounds in (30) is sharp, as the conjectured behavior (in analogy with the pure gradient case,
cf. [3]) is ϕ(0,0)

N (0,0)∼ (const.)N−1/2.
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Proof of Proposition 8. We start with the lower bound. By Proposition 5 and equation (3), we have

ϕ
(0,0)
2N+1(0,0) =

1

λ2N+1 Z0,2N =
1

λ2N+1

∫

R2N−1

e−
∑2N+1

i=1 V1(∇ϕi)−
∑2N

i=0 V2(∆ϕi)
2N−1
∏

i=1

dϕi ,

where we recall that the boundary conditions are ϕ−1 = ϕ0 = ϕ2N = ϕ2N+1 = 0. To get a lower
bound, we restrict the integration on the set

C1
N :=

§

(ϕ1, . . . ,ϕ2N−1) ∈ R2N−1 : |ϕN −ϕN−1|<
γ

2
, |ϕN −ϕN+1|<

γ

2

ª

,

where γ > 0 is the same as in assumption (C2). On C1
N we have |∇ϕN+1| < γ/2 and |∆ϕN | < γ,

therefore V2(∆ϕN ) ≤ Mγ := sup|x |≤γ V2(x) < ∞. Also note that V1(∇ϕ2N+1) = V1(0) due to
the boundary conditions. By the symmetry of V1 (recall assumption (C1)), setting C2

N (ϕN ) :=
{(ϕ1, . . . ,ϕN−1) ∈ RN−1 : |ϕN −ϕN−1|< γ/2}, we can write

ϕ
(0,0)
2N+1(0,0)

≥
e−(Mγ+V1(0))

λ2N+1

∫

C1
N

e−
∑N

i=1 V1(∇ϕi)−
∑N−1

i=0 V2(∆ϕi) e−
∑2N+1

i=N+1 V1(∇ϕi)−
∑2N

i=N+1 V2(∆ϕi)
2N−1
∏

i=1

dϕi

=
e−(Mγ+V1(0))

λ2N+1

∫

R
dϕN





∫

C2
N (ϕN )

e−
∑N

i=1 V1(∇ϕi)−
∑N−1

i=0 V2(∆ϕi)
N−1
∏

i=1

dϕi





2

.

For a given cN > 0, we restrict the integration over ϕN ∈ [−cN , cN ] and we apply Jensen’s inequal-
ity, getting

ϕ
(0,0)
2N+1(0,0) ≥

e−(Mγ+V1(0))

λ · 2cN





1

λN

∫ cN

−cN

dϕN

∫

C2
N (ϕN )

e−
∑N

i=1 V1(∇ϕi)−
∑N−1

i=0 V2(∆ϕi)
N−1
∏

i=1

dϕi





2

≥
e−(Mγ+V1(0))

λ · 2cN

v(0)2

‖v‖2
∞





1

λN

∫ cN

−cN

dϕN

∫

C2
N (ϕN )

v(ϕN −ϕN−1)
v(0)

· e−
∑N

i=1 V1(∇ϕi)−
∑N−1

i=0 V2(∆ϕi)
N−1
∏

i=1

dϕi





2

=
e−(Mγ+V1(0))

λ · 2cN

v(0)2

‖v‖2
∞

�

P(0,0)(|WN | ≤ cN , |WN −WN−1| ≤ γ/2)
�2

, (31)

where in the last equality we have used Proposition 4. Now we observe that

P(0,0)(|WN | ≤ cN , |YN | ≤ γ/2) ≥ 1− P(0,0)(|WN |> cN )− P(0,0)(|YN |> γ/2)

≥ 1−
1

cN
E(0,0)[|WN |]− P(0,0)(|YN |> γ/2) .

(32)

By (26), as N →∞ we have P(0,0)(|YN | > γ/2)→ π(R \ (−
γ

2
, γ

2
)) =: 1− 3η, with η > 0, therefore

P(0,0)(|YN |> γ/2)≤ 1− 2η for N large enough. On the other hand, by Proposition 6 we have

E(0,0)[|WN |] ≤
N
∑

n=1

E(0,0)[|Yn|] ≤ C N . (33)
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If we choose cN := CN/η, from (31), (32) and (33) we obtain

ϕ
(0,0)
2N+1(0,0) ≥

e−(Mγ+V1(0))

2λC

v(0)2

‖v‖2
∞
η3 1

N
=
(const.)

N
,

which is the desired lower bound in (30).

The upper bound is easier. By assumptions (C1) and (C2) both V1 and V2 are bounded from below,
therefore we can replace V1(∇ϕ2N+1), V1(∇ϕ2N ), V2(∆ϕ2N ) and V2(∆ϕ2N−1) by the constant
ec := infx∈Rmin{V1(x), V2(x)} ∈ R getting the upper bound:

ϕ
(0,0)
2N+1(0, 0) =

1

λ2N+1

∫

R2N−1

e−H[−1,2N+1](ϕ)
2N−1
∏

i=1

dϕi

≤
e−4ec

λ2N+1

∫

R2N−1

e−H[−1,2N−1](ϕ)
2N−1
∏

i=1

dϕi .

Recalling Proposition 4 and Proposition 6, we obtain

ϕ
(0,0)
2N+1(0, 0) ≤

e−4ec

λ2

∫

R2

v(0)
v(ϕ2N−1 −ϕ2N−2)

P(0,0)(W2N−2 ∈ dϕ2N−2, W2N−1 ∈ dϕ2N−1)

=
v(0)
λ2 e−4ec E(0,0)

�

1

v(Y2N−1)

�

≤
v(0)
λ2 e−4ec C = (const.) ,

which completes the proof of (30).

3 A lower bound on the partition function

We are going to give an explicit lower bound on the partition function in terms of a suitable
renewal process. First of all, we rewrite equation (3) as

Zε,N =
N−1
∑

k=0

εk
∑

A⊆{1,...,N−1}
|A|=k

∫

e−H[−1,N+1](ϕ)
∏

m∈A

δ0(dϕm)
∏

n∈Ac

dϕn , (34)

where we set Ac := {1, . . . , N − 1} \ A for convenience.

3.1 A renewal process lower bound

We restrict the summation over A in (34) to the class of subsets B2k consisting of 2k points
organized in k consecutive couples:

B2k :=
�

{t1 − 1, t1, . . . , tk − 1, tk} | 0= t0 < t1 < . . .< tk ≤ N − 1 and t i − t i−1 ≥ 2 ∀i
	

.
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Plainly, B2k = ; for k > (N − 1)/2. We then obtain from (34)

Zε,N ≥
b(N−1)/2c
∑

k=0

ε2k
∑

A∈B2k

∫

e−H[−1,N+1](ϕ)
∏

m∈A

δ0(dϕm)
∏

n∈Ac

dϕn

=
b(N−1)/2c
∑

k=0

ε2k
∑

0=t0<t1<...<tk<tk+1=N+1
t i−t i−1≥2 ∀i≤k+1

k+1
∏

j=1

eK(t j − t j−1) , (35)

where we have set for n ∈ N

eK(n) :=



























0 if n= 1

e−H[−1,2](0,0,0,0) = e−2V1(0)−2V2(0)) if n= 2
∫

Rn−2

e−H[−1,n](w−1,...,wn)dw1 · · ·dwn−2

with w−1 = 0, w0 = 0, wn−1 = 0, wn = 0







if n≥ 3

. (36)

We stress that a factorization of the form (35) is possible because the Hamiltonian H[−1,N+1](ϕ)
consists of two- and three-body terms and we have restricted the sum over subsets in B2k, that
consist of consecutive couples of zeros. We also note that the condition t i− t i−1 ≥ 2 is immaterial,
because by definition eK(1) = 0.
We now give a probabilistic interpretation to the right hand side of (35) in terms of a renewal
process. To this purpose, for every ε > 0 and for n ∈ N we define

Kε(1) := 0 , Kε(n) :=
ε2

λn
eK(n) e−µεn = ε2ϕ(0,0)

n (0, 0) e−µεn , ∀n≥ 2 .

where the second equality follows recalling (36), Proposition 4 and the definition (14) of the
density ϕn. The constant µε is chosen to make Kε a probability on N:

∑

n∈N
Kε(n) = 1 , that is

∞
∑

n=2

ϕ(0,0)
n (0, 0) e−µεn =

1

ε2 . (37)

It follows from Proposition 8 that 0 < µε < ∞ for every ε > 0. We can therefore define a
renewal process ({ηn}n≥0,Pε) on N0 with inter-arrival law Kε(·). More explicitly, η0 := 0 and
the increments {ηk+1 − ηk}k≥0 are independent, identically distributed random variables with
marginal law Pε(ηk+1 −ηk = n) = Kε(n). Coming back to (35), we can write

Zε,N ≥
λN+1 e(N+1)µε

ε2

b(N−1)/2c
∑

k=0

∑

0=t0<t1<...<tk<tk+1=N+1

k+1
∏

j=1

Kε(t j − t j−1)

=
λN+1 e(N+1)µε

ε2

b(N−1)/2c
∑

k=0

∑

0=t0<t1<...<tk<tk+1=N+1

Pε
�

η1 = t1, . . . ,ηk+1 = tk+1
�

=
λN+1 e(N+1)µε

ε2

b(N−1)/2c
∑

k=0

Pε
�

ηk+1 = N + 1
�

=
λN+1 e(N+1)µε

ε2 Pε
�

N + 1 ∈ η
�

, (38)

where in the last equality we look at η= {ηk}k≥0 as a random subset of N0, so that {N +1 ∈ η}=
⋃∞

m=1{ηm = N + 1} (note that Pε(ηk+1 = N + 1) = 0 for k > b(N − 1)/2c).
We have thus obtained a lower bound on the partition function Zε,N of our model in terms of the
renewal mass function (or Green function) of the renewal process ({ηn}n≥0},Pε).
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3.2 Proof of Theorem 1

Recall the free energy from definition 4

F(ε) = lim
N→∞

1

N
log
Zε,N
Z0,N

.

From now on, the limits N →∞ will be implicitly taken along the odd numbers. Observe that by
Proposition 5 and both bounds in Proposition 8

lim
N→∞

1

N
logZ0,N = lim

N→∞

1

N

�

(N + 1) logλ+ logϕ(0,0)
N+1(0,0)

�

= logλ .

Therefore for every ε > 0 by (38) we obtain

lim
N→∞

1

N
log
Zε,N
Z0,N

≥ limsup
N→∞

1

N
log

�

λN+1 eµε (N+1)

ε2 Pε(N + 1 ∈ η)
�

− logλ

≥ µε + lim sup
N→∞

1

N
logPε(N + 1 ∈ η) . (39)

Since Pε(η1 = n) > 0 for all n ∈ N with n ≥ 2, the renewal process ({ηk}k≥0,Pε) is aperiodic and
by the classical renewal theorem Pε(N + 1 ∈ η)→ 1

mε
as N →∞, where

mε =
∑

n≥2

n Kε(n) = ε
2
∑

n≥2

nϕ(0,0)
n (0,0) e−µεn < ∞ .

by Proposition 8. Therefore from (39) we get F(ε) ≥ µε. As we already mentioned above, we
have µε > 0, hence F(ε) > 0, for all ε > 0. This shows that our model exhibit a trivial phase
transition.

Remark 9. We have just shown that F(ε)≥ µε. Recalling the definition (37) of µε, it is clear that
the lower bound in (30) on ϕ(0,0)

N (0, 0) yields a corresponding lower bound on µε, hence on F(ε).
Unfortunately, this lower bound is very poor: in fact, by standard Tauberian theorems, from (30)
we get µε ≥ exp(−(const.)/ε2), which vanishes as ε ↓ 0 faster than any polynomial. On the other
hand, the conjectured correct behavior of the free energy, in analogy with the purely gradient case,
should be F(ε)∼ (const.)ε2.
One could hope to sharpen the lower bound on µε by improving the one on ϕ(0,0)

N (0,0). This
is possible, but only to a certain extent: even the conjectured sharp lower bound ϕ(0,0)

N (0,0) ≥
(const.)/

p
N (in analogy with the purely gradient case) would yield only µε ≥ (const.)ε4. This

discrepancy is a limitation of our lower bound technique: in order to have a genuine renewal
structure, the chain is forced to visit the defect line at couples of neighboring points, which are
rewarded ε2 instead of ε. If one could replace 1/ε2 by 1/ε in (37), the lower bound ϕ(0,0)

N (0, 0)≥
(const.)/

p
N would yield µε ≥ (const.′)ε2, as expected.

A Some recurrence properties

We have already remarked that Y = {Yi}i∈N0
is Leb-irreducible, hence it is also π-irreducible, see

(18), because π is absolutely continuous with respect to Leb. By Proposition 4.2.2 in [11], a max-
imal irreducibility measure for Y is ψ(dx) :=

∑∞
n=0

1
2n+1 (πP n)(dx), where we set (πQ)(dx) :=
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∫

z∈Rπ(dz)Q(z, dx) for any kernel Q and we use the standard notation P 0(z, dx) := δz(dx),
P 1 =P (we recall (10)) and for n≥ 1

P n+1(z, dx) :=

∫

y∈R
P n(z, dy)P (y, dx) .

Since the law π is invariant for the kernel P , see (19), we have πP n = π for all n ≥ 0, therefore
the maximal irreducibility measure ψ is nothing but π itself. Since a maximal irreducibility mea-
sure is only defined up to equivalent measures (in the sense of Radon-Nikodym), it follows that
Leb, which is equivalent to π, is a maximal irreducibility measure.
(As a matter of fact, it is always true that if a ϕ-irreducible Markov chain admits an invariant
measure π, then π is a maximal irreducibility measure, cf. Theorem 5.2 in [12].)
Next we prove that Y is a T -chain, as it is defined in Chapter 6 of [11]. To this purpose, we first
show that Y is a Feller chain, that is, for every bounded and continuous function f : R→ R the
function (P f )(x) :=

∫

RP (x , dy) f (y) is bounded and continuous. We recall that the function v
is continuous, as we have shown in §2.2. We then write

(P f )(x) :=

∫

R
P (x , dy) f (y) =

1

λ v(x)

∫

R
e−V1(y)−V2(y−x) v(y) f (y)dy

=
1

λ v(x)
�

e−V2 ∗ (e−V1 v f )
�

(x) ,

from which the continuity of P f follows, because e−V2 ∈ L∞(R) and (e−V1 v f ) ∈ L1(R) and
we recall that the convolution of a function in L∞(R) with a function in L1(R) is bounded and
continuous. Since Y is a Leb-irreducible Feller chain, it follows from Theorem 6.0.1 (iii) in [11]
that Y is a Leb-irreducible T -chain.
Finally, we observe that from the drift condition (23) it follows that Y is a Harris recurrent chain.
For this it suffices to apply Theorem 9.1.8 in [11], observing that the function U defined in (21)
is coercive, i.e. lim|x |→∞ U(x) = +∞, hence it is “unbounded off petite sets” (cf. [11, §8.4.2])
because every compact set is petite for irreducible T -chains, by Theorem 6.0.1 (ii) in [11].
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