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Abstract
Recently, Kalvin M. Jansons derived in an elegant way the Laplace transform of the time spent
by an excursion above a given level a > 0. This result can also be derived from previous work
of the author on the occupation time of the excursion in the interval (a, a + b], by sending
b→ ∞. Several alternative derivations are included.

1 Introduction

In [5], the author derives in an elegant way the Laplace transform of the time spent by an
excursion above a given level a > 0. This result can also be derived from the occupation time
of the excursion in the interval (a, a+ b], by sending b→ ∞ (cf. [2] or [4]).

2 Occupation times

Introduce for α, β complex and a ≥ 0,

ψ(α, β, a) =
[
α cosh(aβ) + β sinh(aβ)
α sinh(aβ) + β cosh(aβ)

]
.

Denote by W+
0 , Brownian excursion with time parameter t ∈ [0, 1], see [4], I.2 for a precise

definition. According to p. 117 and p. 120 of [4], or Theorem 5.1 of [2], the Laplace transform
of the occupation time T (a, a+ b) =

∫ 1

0 1(a,a+b](W
+
0 (t)) dt, is given by:

Ee−βT (a,a+b) =
√

2π
a3

∞∑
k=1

k2π2e−k2π2/2a2
+

1
i
√
π

∫
S

αeα

sinh{a√2α} (1)

×[
√
α cosh{a√2α} + (α + β)1/2ψ(

√
α,

√
α+ β, b

√
2) sinh{a√2α}]−1 dα,
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where the path S is defined by

S = {α : α = iy, |y| ≥ ξ} ∪ {α : α = ξeiη,−π/2 ≤ η ≤ π/2},

for some ξ > 0.

In order to write the first term on the right side of (1), which term is equal to the distribution
function of the supremum of Brownian excursion, 1 as a complex integral we introduce the
path:

Γ = {α : α = ye±iφ, y ≥ ξ} ∪ {α : α = ξeiη,−φ ≤ η ≤ φ},

with π/2 < φ < π, ξ > 0 and the orientation counterclockwise. We choose the angle φ in such
a way that all sigularities of the integrand in (1) remain on the left of the path Γ. Then

√
2π
a3

∞∑
k=1

k2π2e−k2π2/2a2
= − 1

i
√
π

∫
Γ

√
αeα cosh{a√2α}

sinh{a√2α} dα, (2)

since the integrand has only simple poles at αk = −k2π2/2a2, k ≥ 1. Combining (1) and (2)
and deforming the path S into the path Γ (again using Cauchy’s theorem), yields

Ee−βT (a,a+b) = − 1
i
√
π

∫
Γ

√
αeα dα (3)

×
[√

α sinh{a√2α} + (α+ β)1/2ψ(
√
α,

√
α+ β, b

√
2) cosh{a√2α}√

α cosh{a√2α} + (α+ β)1/2ψ(
√
α,

√
α+ β, b

√
2) sinh{a√2α}

]
.

By taking the limit for b → ∞, (ψ(., ., b
√

2) → 1, uniformly on compacta of Γ) we obtain for
the Laplace transform of the occupation time T (a) = T (a,∞),

Ee−βT (a) = − 1
i
√
π

∫
Γ

√
αeαψ(

√
α+ β,

√
α, a

√
2) dα. (4)

Alternatively, one could take the limit for a ↓ 0 in (3), resulting in the transform: Ee−β(1−T (b)).
For the occcupation time Tt(a) of the excursion straddling t, we have

Tt(a)
d= (Lt)

1/2 T (a (Lt)
−1/2), (5)

with T (a) and Lt independent, and where Lt denotes the length of the excursion. It is readily
verified from the density of Lt, see [1], (4.4), that for integrable ϕ,∫ ∞

0

e−αtEϕ(Lt) dt =
1

2
√
πα3

∫ ∞

0

ϕ(y)(1 − e−αy) dy. (6)

1According to the Poisson-summation formula

√
2π

a3

∞X

k=1

k2π2e−k2π2/2a2
= 1 + 2

∞X

k=1

(1 − 4k2a2)e−2k2a2
,

which is the more familiar form of this distribution function.
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Hence, using (5) and (6), the Laplace transform (4) yields the double Laplace transform:∫ ∞

0

e−αtEe−βTt(a) dt (7)

=
1
α
ψ(

√
α+ β,

√
α, a

√
2) − 1

α3/2
lim
α↓0

√
αψ(

√
α+ β,

√
α, a

√
2)

=
1
α

[√
α sinh{a√2α} +

√
α+ β cosh{a√2α}√

α cosh{a√2α} +
√
α+ β sinh{a√2α}

]
− 1
α3/2

√
β

1 + a
√

2β
.

This result can also be derived starting from reflected Brownian motion |W | (cf. [3], p. 92,
Remark (3.20)).
Perhaps the most elegant formulation of the Laplace transform of the occupation time is that
for β strictly positive

1√
2π

∫ ∞

0

e−αx

x3/2

[
1 − Ee−βxT (x−1/2)

]
dx (8)

=
2
√

2α(
√
α+ β −√

α)
(
√
α+

√
α+ β)e2

√
2α + (

√
α−√

α+ β)
.

Equation (8) can be derived as follows. On the path Γ we have:

1 − Ee−βT (a) = − 1
i
√
π

∫
Γ

√
αeα dα+

1
i
√
π

∫
Γ

√
αeαψ(

√
α+ β,

√
α, a

√
2) dα

=
1
i
√
π

∫
Γ

√
αeα

[
2(
√
α+ β −√

α)e−a
√

2α

(
√
α+

√
α+ β)ea

√
2α + (

√
α−√

α+ β)e−a
√

2α

]
dα.

Now for a > 0 the integral over the path Γ may be replaced by integration over the line
(c− i∞, c+ i∞), where c > 0 is arbitrary. Hence after the substitution α = xz, with x positive
and replacement of the path (c/x− i∞, c/x+ i∞) by the path (c− i∞, c+ i∞), we obtain

x−3/2
(
1 − Ee−βxT (x−1/2)

)

=
1
i
√
π

∫ c+i∞

c−i∞

√
zexz

[
2(
√
z + β −√

z)e−
√

2z

(
√
z +

√
z + β)e

√
2z + (

√
z −√

z + β)e−
√

2z

]
dz.

Taking Laplace transforms on both sides gives (8).
Each of the representations (4), (7) or (8) is equivalent to Theorem 1 of [5], where the duration
of the excursion was scaled with a gamma(1

2 ,
1
2ν

2) density. In particular, Theorem 1 of [5] can
be obtained from (8) by differentiating both sides with respect to α and using that∫ ∞

0

x−1/2e−αx dx =
√
π/α.

References

[1] K.L. Chung Excursions in Brownian motion. Ark. Math. 14, 155-177, 1976.



64 Electronic Communications in Probability

[2] J.W. Cohen and Hooghiemstra, G. Brownian excursion, the M/M/1 queue and
their occupation times. Math. Oper. Res. 6, 608-629, 1981.

[3] R.K. Getoor and Sharpe, M.J. Excursions of Brownian motion and Bessel processes.
Z. Wahrscheinlichkeitstheorie un Verw. Gebiete 47, 83-106, 1979.

[4] G. Hooghiemstra Brownian Excursion and Limit Theorems for the M/G/1 queue.
Ph.D. thesis University Utrecht, 1979.

[5] K.M. Jansons The distribution of time spent by a standard excursion above a given
level, with applications to ring polymers near a discontinuity in potential. Elect. Comm.
in Probab. 2, 53-58, 1997.


