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Abstract
We give a simple proof that in a Lipschitz domain in two dimensions with Lipschitz constant
one, there is pathwise uniqueness for the Skorokhod equation governing reflecting Brownian
motion.

Suppose that D ⊂ R2 is a Lipschitz domain and let n(x) denote the inward-pointing unit
normal vector at those points x ∈ ∂D for which such a vector can be uniquely defined (such
x form a subset of ∂D of full surface measure). Suppose (Ω,F ,P) is a probability space.
Consider the following equation for reflecting Brownian motion with normal reflection taking
values in D, known as the (stochastic) Skorokhod equation:

Xt = x0 + Wt +
∫ t

0

n(Xs) dLs t ≥ 0. (1)

We suppose there is a filtration {Ft} satisfying the usual conditions, and W = {Wt, t ≥ 0} is a
2-dimensional Brownian motion with respect to {Ft}. In particular, if s < t, we have Wt−Ws

independent of Fs. Also L = {Lt, t ≥ 0} is the local time of X = {Xt, t ≥ 0} on ∂D, that is,
a continuous nondecreasing process that increases only when X is on the boundary ∂D and
such that L does not charge any set of zero surface measure. Moreover we require X to be
adapted to {Ft}.
We say that pathwise uniqueness holds for (1) if whenever X and X ′ are two solutions to (1)
with possibly two different filtrations {Ft} and {F ′

t}, resp., then P(Xt = X ′
t for all t ≥ 0) = 1.

In this note we give a short proof of the following theorem.
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Theorem 1 Suppose D ⊂ R2 is a Lipschitz domain whose boundary is represented locally
by Lipschitz functions with Lipschitz constant 1. Then we have pathwise uniqueness for the
solution of (1).

We remark that there are varying definitions of pathwise uniqueness in the literature. Some
references, e.g., [4], allow different filtrations for X and X ′, while others, e.g., [5], do not. We
prove pathwise uniqueness with the definition used by [4], which yields the strongest theorem.
Theorem 1 was first proved in [2], with a vastly more complicated proof. Moreover, in that
proof, it was required that the Lipschitz constant be strictly less than one. Strong existence
was also proved in [2]; it will be apparent from our proof that we also establish strong existence.
In C1+α domains with α > 0, the assumption that L not charge any sets of zero surface
measure is superfluous; see [3], Theorem 4.2. (There is an error in the proof of Theorem 3.5
of that paper, but this does not affect Theorem 4.2.)
In a forthcoming paper, the authors plan to prove that pathwise uniqueness holds in C1+α

domains in Rd for d ≥ 3 and α > 1/2, but that pathwise uniqueness fails for some C1+α

domains in R3 with α > 0. We do not have a conjecture as to whether pathwise uniqueness
holds in all two-dimensional Lipschitz domains.

Proof. Standard arguments allow us to limit ourselves to domains of the following form

D = {(x1, x2) : f(x1) < x2},

where f : R → R satisfies the following conditions: f(0) = 0 and |f(x1)− f(y1)| ≤ |x1 − y1|.
Consider any x0 ∈ D and processes X and Y taking values in D such that a.s.,

Xt = x0 + Wt +
∫ t

0

n(Xs) dLX
s , t ≥ 0,

Yt = x0 + Wt +
∫ t

0

n(Ys) dLY
s , t ≥ 0. (2)

We will first assume that the filtrations for X and Y are the same, and then remove that
assumption at the end of the proof. Here LX is the local time of X on ∂D, that is, a continuous
nondecreasing process that increases only when X is on the boundary ∂D and that does not
charge any set of zero surface measure. The processes LY is defined in an analogous way
relative to Y .
We will write Xt = (X1

t , X2
t ) and similarly for Y . Let

Vt =

{
Xt if X1

t < Y 1
t ,

Yt otherwise,

LV
t =

∫ t

0

1{X1
s <Y 1

s }dLX
s +

∫ t

0

1{X1
s≥Y 1

s }dLY
s .

Next we will show that, a.s.,

Vt = x0 + Wt +
∫ t

0

n(Vs) dLV
s , t ≥ 0. (3)
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The following proof of (3) applies to almost all trajectories because it refers to properties
that hold a.s. We will define below times t1 and t2. They are random in the sense that they
depend on ω in the sample space but we do not make any claims about their measurability.
In particular, we do not claim that they are stopping times.
Let K be the open cone {(x1, x2) : x2 > |x1|}. First we will show that there are no t > 0 such
that Xt − Yt ∈ K or Yt −Xt ∈ K. Suppose that there exists t1 > 0 such that Xt1 − Yt1 ∈ K.
Note that X0−Y0 = 0 /∈ K. Let t2 = sup{t ∈ (0, t1) : Xt−Yt /∈ K} and note that Xt2−Yt2 /∈ K
because K is open. Hence t2 is strictly less than t1. For t ∈ (t2, t1), Xt − Yt ∈ K, so Xt ∈ D,
because for any x ∈ ∂D and y ∈ R2 such that x − y ∈ K, we have y /∈ D. We see that
LX

t1 − LX
t2 = 0. We have

Xt − Yt =
∫ t

0

n(Xs) dLX
s −

∫ t

0

n(Ys) dLY
s .

Since LX
t1 − LX

t2 = 0,

(Xt1 − Yt1)− (Xt2 − Yt2) = −
∫ t1

t2

n(Ys) dLY
s . (4)

We have n(x) ∈ K for every x ∈ ∂D where n(x) is well defined. Hence
∫ t1

t2
n(Xs)dLX

s ∈ K.
For all x, y, z ∈ R2 such that x ∈ K, y /∈ K and −z ∈ K, we have x − y 6= z. We apply this
to x = Xt1 − Yt1 , y = Xt2 − Yt2 and z = −

∫ t1
t2

n(Xs)dLX
s to obtain a contradiction with (4).

This contradiction shows that there does not exist t with Xt−Yt ∈ K. By the same argument
with X and Y reversed, there does not exist t with Yt −Xt ∈ K.
Simple geometry shows that if x, y ∈ R2, x = (x1, x2), y = (y1, y2), x1 = y1, x − y /∈ K and
y − x /∈ K then x = y. We apply this observation to x = Xt and y = Yt to conclude that if
X1

t = Y 1
t , then Xt = Yt. This implies that if V 1

t = X1
t then Vt = Xt.

Fix some t0 > 0, let J = [0, t0] and u1 = sup{u ≤ t0 : X1
u = Y 1

u }. By the continuity of X and
Y , the set I = {t ∈ (0, u1) : X1

t < Y 1
t } is open. Thus it consists of a finite or countable union

of disjoint intervals {In}. For any In = (s1, s2) we have X1
s1

= Y 1
s1

and, therefore, Xs1 = Ys1 .
Similarly, Xs2 = Ys2 . It follows that∫

In

n(Xs)dLX
s =

∫
In

n(Ys) dLY
s . (5)

Suppose without loss of generality that Vt0 = Yt0 . Then by (2)

Vt0 = x0 + Wt0 +
∫ t0

0

n(Ys) dLY
s .

By (5),

Vt0 = x0 + Wt0 +
∫

I1

n(Xs) dLX
s +

∫
J\I1

n(Ys) dLY
s .

By induction, for any n,

Vt0 = x0 + Wt0 +
∫

S
k≤n Ik

n(Xs) dLX
s +

∫
J\

S
k≤n Ik

n(Ys) dLY
s .
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We can pass to the limit by the bounded convergence theorem applied to each component of
the 2-dimensional vectors on the measure spaces defined by dLX and dLY on the interval J .
We obtain in the limit

Vt0 = x0 + Wt0 +
∫

S
k≥0 Ik

n(Xs) dLX
s +

∫
J\

S
k≥0 Ik

n(Ys) dLY
s

= x0 + Wt0 +
∫

S
k≥0 Ik

n(Vs) dLX
s +

∫
J\

S
k≥0 Ik

n(Vs) dLY
s

= x0 + Wt0 +
∫ t0

0

n(Vs) dLV
s .

This proves (3).
It follows from (3) and Theorem 1.1 (i) of [2] that V has the distribution of reflecting Brownian
motion in D as defined in [2]. Since X and V have identical distributions and V 1

t ≤ X1
t for

every t ≥ 0, a.s., we conclude that V 1
t = X1

t for every t ≥ 0, a.s. The same is true with X
replaced by Y . Therefore we have that Xt = Vt = Yt for every t ≥ 0, a.s.
We have therefore proved pathwise uniqueness in the sense of [5], p. 339. Then by Theorem
IX.1.7(ii) of [5], a strong solution to (1) exists. (The context of that theorem is a bit different,
but the proof applies to the present situation almost without change.) Finally, by the proof
of Theorem 5.8 of [2], we have pathwise uniqueness even when the filtrations of X and Y are
not the same.

The overall structure of our proof is similar to that of the proof of Theorem 3.1 in [1]. Martin
Barlow pointed out to us that an alternate way of avoiding consideration of the two different
definitions of pathwise uniqueness is to pass to the Loeb space. We would like to thank Dave
White for pointing out a mistake in the original version of the proof.
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