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Abstract
Problem 1.5.7 from Pitman’s Saint-Flour lecture notes [11]: Does there exist for
each n a fragmentation process (Πn,k, 1 ≤ k ≤ n) such that Πn,k is distributed like the
partition generated by cycles of a uniform random permutation of {1, 2, . . . , n} conditioned to
have k cycles? We show that the answer is yes. We also give a partial extension to general
exchangeable Gibbs partitions.

1 Introduction

Let [n] = {1, 2, . . . , n}, let Pn be the set of partitions of [n], and let Pnk be the set of partitions
of [n] into precisely k blocks.
The main result of this paper concerns the partition of [n] induced by the cycles of a uniform
random permutation of [n]. We begin by putting this in the context of more general Gibbs
partitions. Suppose that vn,k, n ≥ 1, 1 ≤ k ≤ n is a triangular array of non-negative reals
and wj , j ≥ 1 is a sequence of non-negative reals. For given n, a random partition Π is
said to have the Gibbs(v,w) distribution on Pn if, for any 1 ≤ k ≤ n and any partition
{A1, A2, . . . , Ak} ∈ Pnk , we have

P (Π = {A1, A2, . . . , Ak}) = vn,k

k∏
j=1

w|Aj |.
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In order for this to be a well-defined distribution, the weights should satisfy the normalisation
condition

n∑
k=1

vn,kZn,k(w) = 1,

where

Zn,k(w) :=
∑

{A1,A2,...,Ak}∈Pn
k

k∏
j=1

w|Aj |.

Zn,k(w) is a partial Bell polynomial in the variables w1, w2, . . .. Let Kn be the number of
blocks of Π. Then it is straightforward to see that

P (Kn = k) = vn,kZn,k(w)

and so the distribution of Π conditioned on the event {Kn = k} does not depend on the
weights vn,k, n ≥ 1, 1 ≤ k ≤ n:

P (Π = {A1, A2, . . . , Ak}|Kn = k) =

∏k
j=1 w|Aj |

Zn,k(w)
.

By a Gibbs(w) partition on Pnk we will mean a Gibbs(v,w) partition of [n] conditioned to
have k blocks.
For given n, a Gibbs(w) fragmentation process is then a process (Πn,k, 1 ≤ k ≤ n) such that
Πn,k ∈ Pnk for all k, which satisfies the following properties:

(i) for k = 1, 2, . . . , n, we have that Πn,k is a Gibbs(w) partition;

(ii) for k = 1, 2, . . . , n − 1, the partition Πn,k+1 is obtained from the partition Πn,k by
splitting one of the blocks into two parts.

If wj = (j − 1)!, the Gibbs(w) distribution on Pnk is the distribution of a partition into blocks
given by the cycles of a uniform random permutation of [n], conditioned to have k cycles.
Problem 1.5.7 from Pitman’s Saint-Flour lecture notes [11] asks whether a Gibbs fragmentation
exists for these weights; see also [1, 6] for further discussion and for results concerning several
closely related questions.
In Section 2 we will show that such a process does indeed exist. Using the Chinese restaurant
process construction of a random permutation, we reduce the problem to one concerning
sequences of independent Bernoulli random variables, conditioned on their sum. In Section 3
we describe a more explicit recursive construction of such a fragmentation process. Finally in
Section 4 we consider the properties of Gibbs(w) partitions with more general weight sequences,
corresponding to a class of exchangeable partitions of N (and including the two-parameter
family of (α, θ)-partitions). For these weight sequences we prove that, for fixed n, one can
couple partitions of [n] conditioned to have k blocks, for 1 ≤ k ≤ n, in such a way that the
set of elements which are the smallest in their block is increasing in k. This extends the result
from Section 2 on Bernoulli random variables conditioned on their sum; it is a necessary but
not sufficient condition for the existence of a fragmentation process.
We note that Granovsky and Erlihson [7] have recently proved a result in the opposite direction,
namely that among a more restricted class of fragmentation processes (those with the so-called
“mean-field” property) no Gibbs fragmentation process exists for the weights wj = (j − 1)!.
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2 Existence of a fragmentation process

Consider the Chinese restaurant process construction of a uniform random permutation of
[n], due to Dubins and Pitman (see, for example, Pitman [11]). Customers arrive in the
restaurant one by one. The first customer sits at the first table. Customer i chooses one of
the i − 1 places to the left of an existing customer, or chooses to sit at a new table, each
with probability 1/i. So we can represent our uniform random permutation as follows. Let
C2, . . . , Cn be a sequence of independent random variables such that Ci is uniform on the set
1, 2, . . . , i− 1. Let B1, B2, . . . , Bn be independent Bernoulli random variables, independent
of the sequence C2, C3, . . . , Cn and with Bi having mean 1/i. If Bi = 1 then customer i
starts a new table. Otherwise, customer i places himself on the immediate left of customer
Ci. Note that it is possible that a later customer will place himself on the immediate left of
Ci, in which case customer i will not end up on the immediate left of Ci. The state of the
system after n customers have arrived describes a uniform random permutation of [n]; each
table in the restaurant corresponds to a cycle of the permutation, and the order of customers
around the table gives the order in the cycle. Write Π(B1, B2, . . . , Bn, C2, C3, . . . , Cn) for the
random partition generated in this way (the blocks of the partition correspond to cycles in the
permutation, i.e. to tables in the restaurant).
This construction has two particular features that will be important. Firstly, the number of
blocks in the partition is simply

∑n
i=1Bi. So if we condition on

∑n
i=1Bi = k, we obtain

precisely the desired distribution on Pnk , of the partition obtained from a uniform random
permutation of [n] conditioned to have k cycles. Secondly, if one changes one of the Bi from 0
to 1 (hence increasing the sum by 1), this results in one of the blocks of the partition splitting
into two parts.
Hence, we can use this representation to construct our sequence of partitions (Πn,k, 1 ≤ k ≤ n).
We will need the following result.

Proposition 2.1. Let n be fixed. Then there exists a coupling of random variables Bki , 1 ≤
i ≤ n, 1 ≤ k ≤ n with the following properties:

(i) for each k,

(Bk1 , B
k
2 , . . . , B

k
n) d=

(
B1, B2, . . . , Bn

∣∣∣∣∣
n∑
i=1

Bi = k

)
;

(ii) for all k and i, if Bki = 1 then Bk+1
i = 1, with probability 1.

So we fix C2, C3, . . . , Cn, and define

Πn,k = Π(Bk1 , B
k
2 , . . . , B

k
n, C2, C3, . . . , Cn).

Then (Πn,k, 1 ≤ k ≤ n) is the desired Gibbs fragmentation process.
It remains to prove Proposition 2.1. Write Bk = (Bk1 , B

k
2 , . . . , B

k
n) for the random variable in

part (i), let b = (b1, b2, . . . , bn) and

pk(b) := P
(
Bk = b

)
,

where bi ∈ {0, 1} for 1 ≤ i ≤ n. Clearly, pk(b) is only non-zero for sequences b having exactly k
1’s. Write Sk for the subset of {0, 1}n consisting of these sequences and write b ≺ b′ whenever
b′ can be obtained from b by replacing one of the co-ordinates of b which is 0 by a 1. We need
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Figure 1: The case n = 4 and k = 2, 3. Since B1 is always 1, we omit it from the picture. For
2 ≤ i ≤ 4, a filled circle in position i indicates that Bki = 1; an empty circle indicates that it
is 0. The arrows indicate which states with k = 3 can be obtained from those with k = 2; the
numbers are the probabilities pk(b) of the states.

a process (B1, B2, . . . , Bn) whose kth marginal Bk has distribution pk and such that, with
probability 1, Bk ≺ Bk+1 for each k.
It is enough to show that for each k, we can couple Bk with distribution pk and Bk+1 with
distribution pk+1 in such a way that Bk ≺ Bk+1. (The couplings can then be combined, for
example in a Markovian way, to give the desired law on the whole sequence). As noted in
Section 4 of Berestycki and Pitman [1], a necessary and sufficient condition for such couplings
to exist with specified marginals and order properties was given by Strassen; see for example
Theorem 1 and Proposition 4 of [10]. (Strassen’s theorem may be seen as a version of Hall’s
marriage theorem [8] and is closely related to the max-flow/min-cut theorem [3, 4]). The
required condition may be stated as follows. For C ⊆ Sk, write N(C) = {b′ ∈ Sk+1 : b ≺
b′ some b ∈ C}. We then need that for all C ⊆ Sk,∑

b∈C

pk(b) ≤
∑

b′∈N(C)

pk+1(b′) (1)

It is convenient to phrase things a little differently. Suppose C ⊆ Sk has m elements, say
b(1), b(2), . . . , b(m). Let Aj = {i ∈ [n] : b(j)i = 1}, 1 ≤ j ≤ m. Then, by construction, each Aj
has k elements. Now set

Ej = {Bi = 1 ∀ i ∈ Aj}, 1 ≤ j ≤ m.

Then ∑
b∈C

pk(b) = P

(
E1 ∪ E2 ∪ · · · ∪ Em

∣∣∣∣∣
n∑
i=1

Bi = k

)
and ∑

b′∈N(C)

pk+1(b′) = P

(
E1 ∪ E2 ∪ · · · ∪ Em

∣∣∣∣∣
n∑
i=1

Bi = k + 1

)
.

So (1) is equivalent to the following proposition.
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Proposition 2.2. Let A1, A2, . . . , Am be any collection of distinct k-subsets of [n] and E1, E2. . . . , Em
the corresponding events, as defined above. Then

P

(
E1 ∪ E2 ∪ · · · ∪ Em

∣∣∣∣∣
n∑
i=1

Bi = k

)
≤ P

(
E1 ∪ E2 ∪ · · · ∪ Em

∣∣∣∣∣
n∑
i=1

Bi = k + 1

)
,

1 ≤ k ≤ n− 1.

This is a corollary of the following result from Efron [2].

Proposition 2.3. Let φn : {0, 1}n → R+ be a function which is increasing in all of its
arguments. Let Ii, 1 ≤ i ≤ n, be independent Bernoulli random variables (not necessarily with
the same parameter). Then

E

[
φn(I1, I2, . . . , In)

∣∣∣∣∣
n∑
i=1

Ii = k

]
≤ E

[
φn(I1, I2, . . . , In)

∣∣∣∣∣
n∑
i=1

Ii = k + 1

]
,

for all 0 ≤ k ≤ n− 1.

Since Efron’s proof does not apply directly to the case of discrete random variables, we give a
proof here.

Proof. First let ψ : Z2
+ → R+ be a function which is increasing in both arguments. Fix n ≥ 1

and write Xn =
∑n
i=1 Ii. We will first prove that for 0 ≤ k ≤ n,

E [ψ(Xn, In+1)|Xn + In+1 = k] ≤ E [ψ(Xn, In+1)|Xn + In+1 = k + 1] . (2)

Let u(i) = P (Xn = i) for 0 ≤ i ≤ n. We observe that, as a sum of independent Bernoulli
random variables, Xn is log-concave, that is

u(i)2 ≥ u(i− 1)u(i+ 1), i ≥ 1. (3)

(This follows because any Bernoulli random variable is log-concave, and the sum of independent
log-concave random variables is itself log-concave, as proved by Hoggar [9]).
Since ψ(0, 0) ≤ ψ(1, 0) and ψ(0, 0) ≤ ψ(0, 1), we have

E [ψ(Xn, In+1)|Xn + In+1 = 0] = ψ(0, 0)

≤ pn+1u(0)ψ(1, 0) + (1− pn+1)u(1)ψ(0, 1)
pn+1u(0) + (1− pn+1)u(1)

= E [ψ(Xn, In+1)|Xn + In+1 = 1] .

Similarly, since ψ(n− 1, 1) ≤ ψ(n, 1) and ψ(n, 0) ≤ ψ(n, 1), we have

E [ψ(Xn, In+1)|Xn + In+1 = n] =
pn+1u(n− 1)ψ(n− 1, 1) + (1− pn+1)u(n)ψ(n, 0)

pn+1u(n− 1) + (1− pn+1)u(n)
≤ ψ(n, 1)
= E [ψ(Xn, In+1)|Xn + In+1 = n+ 1] .
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Suppose now that 1 ≤ k ≤ n− 1. Then

E [ψ(Xn, In+1)|Xn + In+1 = k + 1]− E [ψ(Xn, In+1)|Xn + In+1 = k]

=
pn+1u(k)ψ(k, 1) + (1− pn+1)u(k + 1)ψ(k + 1, 0)

pn+1u(k) + (1− pn+1)u(k + 1)

− pn+1u(k − 1)ψ(k − 1, 1) + (1− pn+1)u(k)ψ(k, 0)
pn+1u(k − 1) + (1− pn+1)u(k)

=
p2
n+1u(k)u(k − 1)[ψ(k, 1)− ψ(k − 1, 1)]

d

+
(1− pn+1)2u(k)u(k + 1)[ψ(k + 1, 0)− ψ(k, 0)]

d

+
pn+1(1− pn+1)[u(k − 1)u(k + 1)ψ(k + 1, 0)− u(k)2ψ(k, 0)]

d

+
pn+1(1− pn+1)[u(k)2ψ(k, 1)− u(k − 1)u(k + 1)ψ(k − 1, 1)]

d
, (4)

where the denominator d is given by

d =
[
pn+1u(k) + (1− pn+1)u(k + 1)

][
pn+1u(k − 1) + (1− pn+1)u(k)

]
and is clearly non-negative. The first two terms in (4) are non-negative because ψ is increasing.
The sum of the third and fourth terms is bounded below by

pn+1(1− pn+1)
d

[u(k)2 − u(k − 1)u(k + 1)][ψ(k, 1)− ψ(k, 0)].

This is non-negative by the log-concavity property (3). Putting all of this together, we see
that

E [ψ(Xn, In+1)|Xn + In+1 = k] ≤ E [ψ(Xn, In+1)|Xn + In+1 = k + 1] ,

as required.
We now proceed by induction on n. Note that (2) with n = 1 gives the base case. Now define

ψn

(
n−1∑
i=1

Ii, In

)
= E

[
φn(I1, I2, . . . , In)

∣∣∣∣∣
n−1∑
i=1

Ii, In

]
.

Assume that we have

E

[
φn−1(I1, I2, . . . , In−1)

∣∣∣∣∣
n−1∑
i=1

Ii = k

]
≤ E

[
φn−1(I1, I2, . . . , In−1)

∣∣∣∣∣
n−1∑
i=1

Ii = k + 1

]

for 0 ≤ k ≤ n − 2. By this induction hypothesis, ψn
(∑n−1

i=1 Ii, In

)
is increasing in its first

argument. By the assumption that φn is increasing, ψn
(∑n−1

i=1 Ii, In

)
is increasing in its

second argument. So by (2),

E

[
ψn

(
n−1∑
i=1

Ii, In

)∣∣∣∣∣
n−1∑
i=1

Ii + In = k

]
≤ E

[
ψn

(
n−1∑
i=1

Ii, In

)∣∣∣∣∣
n−1∑
i=1

Ii + In = k + 1

]
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Figure 2: The two extreme solutions to the coupling problem for n = 4 and k = 2, 3 (as drawn
in Figure 1). The arrows are labelled with the joint probabilities P

(
Bk = b, Bk+1 = b′

)
.

for 0 ≤ k ≤ n− 1. But by the tower law, this says exactly that

E

[
φn(I1, I2, . . . , In)

∣∣∣∣∣
n∑
i=1

Ii = k

]
≤ E

[
φn(I1, I2, . . . , In)

∣∣∣∣∣
n∑
i=1

Ii = k + 1

]
.

The result follows by induction.

Proof of Proposition 2.2. Let φn(B1, B2, . . . , Bn) = 1{E1∪E2∪···∪Em}. Then φn is increasing in
all of its arguments and so by the previous proposition we have

P

(
E1 ∪ E2 ∪ · · · ∪ Em

∣∣∣∣∣
n∑
i=1

Bi = k

)
= E

[
φn(X1, X2, . . . , Xn)

∣∣∣∣∣
n∑
i=1

Bi = k

]

≤ E

[
φn(X1, X2, . . . , Xn)

∣∣∣∣∣
n∑
i=1

Bi = k + 1

]

= P

(
E1 ∪ E2 ∪ · · · ∪ Em

∣∣∣∣∣
n∑
i=1

Bi = k + 1

)
.

Note that we have only proved the existence of a coupling. There is no reason why it should be
unique. Indeed, in general, there is a simplex of solutions. For the example given in Figure 1,
the extremes of the one-parameter family of solutions are shown in Figure 2.

3 A recursive construction

In this section, we describe a more explicit construction of the Gibbs fragmentation processes,
which is recursive in n and possesses a certain consistency property as n varies.
The basic principle is the following simple observation. Suppose we want to create a uniform
random permutation of [n] conditioned to have k cycles. Then n either forms a singleton, or
is contained in some cycle with other individuals. If it forms a singleton, then the rest of the
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permutation is a uniform random permutation of [n− 1], conditioned to have k− 1 cycles. If,
on the other hand, n is not a singleton, then we take a uniform random permutation of [n− 1]
with k cycles and insert n into a uniformly chosen position.
So we proceed as follows. A Gibbs fragmentation process on [n] for n = 1 or n = 2 is trivial.
Suppose we have constructed a process (Πn−1

1 ,Πn−1
2 , . . . ,Πn−1

n−1) on [n − 1], with the re-
quired marginal distributions and splitting properties. We will derive from it a process
(Πn

1 ,Π
n
2 , . . . ,Π

n
n) on [n].

For each k, the partition Πn
k of [n] into k parts will come from either

(a) adding a singleton block {n} to Πn−1
k−1 ; or

(b) adding the element n to one of the blocks of Πn−1
k , by choosing an element Cn uniformly

at random from [n− 1] and putting n in the same block as Cn.

If we do (a) with probability P ({n} is a singleton in Πn
k ) and (b) otherwise then we will obtain

Πn
k having the desired distribution. Now note that

P ({n} is a singleton in Πn
k ) = P

(
Bn = 1

∣∣∣∣ n∑
i=1

Bi = k

)
=
Zn−1,k−1(w)
Zn,k(w)

,

where wj = (j − 1)! and so Zn,k(w) is a Stirling number of the first kind. Note that this
probability is increasing in k, by the monotonicity results proved in the previous section. So
first let Rn be a random variable which is independent of (Πn−1

1 ,Πn−1
2 , . . . ,Πn−1

n−1) and whose
distribution is given by

P (Rn ≤ k) = P ({n} is a singleton in Πn
k ) .

Then for k < Rn, add n to one of the blocks of Πn−1
k by choosing Cn uniformly at random

from [n − 1] and putting n in the same block as Cn. (Note that we use the same value of
Cn for each such k). For k ≥ Rn, create Πn

k by taking Πn−1
k−1 and adding {n} as a singleton

block. By construction, Πn
k has the same distribution as the partition derived from a random

permutation of [n] conditioned to have k blocks. Moreover, the partitions (Πn
k , 1 ≤ k ≤ n) are

nested because, firstly, the partitions (Πn−1
k , 1 ≤ k ≤ n− 1) were nested (by assumption) and,

secondly, once {n} has split off (at time Rn) it remains a singleton block.
A possible realisation of this recursive process is illustrated in Figure 3.
To explain exactly what we mean by the consistency in n which this construction possesses,
let

Π̃n
k =

{
Πn
k if 1 ≤ k < Rn

Πn
k+1 if Rn ≤ k ≤ n− 1.

Then if we restrict the sequence (Π̃n
k , 1 ≤ k ≤ n− 1) of partitions of [n] to [n− 1], we obtain

exactly (Πn−1
k , 1 ≤ k ≤ n− 1).

4 Partial extension to exchangeable Gibbs partitions

At the beginning of this paper, we introduced the notion of a partition of [n] with Gibbs(v,w)
distribution. In general, there is no reason why these partitions should be consistent as n
varies. That is, it is not necessarily the case that taking a Gibbs(v,w) partition of [n+ 1] and
deleting n+ 1 gives rise to a Gibbs(v,w) partition of [n]. If, however, this is the case, we can
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{1,3},{2},{4},{5}{1,3,5},{2},{4}{1,3,5},{2,4}{1,2,3,4,5}

{1,2,3,4,5,6} {1,2,3,4,5},{6} {1,3,5},{2,4},{6} {1,3,5},{2},{4},{6} {1,3},{2},{4},{5},{6}

{1,2,3,4} {1,3},{2},{4}{1,3},{2,4} {1},{2},{3},{4}

{1},{2},{3}{1,3},{2}{1,2,3}

{1,2} {1},{2}

{1}

{1},{2},{3},{4},{5}

{1},{2},{3},{4},{5},{6}

Figure 3: A possible realisation of the coupling.

define an exchangeable random partition Π of N as the limit of the sequence of projections
onto [n] as n→∞. In this case, we refer to Π as an exchangeable Gibbs(v,w) partition.
An important subfamily of the exchangeable Gibbs(v,w) partitions are the (α, θ)-partitions,
whose asymptotic frequencies have the Poisson-Dirichlet(α, θ) distribution, for 0 ≤ α < 1 and
θ > −α, or α < 0 and θ = m|α|, some m ∈ N (see Pitman and Yor [12] or Pitman [11] for
a wealth of information about these distributions). Here, the corresponding weight sequences
are

wj = (1− α)j−1↑1, vn,k =
(θ + α)(k−1)↑α

(θ + 1)(n−1)↑1
,

where (x)m↑β :=
∏m
j=1(x+ (j − 1)β) and (x)0↑β := 1. In the first part of this paper, we have

treated the case α = 0: a (0, 1)-partition of [n] has the same distribution as the partition
derived from the cycles of a uniform random permutation. In view of the fact that the array
v does not influence the partition conditioned to have k blocks, we have also proved that a
fragmentation process having the distribution at time k of a (0, θ)-partition conditioned to
have k blocks exists. The Gibbs(w) distribution corresponding to the case α = −1 (i.e. to
weight sequence wj = j!) is discussed in Berestycki and Pitman [1]; in particular, it is known
that a Gibbs(w) fragmentation exists in this case.
Gnedin and Pitman [5] have proved that the exchangeable Gibbs(v,w) partitions all have
w-sequences of the form

wj = (1− α)j−1↑1

for some −∞ ≤ α ≤ 1, where for α = −∞ the weight sequence is interpreted as being
identically equal to 1 for all j. Furthermore, the array v must solve the backward recursion

vn,k = γn,kvn+1,k + vn+1,k+1, 1 ≤ k ≤ n,

where v1,1 = 1 and

γn,k =

{
n− αk if −∞ < α < 1
k if α = −∞.

(5)
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The case α = 1 corresponds to the trivial partition into singletons and will not be discussed
any further.
It seems natural to consider the question of whether Gibbs fragmentations exist for other
weight sequences falling into the exchangeable class. We will give here a partial extension of
our results to the case of a general α ∈ [−∞, 1).
Fix n and consider a Gibbs(v,w) partition of [n] with wj = (1−α)j−1↑1 for some α ∈ [−∞, 1).
Let Bi be the indicator function of the event that i is the smallest element in its block, for
1 ≤ i ≤ n, and let Kn =

∑n
i=1Bi, the number of blocks. Then we have the following extension

of the earlier Proposition 2.1.

Proposition 4.1. For each n, there exists a random sequence of vectors
(
Bk,n1 , . . . , Bk,nn

)
,

k = 1, 2, . . . , n such that for each k,(
Bk,n1 , . . . , Bk,nn

)
d= (B1, . . . , Bn|Kn = k) ,

and such that Bn,k+1
i ≥ Bn,ki for all k.

This is precisely what we proved earlier for the case α = 0 (and, indeed, for more general
sequences of independent Bernoulli random variables). Namely we show that Gibbs(w) par-
titions of [n], conditioned to have k blocks, can be coupled over k in such a way that the set
of elements which are the smallest in their block is increasing in k. In the context of ran-
dom permutations, this was enough to prove the existence of a coupling of partitions with the
desired fragmentation property, using the fact that the random variables Ci in the Chinese
restaurant process, which govern the table joined by each arriving customer, were independent
of each other and from the random variables Bi. For α 6= 0, a Chinese restaurant process
construction is still possible (see Pitman [11]), although it gives rise only to a partition rather
than a permutation. However, it is no longer true that the “increments” or “records” are inde-
pendent of the rest of the partition and so we cannot deduce the full result for partitions from
Proposition 4.1. In fact, the stronger result is not always true, for example when α = −∞
and so wj = 1 for all j. In this case it is known that no Gibbs fragmentation process exists
for n = 20 and for all large enough n (see for example [1] for a discussion). By a continuity
argument, one can show similarly that if −α is sufficiently large, then for certain n no Gibbs
fragmentation process exists.
As in Section 3, Proposition 4.1 can be proved by induction over n. Suppose we have carried
out the construction for n− 1, and wish to extend to n. Conditioned on Kn = k, we need to
consider two cases: either Bn = 1 and Kn−1 = k − 1, or Bn = 0 and Kn = k. Depending on
which of these cases we choose, we will set either(

Bn,k1 , . . . , Bn,kn

)
=
(
Bn−1,k−1

1 , . . . , Bn−1,k−1
n−1 , 1

)
or (

Bn,k1 , . . . , Bn,kn

)
=
(
Bn−1,k

1 , . . . , Bn−1,k
n−1 , 0

)
.

Precisely as in Section 3, this can be made to work successfully provided that the following
lemma holds.

Lemma 4.2. For any n, the probability P (Bn = 1|Kn = k) is increasing in k.
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Equivalently, we are showing that the expected number of singletons in Πn, conditioned on
Kn = k, is increasing in k (since, by exchangeability, the probability that n is a singleton in
Πn is the same as the probability that i is a singleton, for any i ∈ [n]).
The rest of this section is devoted to the proof of this lemma.
Define Sα(n, k) = Zn,k(w). Then

P (Kn = k) = vn,kSα(n, k), (6)

where the Sα obey the recursion

Sα(n+ 1, k) = γn,kSα(n, k) + Sα(n, k − 1), (7)

with boundary conditions Sα(1, 1) = 1, Sα(n, 0) = 0 for all n, and Sα(n, n + 1)=0 for all n.
These are generalized Stirling numbers. We have

P (Bn = 1|Kn = k) = P (Kn−1 = k − 1|Kn = k) =
Sα(n− 1, k − 1)

Sα(n, k)

(see Section 3 of [5] for further details). Using the recursion, this is equal to(
1 +

γn−1,kSα(n− 1, k)
Sα(n− 1, k − 1)

)−1

.

For this to be increasing in k, it is equivalent that

Sα(n− 1, k − 1)
γn−1,kSα(n− 1, k)

should be increasing in k. This is implied by the following proposition.

Lemma 4.3. For all α < 1 and all n and k,

γn,kSα(n, k)2 ≥ γn,k+1Sα(n, k + 1)Sα(n, k − 1).

Proof. If 0 ≤ α < 1 then it is sufficient to prove the statement that (Sα(n, k), 0 ≤ k ≤ n) is
log-concave, that is

Sα(n, k)2 ≥ Sα(n, k − 1)Sα(n, k + 1),

since in that case γn,k, defined at (5), is decreasing in k. Theorem 1 of Sagan [13] states that
whenever tn,k is a triangular array satisfying

tn,k = cn,ktn−1,k−1 + dn,ktn−1,k

for all n ≥ 1, where tn,k, cn,k and dn,k are all integers and such that

• cn,k and dn,k are log-concave in k,

• cn,k−1dn,k+1 + cn,k+1dn,k−1 ≤ 2cn,kdn,k for all n ≥ 1,

then tn,k is log-concave in k. These conditions are clearly satisfied for the generalized Stirling
numbers Sα(n, k), with the exception that the sequence dn,k is not integer-valued. However,
Sagan’s argument extends immediately to this case also, and so we will not give a proof here.
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We turn now to the case −∞ < α < 0. We proceed by induction on n. For n = 2 the statement
is trivial. Suppose that we have

(n− αk)Sα(n, k)2 ≥ (n− α(k + 1))Sα(n, k − 1)Sα(n, k + 1),

for 0 ≤ k ≤ n. Using the recurrence

Sα(n+ 1, k) = (n− αk)Sα(n, k) + Sα(n, k − 1),

we obtain that

(n+ 1− αk)Sα(n+ 1, k)2 − (n+ 1− α(k + 1))Sα(n+ 1, k − 1)Sα(n+ 1, k + 1)

=
{

(n+ 1− αk)(n− αk)2Sα(n, k)2

− (n+ 1− α(k + 1))(n− α(k − 1))(n− α(k + 1))Sα(n, k − 1)Sα(n, k + 1)
}

+
{

2(n+ 1− αk)(n− αk)Sα(n, k)Sα(n, k − 1)

− (n+ 1− α(k + 1))(n− α(k + 1))Sα(n, k + 1)Sα(n, k − 2)

− (n+ 1− α(k + 1))(n− α(k − 1))Sα(n, k)Sα(n, k − 1)
}

+
{

(n+ 1− αk)Sα(n, k − 1)2 − (n+ 1− α(k + 1))Sα(n, k − 2)Sα(n, k)
}
. (8)

We take each of the three terms in braces separately. For the first term, we note that

(n+ 1− αk)(n− αk)− (n+ 1− α(k + 1))(n− α(k − 1)) = α(α− 1).

Hence, by the induction hypothesis, the first term is greater than or equal to

α(α− 1)(n− kα)Sα(n, k)2.

Since α < 0, this is non-negative. For the second term in (8), we note that applying the
induction hypothesis twice entails that

(n− α(k − 1))Sα(n, k)Sα(n, k − 1) ≥ (n− α(k + 1))Sα(n, k + 1)Sα(n, k − 2).

So

2(n+ 1− α(k + 1))(n− α(k − 1))Sα(n, k)Sα(n, k − 1)
≥ (n+ 1− α(k + 1))(n− α(k + 1))Sα(n, k + 1)Sα(n, k − 2)

+ (n+ 1− α(k + 1))(n− α(k − 1))Sα(n, k)Sα(n, k − 1).

It follows that the second term in braces is bounded below by

2Sα(n, k)Sα(n, k − 1) [(n+ 1− αk)(n− αk)− (n+ 1− α(k + 1))(n− α(k − 1))]
= 2α(α− 1)Sα(n, k)Sα(n, k − 1).

This is non-negative. Finally, we turn to the third term in braces in (8). This is equal to

[(n− α(k − 1))Sα(n, k − 1)2 − (n− αk)Sα(n, k − 2)Sα(n, k)]

− (α− 1)[Sα(n, k − 1)2 − Sα(n, k − 2)Sα(n, k)].
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By the induction hypothesis (at n and k−1), the first term is non-negative and so this quantity
is bounded below by

(1− α)[Sα(n, k − 1)2 − Sα(n, k − 2)Sα(n, k)].

That Sα(n, k − 1)2 − Sα(n, k − 2)Sα(n, k) ≥ 0 is implied by the induction hypothesis (in fact
it is a weaker statement) and so, since α < 0, the above quantity is non-negative. So (8) is
non-negative, as required. The case α = −∞ follows similarly.
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[2] B. Efron. Increasing properties of Pólya frequency functions. Ann. Math. Statist., 36:272–
279, 1965. MR0171335

[3] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a network.
Institute of Radio Engineers, Transactions on Information Theory, IT-2:117–119, 1956.

[4] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math.,
8:399–404, 1956. MR0079251

[5] A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. J. Math.
Sci. (N. Y.), 138(3):5677–5685, 2006. Translated from Zapiski Nauchnykh Seminarov
POMI, Vol. 325, 2005, pp. 83–102. MR2160320

[6] A. Gnedin and J. Pitman. Poisson representation of a Ewens fragmentation process.
Combin. Probab. Comput., 16(6):819–827, 2007. MR2351686

[7] B. Granovsky and M. Erlihson. On time dynamics of coagulation-fragmentation processes.
arXiv:0711.0503v2 [math.PR], 2007.

[8] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.

[9] S. G. Hoggar. Chromatic polynomials and logarithmic concavity. J. Combinatorial Theory
Ser. B, 16, 1974. MR0342424

[10] T. Kamae, U. Krengel, and G. L. O’Brien. Stochastic inequalities on partially ordered
spaces. Ann. Probab., 5(6):899–912, 1977. MR0494447

[11] J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathemat-
ics. Springer-Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability
Theory held in Saint-Flour, July 7–24, 2002. MR2245368

[12] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a
stable subordinator. Ann. Probab., 25(2):855–900, 1997. MR1434129

http://www.ams.org/mathscinet-getitem?mr=2314353
http://www.ams.org/mathscinet-getitem?mr=0171335
http://www.ams.org/mathscinet-getitem?mr=0079251
http://www.ams.org/mathscinet-getitem?mr=2160320
http://www.ams.org/mathscinet-getitem?mr=2351686
http://www.ams.org/mathscinet-getitem?mr=0342424
http://www.ams.org/mathscinet-getitem?mr=0494447
http://www.ams.org/mathscinet-getitem?mr=2245368
http://www.ams.org/mathscinet-getitem?mr=1434129


474 Electronic Communications in Probability

[13] B. E. Sagan. Inductive and injective proofs of log concavity results. Discrete Math.,
68(2-3):281–292, 1988. MR0926131

http://www.ams.org/mathscinet-getitem?mr=0926131

	Introduction
	Existence of a fragmentation process
	A recursive construction
	Partial extension to exchangeable Gibbs partitions
	References

