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Abstract

Let η = (η1, . . . , ηn) be an Rn valued Gaussian random variable and c = (c1, . . . , cn)
a vector in Rn. We give necessary and sufficient conditions for ((η1 + c1α)2, . . . , (ηn +
cnα)2) to be infinitely divisible for all α ∈ R1, and point out how this result is related
to local times of Markov chains determined by the covariance matrix of η.

1 Introduction

Let η = (η1, . . . , ηn) be an Rn valued Gaussian random variable. η is said to have
infinitely divisible squares if η2 := (η2

1 , . . . , η2
n) is infinitely divisible, i.e. for any r we

can find an Rn valued random vector Zr such that

η2 law
= Zr,1 + · · · + Zr,r, (1.1)

where {Zr,j}, j = 1, . . . , r are independent identically distributed copies of Zr. We
express this by saying that η2 is infinitely divisible.
We are interested in characterizing Gaussian processes with infinitely divisible squares
which do not have mean zero. We set ηi = Gi + ci, EGi = 0, i = 1, , . . . , n. Let Γ be
the covariance matrix of (G1, . . . , Gn) and set

c := (c1, . . . , cn). (1.2)

Set
G + c := (G1 + c1, . . . , Gn + cn) (1.3)
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and
(G + c)2 := ((G1 + c1)

2, . . . , (Gn + cn)2). (1.4)

In order to continue we need to define different types of matrices. Let A = {ai,j}1≤i,j≤n

be an n × n matrix. We call A a positive matrix and write A ≥ 0 if ai,j ≥ 0 for all
i, j. We write A > 0 if ai,j > 0 for all i, j. We say that A has positive row sums if∑n

j=1 ai,j ≥ 0 for all 1 ≤ i ≤ n.

The matrix A is said to be an M matrix if

(1) ai,j ≤ 0 for all i 6= j.

(2) A is nonsingular and A−1 ≥ 0.

This definition includes the trivial 1 × 1 M matrix with a1,1 > 0.

A matrix is called a signature matrix if its off diagonal entries are all zero and its
diagonal entries are either one or minus one.

Our starting point is a theorem by Griffiths and Bapat [1, 7], (see also [8, Theorem
13.2.1]) that characterizes mean zero Gaussian vectors with infinitely divisible squares.

Theorem 1.1 (Griffiths, Bapat). Let G = (G1, . . . , Gn) be a mean zero Gaussian ran-
dom variable with strictly positive definite covariance matrix Γ = {Γi,j} = {E(GiGj)}.
Then G2 is infinitely divisible if and only if there exists a signature matrix N such
that

NΓ−1N is an M matrix. (1.5)

The role of the signature matrix is easy to understand. It simply accounts for the
fact that if G has an infinitely divisible square, then so does (ǫ1G1, . . . , ǫnGn) for any
choice of ǫi = ±1, i = 1, . . . , n. Therefore, if (1.5) holds for N with diagonal elements
n1, . . . , nn (

NΓ−1N
)−1

= NΓN ≥ 0 (1.6)

since the inverse of an M matrix is positive. Thus (n1G1, . . . , nnGn) has a positive
covariance matrix and its inverse is an M matrix.. (For this reason, in studying mean
zero Gaussian vectors with infinitely divisible squares one can restrict ones attention
to vectors with positive covariance.)

The question of characterizing Gaussian random variables with non-zero mean and
infinitely divisible squares first came up in the work of N. Eisenbaum [2, 3] and then
in joint work by Eisenbaum and H. Kaspi [4], in which they characterize Gaussian
processes with a covariance that is the 0-potential density of a symmetric Markov
process. This work is presented and expanded in [8, Chapter 13]. The following
theorem is taken from Theorem 13.3.1 and Lemma 13.3.2 in [8].

Theorem 1.2 (Eisenbaum, Kaspi). Let G = (G1, . . . , Gn) be a mean zero Gaus-
sian random variable with strictly positive definite covariance matrix Γ = {Γi,j} =
{E(GiGj)}. Let 1 = (1, . . . , 1) ∈ Rn. Then the following are equivalent:

(1) G + 1α has infinitely divisible squares for all α ∈ R1;

(2) For ξ = N(0, b2) independent of G, (G1 +ξ, . . . , Gn +ξ, ξ) has infinitely divisible
squares for some b 6= 0. Furthermore, if this holds for some b 6= 0, it holds for
all b ∈ R1, with N(0, 0) = 0.
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(3) Γ−1 is an M matrix with positive row sums.

To avoid having to comment about trivial exceptions to general statements we assume
that G can not be written as the direct sum of two independent Gaussian vectors G′

and G′′. This is equivalent to saying that the covariance matrix of G is irreducible.
We have the following description of Gaussian vectors with infinitely divisible squares
that doesn’t require that each component of the vector has the same mean.

Theorem 1.3. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with
irreducible strictly positive definite covariance matrix Γ = {Γi,j} = {E(GiGj)}. Let
c = (c1, . . . , cn) ∈ Rn, c 6= 0 and let C be a diagonal matrix with ci = Ci,i, 1 ≤ i ≤ n
. Then the following are equivalent:

(1) G + cα has infinitely divisible squares for all α ∈ R1;

(2) For ξ = N(0, b2) independent of G, (G1 + c1ξ, . . . , Gn + cnξ, ξ) has infinitely
divisible squares for some b 6= 0. Furthermore, if this holds for some b 6= 0, it
holds for all b ∈ R1;

(3) C Γ−1 C is an M matrix with positive row sums.

We list several consequences of Theorem 1.3. An important step in the proof of
Theorem 1.3 is to show that, under the hypotheses of this Theorem, no component
of c can be equal to zero. We state this as 1. of the next Corollary, and explore its
implications.

Corollary 1.1. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with
irreducible strictly positive definite covariance matrix Γ = {Γi,j} = {E(GiGj)}. Let
c = (c1, . . . , cn) ∈ Rn, c 6= 0 and let C be a diagonal matrix with ci = Ci,i, 1 ≤ i ≤ n
. Then

1. When any of the equivalent conditions (1), (2) and (3) of Theorem 1.3 hold no
component of c can be equal to zero;

2. If G2 is infinitely divisible none of the entries of Γ are equal to zero;

3. When any of the equivalent conditions (1), (2) and (3) of Theorem 1.3 hold and
Γ ≥ 0, (in which case, by 2., Γ > 0), then cicj > 0, 1 ≤ i, j ≤ n;

4. When CΓ−1C is an M matrix, it follows that NΓ−1N is also an M matrix,
where the diagonal elements of the signature matrix N are ni = sign ci, 1 ≤ i ≤
n.

To elaborate on Corollary 1.1, 4. we know by (3) ⇒ (1) of Theorem 1.3 and Theorem
1.1 that when CΓ−1C is an M matrix there exists a signature matrix N such that
NΓ−1N is an M matrix. In Corollary 1.1, 4. we show how C and N are related.

In the next corollary we use Theorem 1.3 to obtain two properties of the Gaussian
vector G that hold when G2 is infinitely divisible.
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Corollary 1.2. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with
irreducible strictly positive definite covariance matrix Γ = {Γi,j} = {E(GiGj)} and
suppose that G has infinitely divisible squares. Set

hj,n =
Γj,n

Γn,n
1 ≤ j ≤ n − 1; (1.7)

1. Then
(G1 + h1,nα, . . . , Gn−1 + hn−1,nα,Gn + α) (1.8)

has infinitely divisible squares for all α ∈ R1.

2. Write
G = (η1 + h1,nGn, . . . , ηn−1 + hn−1,nGn, Gn) (1.9)

where
ηj = Gj − hj,nGn 1 ≤ j ≤ n − 1. (1.10)

Then
(η1 + h1,nα, . . . , ηn−1 + hn−1,nα) (1.11)

has infinitely divisible squares for all α ∈ R1.

3. Let E denote the covariance matrix of (η1, . . . ηn−1). If Γ ≥ 0, E−1 is an M
matrix.

Remark 1.1. In particular Corollary 1.2, 1. shows that when a Gaussian vector G in
Rn has infinitely divisible squares there exists a vector c = (c1, . . . , cn) for which G+c
has infinitely divisible squares. Also Corollary 1.2, 2. shows that when a Gaussian
vector G in Rn has infinitely divisible squares, then (η1, . . . , ηn−1), the orthogonal
complement of the projection of G onto Gn, has infinitely divisible squares.

We next list several properties of the elements of the covariance matrix Γ = {Γi,j} =
{E(GiGj)} that hold when G2 is infinitely divisible, or when any of the equivalent
conditions (1), (2) and (3) of Theorem 1.2 hold. The first two are known, references
for them are given in Remark 2.1.

Corollary 1.3. Let G = (G1, . . . , Gn) be a mean zero Gaussian random variable with
irreducible strictly positive definite covariance matrix Γ = {Γi,j} = {E(GiGj)}. Let
c = (c1, . . . , cn) ∈ Rn, c 6= 0 . Then

1. When G2 is infinitely divisible, Γ ≥ 0 and n ≥ 3

Γj,lΓk,l ≤ Γj,kΓl,l ∀ 1 ≤ j, k, l ≤ n. (1.12)

2. When any of the equivalent conditions (1), (2) and (3) of Theorem 1.2 hold,

0 < Γi,j ≤ Γi,i ∧ Γj,j . (1.13)

3. When any of the equivalent conditions (1), (2) and (3) of Theorem 1.3 hold

Γi,i ≥
ci

cj
Γi,j ∀ 1 ≤ i, j ≤ n; (1.14)
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4. When n = 2 and the covariance matrix of G is invertible, (G+ cα)2 is infinitely
divisible for all α ∈ R1 if and only if

Γi,i ≥
ci

cj
Γi,j > 0 ∀ 1 ≤ i, j ≤ 2. (1.15)

5. When n ≥ 2 there is no Gaussian vector G for which (G + cα)2 is infinitely
divisible for all α ∈ R1 and all c ∈ Rn. (Recall that we are assuming that the
covariance matrix of G is irreducible. This rules out the possibility that all the
components of G are independent.)

By definition, when (G + c)2 is infinitely divisible, it can be written as in (1.1) as a
sum of r independent identically distributed random variables, for all r ≥ 1. Based
on the work of Eisenbaum and Kaspi mentioned above and the joint paper [5] we can
actually describe the decomposition. (In fact this decomposition plays a fundamental
role in the proofs of Lemma 4.1 and Theorem 4.2, [2] and Theorem 1.1, [3].) We give
a rough description here. For details see [2, 3, 4] and [8, Chapter 13].
Assume that (1), (2) and (3) of Theorem 1.3 hold. Consider G/c, (see (2.1)). Let Γc

denote the covariance matrix of G/c. Theorem 1.2 holds for G/c and Γc, so Γ−1
c is an

M matrix with positive row sums. To be specific let G/c ∈ Rn. Set S = {1, . . . , n}.
By [8, Theorem 13.1.2] Γc is the 0-potential density of a strongly symmetric transient
Borel right process, say X, on S. We show in the proof of [8, Theorem 13.3.1] that
we can find a strongly symmetric recurrent Borel right process Y on S ∪ {0} with
P x(T0 < ∞) > 0 for all x ∈ S such that X is the process obtained by killing Y the
first time it hits 0. Let Lx

t = {Lx
t ; t ∈ R+, x ∈ S ∪ {0}} denote the local time of Y . It

follows from the generalized second Ray-Knight Theorem in [5], see also [8, Theorem
8.2.2] that under P 0 × PG,

{
Lx

τ(t) +
1

2

(
Gx

cx

)2

; x ∈ S

}
law
=

{
1

2

(
Gx

cx
+

√
2t

)2

; x ∈ S

}
(1.16)

for all t ∈ R+, where τ(t) = inf{s > 0|L0
s > t}, the inverse local time at zero, and Y

and G are independent. Consequently

{
c2
xLx

τ(α2/2) +
1

2
G2

x; x ∈ S
}

law
=

{1

2
(Gx + cxα)

2
; x ∈ S

}
(1.17)

for all α ∈ R1. (We can extend α from R+ to R1 because G is symmetric.) {c2
xLx

τ(α2/2); x ∈
S} and { 1

2G2
x; x ∈ S} are independent. G2 is infinitely divisible and for all integers

r ≥ 1

c2
· L

·
τ(α2/2)

law
= c2

· L
·
τ(α2/(2r)),1 + · · · + c2

· L
·
τ(α2/(2r)),r (1.18)

where {L·
τ(α2/(2r)),j}, j = 1, . . . , r are independent.

Note that in (1.17) we identify the components of the decomposition of {(Gx + cxα)
2
; x ∈

S} that mark it as infinitely divisible. The profound connection between Gaus-
sian processes with infinitely divisible squares and local times of strongly symmet-
ric Markov processes shows that the question of Gaussian processes with infinitely
divisible squares is more than a mere curiosity.
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In this same vein we can describe a decomposition of mean zero Gaussian vectors
with infinitely divisible squares that is analogous to (1.17). Suppose G2 is infinitely
divisible. Write G and η1, . . . , ηn−1 as in (1.9) and (1.10) and set

ci =
Γi,n

Γn,n
, i = 1, . . . , n. (1.19)

Let P := (η1, . . . ηn−1) and c := c1, . . . , cn−1.
It follows from Corollary 1.2, 2, that η + cα has infinitely divisible squares for all
α ∈ R1. Therefore, as in (1.17),

{
c2
xLx

τ(α2/2) +
1

2
η2

x; x ∈ S
}

law
=

{1

2
(ηx + cxα)

2
; x ∈ S

}
(1.20)

for all α ∈ R1. Here Lx
t is the local time determined by the process P/c, in the same

way as the local time is determined by G/c in the paragraph containing (1.16). Let ξ
be a normal random variable with mean zero and variance EG2

n/2 that is independent
of everything else in (1.20). It follows from (1.20) and (1.9) that

{
c2
xLx

τ(ξ2) +
1

2
η2

x; x ∈ S
}

law
=

{1

2
G2

x; x ∈ S
}
. (1.21)

This isomorphism identifies the components of the decomposition of {G2
x; x ∈ S} that

mark it as infinitely divisible.

There remains an interesting question. Assume that G2 has infinitely divisible squares.
Is it possible for (G1 + α, . . . , Gn + α) to have infinitely divisible squares for some
α 6= 0 but not for all α ∈ R1? We do know that if this is the case there would exist
an 0 < α0 < ∞ such that (G1 +α, . . . , Gn +α) would have infinitely divisible squares
for all 0 ≤ |α| ≤ α0 but not for |α| > α0. We can show that such an α0 always exists
for (G1 + α,G2 + α), as long as EG1G2 6= 0, [9].

2 Proof of Theorem 1.3

Proof of Theorem 1.3 If none of the ci, i = 1, . . . , n are equal to 0, the theorem
follows directly from Theorem 1.2 applied to the Gaussian process

G

c
=

(
G1

c1
, . . . ,

Gn

cn

)
(2.1)

which is a mean zero Gaussian random variable with strictly positive definite covari-
ance matrix

Γc =

{
Γi,j

cicj

}
=

{
E

(
Gi

ci

Gj

cj

)}
= C−1ΓC−1, (2.2)

so that Γ−1
c = CΓ−1C. Applying Theorem 1.2 gives Theorem 1.3 except that (1) and

(2) are replaced by

(1′) (
G1

c1
+ α, . . . ,

Gn

cn
+ α

)
has infinitely divisible squares. (2.3)
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(2′) (
G1

c1
+ ξ, . . . ,

Gn

cn
+ ξ, ξ

)
has infinitely divisible squares. (2.4)

It is easy to see that these hold if and only if (1) and (2) hold.
Therefore, to complete the proof of Theorem 1.3 we need only show that each of the
conditions (1), (2), and (3) imply that none of the ci, i = 1, . . . , n are equal to 0. This
is obvious for (3) since an M matrix is invertible.

To proceed we give a modification of [8, Lemma 13.3.2].

Lemma 2.1. Let G = (G1, . . . , Gn) be a mean zero Gaussian process with covariance
matrix Γ which is invertible. Consider G = (G1 + c1ξ, . . . , Gn + cnξ, ξ) where ξ =
N(0, b2), b 6= 0, is independent of G. Denote the covariance matrix of G by Γ. Then

Γ
j,k

= Γj,k j, k = 1, . . . , n

Γ
n+1,k

= −∑n
j=1 cjΓ

j,k k = 1, . . . , n

Γ
n+1,n+1

=
1

b2
+

n∑

j,k=1

cjckΓj,k

(2.5)

where, for an invertible matrix A we use Ai,j to denote {A−1}i,j.

Note that it is possible for some or all of the components of c to be equal to zero.

Proof To prove (2.5) we simply go through the elementary steps of taking the inverse
of Γ. We begin with the array

Γ1,1 + c2
1b

2 . . . . . . Γ1,n + c1cnb2 c1b
2

∣∣ 1 . . . . . . 0 0
...

. . .
...

...

∣∣∣∣
...

. . .
...

...

Γn,1 + cnc1b
2 . . . . . . Γn,n + b2 cnb2

∣∣ 0 . . . . . . 1 0
c1b

2 . . . . . . cnb2 b2
∣∣ 0 . . . . . . 0 1

(2.6)

Next, for each j = 1, . . . , n subtract cj times the last row from the j–th row and then
divide the last row by b2 to get

Γ1,1 . . . . . . Γ1,n 0
∣∣ 1 . . . . . . 0 −c1

...
. . .

...
...

∣∣∣∣
...

. . .
...

...

Γn,1 . . . . . . Γn,n 0
∣∣ 0 . . . . . . 1 −cn

c1 . . . . . . cn 1
∣∣ 0 . . . . . . 0 1/b2

(2.7)

This shows that det(Γ) = b2 det(Γ) and consequently Γ is invertible if and only if Γ
is invertible.
We now work with the first n rows to get the inverse of Γ so that the array looks like

1 . . . . . . 0 0
∣∣ Γ1,1 . . . . . . Γ1,n a1

...
. . .

...
...

∣∣∣∣
...

. . .
...

...

0 . . . . . . 1 0
∣∣ Γn,1 . . . . . . Γn,n an

c1 . . . . . . cn 1
∣∣ 0 . . . . . . 0 1/b2

(2.8)
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At this stage we don’t know what are the aj , j = 1, . . . , n.

Finally, for each j = 1, . . . , n we subtract cj times the j–th row from the last row to
obtain

1 . . . . . . 0 0
∣∣ Γ1,1 . . . . . . Γ1,n a1

...
. . .

...
...

∣∣∣∣
...

. . .
...

...

0 . . . . . . 1 0
∣∣ Γn,1 . . . . . . Γn,n an

0 . . . . . . 0 1
∣∣ −∑n

j=1 cjΓ
j,1 . . . . . . −∑n

j=1 cjΓ
j,n an+1

(2.9)

where

an+1 = (1/b2 −
n∑

k=1

ckak). (2.10)

Since the inverse matrix is symmetric we see that ak = −∑n
j=1 cjΓ

j,k, k = 1, . . . , n.
This verifies (2.5).

We now show that (2) implies that no component of c can be zero. Recall that

c 6= 0.ÊÊ Suppose that some of the components of c are equal to zero. We can
separate the components of G1, . . . , Gn into two sets. Those that have the associated
ci 6= 0, 1 ≤ i ≤ n and those that have the associated cj = 0, 1 ≤ j ≤ n. There must
be at least one member of the first set that is not independent of some member of the
second set. Otherwise Γ is not irreducible. (Recall that this is an hypothesis, stated
just before Theorem 1.3.) We take these two members and relabel them G1 and G2

. If (2) Êholds then G̃ = (G1 + c1ξ,G2, ξ) has an infinitely divisible square. LetÊ

Γ̃ denote the covariance matrix of G̃. Then by Theorem 1.1 there exists a signature
matrix N such that that N Γ̃−1N is an M matrix.Ê It follows from (2.9) that

N Γ̃−1N =




Γ1,1
(2) Γ1,2

(2)n1n2 − c1Γ
1,1
(2)n1n3

Γ2,1
(2)n1n2 Γ2,2

(2) −c1Γ
1,2
(2)n2n3

−c1Γ
1,1
(2)n1n3 −c1Γ

1,2
(2)n2n3 1/b2 + c2

1Γ
1,1
(2)




. (2.11)

where Γ(2) is the covariance matrix ofÊ (G1, G2) and Γi,j
(2) = (Γ−1

(2))i,j . Since N Γ̃−1N
is an M matrix, it must have negative off diagonal elements. In fact they are strictly
negative because G1 and G2 are not independent. Therefore

0 < (N Γ̃−1N )1,3(N Γ̃−1N )2,3 = c2
1Γ

1,1
2 Γ1,2

2 n1n2

which implies that (N Γ̃−1N )1,2 = Γ1,2
2 n1n2 > 0.Ê This contradiction shows that

when (2) holds no component of c can be zero.

We complete the proof of the Theorem by showing that (1) ⇒ (2) , which, in partic-
ular, implies that when (1) holds no component of c can be zero.

It follows from (1) that (
√

mα,G1 +
√

mαc1, . . . , Gn +
√

mαcn) has infinitely divisible
squares for all integers m ≥ 0 and α ∈ R1. Let G0 := 0, c0 := 1 and let λ =
(λ1, . . . , λn) be an n-dimensional vector and Λ an n × n diagonal matrix with λj as
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its j-th diagonal entry. By [8, Lemma 5.2.1]

E exp

(
−

n∑

i=0

λi(Gi +
√

mαci)
2/2

)
(2.12)

=
1

(det(I + ΓΛ))1/2
exp

(
mα2

(
−λ0

2
− cΛct

2
+

(cΛΓ̃Λct)

2

))
,

where
Γ̃ := (Γ−1 − Λ)−1 = (I − ΓΛ)−1Γ. (2.13)

By the same lemma

E exp

(
−

n∑

i=0

λi(Gi + ciξ)
2/2

)
(2.14)

=
1

(det(I + ΓΛ))1/2
exp

(
ξ2

(
−λ0

2
− cΛct

2
+

(cΛΓ̃ Λct)

2

))
.

Compare (2.12) and (2.14) with (13.82) and (13.83) in the proof of (2) ⇒ (3) of [8,
Theorem 13.3.1]. Following that proof we see that (1) ⇒ (2).

Proof of Corollary 1.1

1. As observed in the proof of Theorem 1.3, (3), C Γ−1 C is invertible and thus
det C 6= 0.

2. Ê Pick any component of G; for convenience we take Gn. LetÊ

ηj = Gj −
Γj,n

Γn,n
Gn 1 ≤ j ≤ n − 1. (2.15)

We write

G =

(
η1 +

Γ1,n

Γn,n
Gn, . . . , ηn−1 +

Γn−1,n

Γn,n
Gn, Gn

)
(2.16)

and note that this has the form of

G = (η1 + c1ξ, . . . , ηn−1 + cn−1ξ, ξ) (2.17)

where ξ = N(0, EG2
n) is independent of η = (η1, . . . , ηn−1).

If the covariance matrix of (η1, . . . , ηn−1) is irreducible then the fact that G2 is
infinitely divisible and 1. of this corollary imply that cj 6= 0, 1 ≤ j ≤ n − 1.
Thus none of Γj,n, 1 ≤ j ≤ n − 1, are equal to zero. Since the initial choice of

Gn is arbitraryÊ we get 2.

Now suppose that the covariance matrix of (η1, . . . , ηn−1) is not irreducible. As-
sume that Γ1,n = 0. If η1 is independent of (η2, . . . , ηn−1), then since η1 = G1,
and it is independent of Gn, we get a contradiction of the hypothesis that the
covariance matrix of G is irreducible. Therefore let (η1, . . . , ηl), 2 ≤ l ≤ n−2, be
the smallest set of components in (η1, . . . , ηn−1) that both contains η1 and has
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an irreducible covariance matrix. Consider the corresponding Gaussian vector
(G1, . . . , Gl), Note that at least one of the components in this vector is not in-
dependent of Gn, since if this is not the case (G1, . . . , Gl) would be independent
of (Gl+1, . . . , Gn) which contradicts the hypothesis that the covariance matrix
of G is irreducible.

Suppose G2 depends on Gn, and consider the vector (G1, G2, Gn). This vector
has infinitely divisible squares because G has infinitely divisible squares. Let
Gn := ξ. Then we can write (G1, G2, Gn) as (η1, η2 + αξ, ξ), where α 6= 0.
However, by Theorem 1.3, or 1. of this corollary, this vector does not have
infinitely divisible squares. This contradiction shows that none of Γj,n, 1 ≤
j ≤ n − 1, are equal to zero, and as above this establishes 2. even when the
covariance matrix of (η1, . . . , ηn−1) is not irreducible.

3. By Theorem 1.3, (3)
(
C Γ−1 C

)−1

j,k
=

Γj,k

cjck
≥ 0. (2.18)

and by hypothesis and 2., Γj,k > 0. (Also by 1. neither cj nor ck are equal to
zero.) Therefore under the hypotheses of 3. we actually have

(
C Γ−1 C

)−1

j,k
=

Γj,k

cjck
> 0, (2.19)

so, since Γj,k > 0, cjck > 0.

4. Write C = CNN for N as given. Then consider

CNNΓ−1NCN = CΓ−1C. (2.20)

Since CN > 0 we see that NΓ−1N is an M matrix.

Proof of Corollary 1.2

1. To begin suppose that Γ ≥ 0. In this case we see by Corollary 1.1, 2. that
hj,n > 0, 1 ≤ j ≤ n − 1. Since G has infinitely divisible squares so does

G

h
=

(
G1

h1,n
, . . . ,

Gn−1

hn−1,n
, Gn

)
. (2.21)

Write G as in (2.16) so that

G

h
=

(
η1

h1,n
+ Gn, . . . ,

ηn−1

hn−1,n
+ Gn, Gn

)
. (2.22)

Let Θ be the covariance matrix of G/h. Since Γ ≥ 0 and hj,n > 0, 1 ≤ j ≤ n−1,
we have Θ ≥ 0. Therefore by Theorem 1.1, Θ−1 is an M -matrix. It is also

a matrix of the type Γ
−1

considered in [8, Lemma 13.4.1]. It follows from
(4) =⇒ (3) of this Lemma that Θ−1 has positive row sums. Therefore by
Theorem 1.2

(
η1

h1,n
+ Gn + α, . . . ,

ηn−1

hn−1,n
+ Gn + α,Gn + α

)
(2.23)
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has infinitely divisible squares for all α ∈ R1. This is equivalent to (1.8).

In general let N be the signature matrix such that NΓN ≥ 0. Without loss of
generality we can take nn = 1. Applying the result in the preceding paragraph
to (n1G1, . . . , nn−1

Gn−1, Gn) we see that

(n1G1 + n1h1,nα, . . . , nn−1Gn−1 + nn−1hn−1,nα,Gn + α) (2.24)

has infinitely divisible squares for all α ∈ R1. This implies that

(G1 + h1,nα, . . . , Gn−1 + hn−1,nα,Gn + α) (2.25)

has infinitely divisible squares, which gives (1.8).

2. ÊWrite G as in (1.9). If the covariance matrix of η = (η1, . . . , ηn−1) is irreducible
then it follows from Theorem 1.3 and the hypothesis that G2 is infinitely divis-
ible, that (η + hα)2 is infinitely divisible for all α. However, it is easy to see
that the covariance matrix of (η1, . . . , ηn−1) need not be irreducible. (Consider
G = (η1 + ξ, η2 + ξ, ξ) where η1, η2, ξ are i.i.d. N(0, 1). G2 is infinitely divisible
but, obviously, the covariance matrix of (η1, η2) is not irreducible.)

If the covariance matrix of (η1, . . . , ηn−1) is not irreducible, consider a subset of
the components say (η1, . . . , ηl) such that its covariance matrix is irreducible.
Since G2 is infinitely divisible

G = (η1 + h1,nGn, . . . , ηl + hl,nGn, Gn) (2.26)

is infinitely divisible. It follows from the argument in the beginning of the
preceding paragraph that (η1+h1α, . . . , ηl+hlα, ) has infinitely divisible squares
for all α. This holds for all the blocks of irreducible components of η. Therefore
(η + hα)2 is infinitely divisible for all α.

3. As we point out in 2., immediately above, the covariance matrix of (η1, . . . , ηn−1)
is not necessarily irreducible. If it is not, as above, consider a subset of the
components, say (η1, . . . , ηl), such that its covariance matrix is irreducible. Since
G2 is infinitely divisible

G = (η1 + h1,nGn, . . . , ηl + hl,nGn, Gn) (2.27)

is infinitely divisible.Ê Let E ′ be the covariance matrix of (η1, . . . , ηl). It follows
from Theorem 1.3, that C ′E ′−1C ′ is an M matrix, where C ′ is a diagonal matrix
with entries ci = hi,n, 1 ≤ i ≤ l. Since Γ ≥ 0, the diagonal elements of C ′

are strictly positive. Thus E ′−1 is an M matrix. It is easy to see that if the
covariance matrix of each irreducible block of (η1, . . . , ηn−1) is an M matrix,
then E is an M matrix.

Proof of Corollary 1.3

1. Let E be as in Corollary 1.2, 3. Since E ≥ 0 we see that

Ej,k = Eηjηk = Γj,k − Γj,nΓk,n

Γn,n
≥ 0. (2.28)
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This gives (1.12) when l = n. Since the choice of Gn in 8. is arbitrary we get
(1.12) as stated.

3. By (2.19)
Γj,k

cjck
> 0 1 ≤ j, k ≤ n. (2.29)

Consider (Gi + ci, Gj + cj), i 6= j. Let Γ(2) be the covariance matrix of (Gi, Gj)

and Γc be the covariance matrix of (Gi/ci, Gj/cj) so that Γc = C̃−1Γ(2)C̃
−1

where C̃ is a diagonal matrix with entries ci, cj . Hence Γ−1
c = C̃Γ−1

(2)C̃. Consid-

ering the nature of the inverse of the 2 × 2 matrix Γ(2) we have that

Γi,i
c = c2

i Γ
i,i =

c2
i Γj,j

det Γ
> 0 i 6= j (2.30)

and

Γi,j
c = cicjΓ

i,j = −cicjΓi,j

det Γ
. (2.31)

Since (Gi + ci, Gj + cj) has infinitely divisible squares CΓ−1C has positive row
sums. Therefore

c2
i Γj,j ≥ cicjΓi,j (2.32)

which gives (1.14).

4. If (1.15) holds no component of c can be equal to zero and Γi,j 6= 0. The proof
of 3. shows that when n = 2 the first inequality in (1.15) is necessary and
sufficient for CΓ−1C to have positive row sums. The second inequality in (1.15)
is necessary and sufficient for CΓ−1C to be an M-matrix.

2. This follows from 3.

5. This follows from 3. and Corollary 1.1, 1.

Remark 2.1. Item 1. in Corollary 1.3 is given in [8, (13.39)]. An interesting con-
sequence of this property is given in [8, (13.42)]. Item 1. in Corollary 1.2 follows
from [8, Theorem 13.3.3 and Theorem 13.3.1]. Item 2. in Corollary 1.3 follows from
[8, Theorem 13.3.1 and (13.2)]. These are all are consequences of the relationship
between M matrices with positive row sums and the 0-potential density of Borel right
process. Item 5. in Corollary 1.3 is also a consequence of [3], Remark 2.3.

Example 2.1. Let G = (G1, G2) have mean zero and have covariance matrix

Γ =

(
1 4

3
4
3 2

)
, Γ−1 =

(
9 −6
−6 9/2

)
. (2.33)

By Corollary 1.3, 4. (G1 + α,G2 + α) does not have infinitely divisible squares for all
α ∈ R1, and obviously, Γ−1 does not have positive row sums. However, by Corollary
1.3, 4. again or Corollary 1.2, 1., (G1 + α,G2 + (4/3)α) does have infinitely divisible
squares for all α ∈ R1. (Let C be the diagonal matrix with C1,1 = 1 and C2,2 = 4/3.
Then

CΓ−1C =

(
9 −8
−8 8

)
(2.34)

is an M matrix with positive row sums.)
Moreover by Corollary 1.3, 4. (G1 + α,G2 + c2α) has infinitely divisible squares for
all α ∈ R1, for all 1 ≤ c2 ≤ 2.
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