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Abstract

This work was motivated by the recent work by H. Dette, J. Pitman and W.J. Studden on a
new duality relation for random walks [1]. In this note we consider the diffusion process limit
of their result, and use the alternative approach of Itô excursion theory. This leads to a duality
for Itô excursion rates.

1 A Duality for Excursion Rates of a Brownian Motion
with Non-Uniform Drift

In a recent paper [1] a new duality relation for random walks was introduced, and at the end
of that paper a brief mention was made of a corresponding result conjectured for diffusion
processes. In this note we show how the diffusion process limit of the random walk result is
very much easier to prove directly. This leads to a duality for Itô excursion rates.

For a good review of Itô excursion theory see the book by Rogers and Williams [2], or for
the bare bones of excursion theory, which is sufficient for the current work see Dean and
Jansons [3], who use it to consider polymer solutions in straining flows.

Let u : IR 7→ IR be locally integrable, and let u∗(x) = −u(x). Fixing a < b and λ > 0 until
further notice, consider two diffusion processes X and X∗ with values in [a, b], satisfying

dXt = dBt + u(Xt)dt, dX∗t = dBt + u∗(X∗t )dt, (1)

with both X and X∗ reflected instantaneously at a and with X killed at b and X∗ reflected
instantaneously at b. We shall refer to any process satisfying an Itô SDE of the form of those
given in equation (1) as “Brownian motion with non-uniform drift”. Define for a ≤ x ≤ b

ψ(x) = IEx exp(−λHa), ψ∗(x) = IEx exp(−λH∗a ),

where Ha = inf{t : Xt = a} and H∗a = inf{t : X∗t = a}. Then it is well known that both ψ
and ψ∗ are strictly decreasing in [a, b], ψ(a) = ψ∗(a) = 1 and ψ(b) = Dψ∗(b) = 0. Both ψ and
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ψ∗ are strictly positive in [a, b), and satisfy

Gψ ≡ 1
2
D2ψ + uDψ = λψ,

G∗ψ∗ ≡ 1
2D

2ψ∗ + u∗Dψ∗ = λψ∗.

The main result of this paper, before translation into excursion theoretic language, is as follows.

Proposition. Using the above notation and definitions

2λ =
Dψ

ψ
· Dψ

∗

ψ∗
.

Proof. Define a function φ by
Dφ

φ
= 2λ

ψ

Dψ
,

in (a, b], with φ(a) = 1. Firstly note that φ is well defined, as it easily follows from the definition
of ψ that Dψ is continuous and strictly negative in [a, b]. Secondly routine calculus proves
that φ solves the same ODE as ψ∗ with the same boundary conditions, therefore φ = ψ∗.

We now translate the above proposition into the language of excursion theory, which leads to
the nicest and most natural form of the duality. Using the semi-martingale normalization of
local time, let nx and n∗x be respectively the excursion measures for upward excursions of the
processes X and X∗ from x ∈ [a, b).

Theorem 1 Using the above definitions and assumptions, suppose that X is a Brownian mo-
tion with non-uniform drift u(x) on [a, b], killed at b, and X∗ is a Brownian motion with
non-uniform drift −u(x), reflected at b. If the processes are marked by the points of an inde-
pendent homogeneous Poisson point process of rate λ, then their excursion measures satisfy:

nx(marked or killed) n∗x(marked) = 1
2λ, (2)

for x ∈ [a, b).

Proof. Take any c ∈ [a, b) and notice that, with semi-martingale local time,

exp

[
−λ
∫ t

0

I(c,b](Xs)ds− 1
2

Dψ

ψ
(c)L(t, c)

]
ψ(Xt ∨ c)

is a martingale, where L is the local-time process of X. Then if we time change by TL = inf{t :
L(t, c) > L} we obtain another martingale

exp

[
−λ
∫ TL

0

I(c,b](Xs)ds− 1
2

Dψ

ψ
(c)L

]
, (3)

ignoring the multiplicative constant ψ(c). Equation (3) identifies −1
2
Dψ
ψ (c) as the (local-time)

rate of excursions of X into (c, b] which are λ-marked or killed. Similarly we can identify

−1
2
Dψ∗

ψ∗
(c) with the rate of excursions of X∗ into (c, b] which are λ-marked (as there is no

killing). Then the above proposition gives the required result.
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We now see that the choice of a is arbitrary (and irrelevant). Also, imposing a finite boundary
b is not necessary; if we let b→∞ the corresponding excursion rates converge and the duality
relation still holds.

Example 1. Consider the simplest example of Brownian motion with constant drift u on
[0, `], with ` > 0. For x ∈ [0, `) let

a(x) = nx(marked or killed), a∗(x) = n∗x(marked)

and ν =
√

2λ, then

a(x) = 1
2

(
ν2 + u2

)1
2 coth

((
ν2 + u2

)1
2 (`− x)

)
+ 1

2
u.

In this case, the duality implies that

a∗(x) =
1
2
ν2

(ν2 + u2)
1
2 coth

(
(ν2 + u2)

1
2 (`− x)

)
+ u

.

Example 2. Consider an N -layer system, with layer i having uniform drift ui and length `i.
Then for each layer define the following excursion rates:

ai+ = 1
2

(
ν2 + u2

i

)1
2 coth

((
ν2 + u2

i

)1
2 `i

)
+ 1

2ui,

ai− = 1
2

(
ν2 + u2

i

)1
2 coth

((
ν2 + u2

i

)1
2 `i

)
− 1

2
ui,

bi+ = 1
2

(
ν2 + u2

i

)1
2 exp (ui`i) cosech

((
ν2 + u2

i

)1
2 `i

)
,

bi− = 1
2

(
ν2 + u2

i

)1
2 exp (−ui`i) cosech

((
ν2 + u2

i

)1
2 `i

)
,

The a+ and a− rates are the excursion rates for crossing a layer or being marked, in the +
and − directions, and the b+ and b− rates are the excursion rates for crossing a layer without
being marked, in the + and − directions.
Now define corresponding rates for layers i to N taken together, which we denote by upper
case letters. A simple excursion argument gives

Ai+ = ai+ −
bi+bi−

ai− + Ai+1
+

, (4)

Ai− = Ai+1
− −

Bi+1
+ Bi+1

−
ai− + Ai+1

+

, (5)

Bi+ =
bi+Bi+1

+

ai− + Ai+1
+

, (6)

Bi− =
bi−Bi+1

−
ai− + Ai+1

+

. (7)
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Clearly, for layer N , we need

AN+ = aN+ , AN− = aN− , BN+ = bN+ , BN− = bN− . (8)

Equations (4–8) naturally lead to continued fractions for the rates for the whole N -layer
system.
Now applying the general duality (2), we find

Ai+ =
1
4
ν2(

Ai+ −
Bi

+Bi
−

Ai
−

)∗ .
where (·)∗ denotes the dual of (·), which in this case means replacing ui by −ui throughout.
We can find other similar relations using the general duality, but these are left to the reader!
Furthermore, this example can be used to recover the corresponding random walk results [1],
by considering the process each time it is at an end point of one of the layers.

2 Connection with the Duality of Dette et al.

We now put the duality into the form conjectured by Dette et al [1]. Without loss of generality,
take a = 0. Consider the processes X and X∗, and recall that both processes have a reflecting
boundary condition at the origin. The assumption that u is locally integrable implies that X
and X∗ have well-behaved transition densities p and p∗, with respect to Lebesgue measure.
The semi-martingale normalization of local time implies that

IE

{∫ ∞
0

exp (−λt)L(t, 0)dt

}
=

∫ ∞
0

exp(−λt)
∫ t

0

p(s, 0, 0)ds dt (9)

= λ−1

∫ ∞
0

exp(−λt)p(t, 0, 0)dt; (10)

furthermore, using standard excursion theoretic reasoning,

IE

{∫ ∞
0

λ exp (−λt)L(t, 0)dt

}
= (n0(marked or killed))

−1
. (11)

Rearranging equation (2) and setting x = 0, we find

2λ−1n∗0(marked) = (n0(marked or killed))
−1
,

which on combining with equations (9–11) gives

2λ−1n∗0(marked) =

∫ ∞
0

exp(−λt)p(t, 0, 0)dt. (12)

Since

n∗0(marked) =

∫ ∞
0

λ exp(−λt)n∗0(duration > t)dt,

taking inverse Laplace transforms of equation (12) gives

n∗0(duration greater than t) = 1
2p(t, 0, 0). (13)
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Similarly, we find

n0(duration greater than t or killed) = 1
2
p∗(t, 0, 0),

i.e. the dual of equation (13).
The corresponding results for random walks can be obtained by embedding them in a non-
uniform drifting Brownian motion, as mentioned at the end of example 2. Also the continued
fractions that appear in Dette et al [1] all have very simple excursion theoretic interpretations
(compare them to the continued fractions that result from expanding equations (4–8)).

3 Conclusion

First, equation (2) is at the heart of several known dualities, see Siegmund [4] and Dette et
al [1], and the references therein. Second, equation (2) is very easy to prove directly.
It does not look likely that any form of this duality will have one side that is much easier to
calculate than the other. However, as a user of excursion theory, and someone who spends a
great deal of time calculating excursion rates, anything that halves the work and halves the
size of my notebook of excursion rates is welcome.
In many polymer applications [3] it is necessary to calculate excursion rates for a diffusion
process on a network, so it will be interesting to see if this duality generalizes to networks.
Higher dimensional forms of this duality do not appear to exist.
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