ELECTRONIC COMMUNICATIONS in PROBABILITY

FEYNMAN-KAC PENALISATIONS OF SYMMETRIC STABLE PRO-CESSES

MASAYOSHI TAKEDA¹ Mathematical Institute, Tohoku University, Aoba, Sendai, 980-8578, Japan email: takeda@math.tohoku.ac.jp

Submitted June 4, 2009, accepted in final form February 6, 2010

AMS 2000 Subject classification: 60J45, 60J40, 35J10 Keywords: symmetric stable process, Feynman-Kac functional, penalisation, Kato measure

Abstract

In K. Yano, Y. Yano and M. Yor (2009), limit theorems for the one-dimensional symmetric α -stable process normalized by negative (killing) Feynman-Kac functionals were studied. We consider the same problem and extend their results to positive Feynman-Kac functionals of multi-dimensional symmetric α -stable processes.

1 Introduction

In [9], [10], B. Roynette, P. Vallois and M. Yor have studied limit theorems for Wiener processes normalized by some weight processes. In [16], K. Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmetric stable process normalized by non-negative functions of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems for Markov processes normalized by Feynman-Kac functionals the *Feynman-Kac penalisations*. Our aim is to extend their results on Feynman-Kac penalisations to positive Feynman-Kac functionals of multi-dimensional symmetric α -stable processes.

Let $\mathbf{M}^{\alpha} = (\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{P}_x, X_t)$ be the symmetric α -stable process on \mathbb{R}^d with $0 < \alpha \leq 2$, that is, the Markov process generated by $-(1/2)(-\Delta)^{\alpha/2}$, and $(\mathscr{E}, \mathscr{D}(\mathscr{E}))$ the Dirichlet form of \mathbf{M}^{α} (see (2.1),(2.2)). Let μ be a positive Radon measure in the class \mathscr{K}_{∞} of Green-tight Kato measures (Definition 2.1). We denote by A_t^{μ} the positive continuous additive functional (PCAF in abbreviation) in the Revuz correspondence to μ : for a positive Borel function f and γ -excessive function g,

$$\langle g\mu, f \rangle = \lim_{t \to 0} \frac{1}{t} \int_{\mathbb{R}^d} \mathbb{E}_x \left[\int_0^t f(X_s) dA_s^{\mu} \right] g(x) dx.$$
 (1.1)

¹THE AUTHOR WAS SUPPORTED IN PART BY GRANT-IN-AID FOR SCIENTIFIC RESEARCH (NO.18340033 (B)), JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

We define the family $\{\mathbb{Q}_{x,t}^{\mu}\}$ of normalized probability measures by

$$\mathbb{Q}_{x,t}^{\mu}[B] = \frac{1}{Z_t^{\mu}(x)} \int_B \exp(A_t^{\mu}(\omega)) \mathbb{P}_x(d\omega), \ B \in \mathscr{F}_t,$$

where $Z_t^{\mu}(x) = \mathbb{E}_x[\exp(A_t^{\mu})]$. Our interest is the limit of $\mathbb{Q}_{x,t}^{\mu}$ as $t \to \infty$, mainly in transient cases, $d > \alpha$. They in [16] treated negative Feynman-Kac functionals in the case of the one-dimensional recurrent stable process, $\alpha > 1$. In this case, the decay rate of $Z_t^{\mu}(x)$ is important, while in our cases the growth order is.

We define

$$\lambda(\theta) = \inf\left\{\mathscr{E}_{\theta}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1\right\}, \quad 0 \le \theta < \infty,$$
(1.2)

where $\mathscr{E}_{\theta}(u, u) = \mathscr{E}(u, u) + \theta \int_{\mathbb{R}^d} u^2 dx$. We see from [5, Theorem 6.2.1] and [12, Lemma 3.1] that the time changed process by A_t^{μ} is symmetric with respect to μ and $\lambda(0)$ equals the bottom of the spectrum of the time changed process. We now classify the set \mathscr{K}_{∞} in terms of $\lambda(0)$:

(i) $\lambda(0) < 1$

In this case, there exist a positive constant $\theta_0 > 0$ and a positive continuous function h in the Dirichlet space $\mathcal{D}(\mathscr{E})$ such that

$$1 = \lambda(\theta_0) = \mathscr{E}_{\theta_0}(h, h)$$

(Lemma 3.1, Theorem 2.3). We define the multiplicative functional (MF in abbreviation) L_t^h by

$$L_t^h = e^{-\theta_0 t} \frac{h(X_t)}{h(X_0)} e^{A_t^{\mu}}.$$
(1.3)

(ii) $\lambda(0) = 1$

In this case, there exists a positive continuous function h in the extended Dirichlet space $\mathcal{D}_{e}(\mathcal{E})$ such that

$$1 = \lambda(0) = \mathcal{E}(h, h)$$

([14, Theorem 3.4]). Here $\mathcal{D}_e(\mathscr{E})$ is the set of measurable functions u on \mathbb{R}^d such that $|u| < \infty$ a.e., and there exists an \mathscr{E} -Cauchy sequence $\{u_n\}$ of functions in $\mathcal{D}(\mathscr{E})$ such that $\lim_{n\to\infty} u_n = u$ a.e. We define

$$L_t^h = \frac{h(X_t)}{h(X_0)} e^{A_t^{\mu}}.$$
 (1.4)

(iii) $\lambda(0) > 1$

In this case, the measure μ is gaugeable, that is,

$$\sup_{x\in\mathbb{R}^d}\mathbb{E}_x\left[e^{A_\infty^\mu}\right]<\infty$$

([15, Theorem 3.1]). We put $h(x) = \mathbb{E}_x[e^{A_{\infty}^{\mu}}]$ and define

$$L_t^h = \frac{h(X_t)}{h(X_0)} e^{A_t^{\mu}}.$$
 (1.5)

The cases (i), (ii), and (iii) are corresponding to the *supercriticality*, *criticality*, and *subcriticality* of the operator, $-(1/2)(-\Delta)^{\alpha/2} + \mu$, respectively ([15]). We will see that L_t^h is a martingale MF for each case, i.e., $\mathbb{E}_x[L_t^h] = 1$. Let $\mathbf{M}^h = (\Omega, \mathbb{P}^h_x, X_t)$ be the transformed process of \mathbf{M}^{α} by L_t^h :

$$\mathbb{P}^h_x(B) = \int_B L^h_t(\omega) \mathbb{P}_x(d\omega), \quad B \in \mathscr{F}_t$$

We then see from [3, Theorem 2.6] and Proposition 3.8 below that if $\lambda(0) \leq 1$, then \mathbf{M}^h is an $h^2 dx$ -symmetric Harris recurrent Markov process.

To state the main result of this paper, we need to introduce a subclass \mathscr{K}_{∞}^{S} of \mathscr{K}_{∞} ; a measure $\mu \in \mathscr{K}_{\infty}$ is said to be in \mathscr{K}_{∞}^{S} if

$$\sup_{x \in \mathbb{R}^d} \left(|x|^{d-\alpha} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}} \right) < \infty.$$
(1.6)

This class is relevant to the notion of *special* PCAF's which was introduced by J. Neveu ([6]); we will show in Lemma 4.4 that if a measure μ belongs to \mathscr{K}^{S}_{∞} , then $\int_{0}^{t} (1/h(X_{s})) dA^{\mu}_{s}$ is a *special* PCAF of \mathbf{M}^{h} . This fact is crucial for the proof of the main theorem below. In fact, a key to the proof lies in the application of the Chacon-Ornstein type ergodic theorem for special PCAF's of Harris recurrent Markov processes ([2, Theorem 3.18]). We then have the next main theorem.

Theorem 1.1. (i) If $\lambda(0) \neq 1$, then

$$\mathbb{Q}_{x,t}^{\mu} \xrightarrow{t \to \infty} \mathbb{P}_{x}^{h} \quad \text{along} \ (\mathscr{F}_{t}), \tag{1.7}$$

that is, for any $s \ge 0$ and any bounded \mathscr{F}_s -measurable function Z,

$$\lim_{t \to \infty} \frac{\mathbb{E}_x \left[Z \exp(A_t^{\mu}) \right]}{\mathbb{E}_x \left[\exp(A_t^{\mu}) \right]} = \mathbb{E}_x^h [Z].$$

(ii) If $\lambda(0) = 1$ and $\mu \in \mathscr{K}^{S}_{\infty}$, then (1.7) holds.

Throughout this paper, B(R) is an open ball with radius R centered at the origin. We use c, C, ..., etc as positive constants which may be different at different occurrences.

2 Preliminaries

Let $\mathbf{M}^{\alpha} = (\Omega, \mathscr{F}, \mathscr{F}_t, \theta_t, \mathbb{P}_x, X_t)$ be the symmetric α -stable process on \mathbb{R}^d with $0 < \alpha \leq 2$. Here $\{\mathscr{F}_t\}_{t\geq 0}$ is the minimal (augmented) admissible filtration and θ_t , $t \geq 0$, is the shift operators satisfying $X_s(\theta_t) = X_{s+t}$ identically for $s, t \geq 0$. When $\alpha = 2$, \mathbf{M}^{α} is the Brownian motion. Let p(t, x, y) be the transition density function of \mathbf{M}^{α} and $G_{\beta}(x, y), \beta \geq 0$, be its β -Green function,

$$G_{\beta}(x,y) = \int_0^\infty e^{-\beta t} p(t,x,y) dt.$$

For a positive measure μ , the β -potential of μ is defined by

$$G_{\beta}\mu(x) = \int_{\mathbb{R}^d} G_{\beta}(x, y)\mu(dy)$$

Let P_t be the semigroup of \mathbf{M}^{α} ,

$$P_t f(x) = \int_{\mathbb{R}^d} p(t, x, y) f(y) dy = \mathbb{E}_x [f(X_t)].$$

Let $(\mathscr{E}, \mathscr{D}(\mathscr{E}))$ be the Dirichlet form generated by \mathbf{M}^{α} : for $0 < \alpha < 2$

$$\begin{cases} \mathscr{E}(u,v) = \frac{1}{2}\mathscr{A}(d,\alpha) \iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \Delta} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{d + \alpha}} dx dy \\ \mathscr{D}(\mathscr{E}) = \left\{ u \in L^2(\mathbb{R}^d) : \iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \Delta} \frac{(u(x) - u(y))^2}{|x - y|^{d + \alpha}} dx dy < \infty \right\}, \end{cases}$$
(2.1)

where $\Delta = \{(x, x) : x \in \mathbb{R}^d\}$ and

$$\mathscr{A}(d,\alpha) = \frac{\alpha 2^{d-1} \Gamma(\frac{\alpha+d}{2})}{\pi^{d/2} \Gamma(1-\frac{\alpha}{2})}$$

([5, Example 1.4.1]); for $\alpha = 2$

$$\mathscr{E}(u,v) = \frac{1}{2} \mathbf{D}(u,v), \quad \mathscr{D}(\mathscr{E}) = H^1(\mathbb{R}^d), \tag{2.2}$$

where **D** denotes the classical Dirichlet integral and $H^1(\mathbb{R}^d)$ is the Sobolev space of order 1 ([5, Example 4.4.1]). Let $\mathcal{D}_e(\mathscr{E})$ denote the extended Dirichlet space ([5, p.35]). If $\alpha < d$, that is, the process \mathbf{M}^{α} is transient, then $\mathcal{D}_e(\mathscr{E})$ is a Hilbert space with inner product \mathscr{E} ([5, Theorem 1.5.3]). We now define classes of measures which play an important role in this paper.

Definition 2.1. (I) A positive Radon measure μ on \mathbb{R}^d is said to be in the *Kato class* ($\mu \in \mathcal{K}$ in notation), if

$$\lim_{\beta \to \infty} \sup_{x \in \mathbb{R}^d} G_{\beta} \mu(x) = 0.$$
(2.3)

(II) A measure μ is said to be β -Green-tight ($\mu \in \mathscr{K}_{\infty}(\beta)$ in notation), if μ is in \mathscr{K} and satisfies

$$\lim_{R \to \infty} \sup_{x \in \mathbb{R}^d} \int_{|y| > R} G_\beta(x, y) \mu(dy) = 0.$$
(2.4)

We see from the resolvent equation that for $\beta > 0$

$$\mathscr{K}_{\infty}(\beta) = \mathscr{K}_{\infty}(1).$$

When $d > \alpha$, that is, \mathbf{M}^{α} is transient, we write \mathscr{K}_{∞} for $\mathscr{K}_{\infty}(0)$. For $\mu \in \mathscr{K}$, define a symmetric bilinear form \mathscr{E}^{μ} by

$$\mathscr{E}^{\mu}(u,u) = \mathscr{E}(u,u) - \int_{\mathbb{R}^d} \widetilde{u}^2 d\mu, \ u \in \mathscr{D}(\mathscr{E}),$$
(2.5)

where \tilde{u} is a quasi-continuous version of u ([5, Theorem 2.1.3]). In the sequel, we always assume that every function $u \in \mathcal{D}_{e}(\mathcal{E})$ is represented by its quasi continuous version. Since $\mu \in \mathcal{K}$ charges no set of zero capacity by [1, Theorem 3.3], the form \mathcal{E}^{μ} is well defined. We see from

[1, Theorem 4.1] that $(\mathscr{E}^{\mu}, \mathscr{D}(\mathscr{E}))$ becomes a lower semi-bounded closed symmetric form. Denote by \mathscr{H}^{μ} the self-adjoint operator generated by $(\mathscr{E}^{\mu}, \mathscr{D}(\mathscr{E}))$: $\mathscr{E}^{\mu}(u, v) = (\mathscr{H}^{\mu}u, v)$. Let P_{t}^{μ} be the L^{2} semigroup generated by \mathscr{H}^{μ} : $P_{t}^{\mu} = \exp(-t\mathscr{H}^{\mu})$. We see from [1, Theorem 6.3(iv)] that P_{t}^{μ} admits a symmetric integral kernel $p^{\mu}(t, x, y)$ which is jointly continuous function on $(0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}^{d}$. For $\mu \in \mathscr{H}$, let A_{t}^{μ} be a PCAF which is in the Revuz correspondence to μ (Cf. [5, p.188]). By the Feynman-Kac formula, the semigroup P_{t}^{μ} is written as

$$P_t^{\mu} f(x) = \mathbb{E}_x [\exp(A_t^{\mu}) f(X_t)].$$
(2.6)

Theorem 2.2 ([11]). Let $\mu \in \mathcal{K}$. Then

$$\int_{\mathbb{R}^d} u^2(x)\mu(dx) \le \|G_\beta\mu\|_\infty \mathscr{E}_\beta(u,u), \quad u \in \mathscr{D}(\mathscr{E}),$$
(2.7)

where $\mathscr{E}_{\beta}(u,u) = \mathscr{E}(u,u) + \beta \int_{\mathbb{R}^d} u^2 dx.$

Theorem 2.3. ([14, Theorem 10], [13, Theorem 2.7]) If $\mu \in \mathscr{K}_{\infty}(1)$, then the embedding of $\mathscr{D}(\mathscr{E})$ into $L^{2}(\mu)$ is compact. If $d > \alpha$ and $\mu \in \mathscr{K}_{\infty}$, then the embedding of $\mathscr{D}_{e}(\mathscr{E})$ into $L^{2}(\mu)$ is compact.

3 Construction of ground states

For $d \leq \alpha$ (resp. $d > \alpha$), let μ be a non-trivial measure in $\mathscr{K}_{\infty}(1)$ (resp. \mathscr{K}_{∞}). Define

$$\lambda(\theta) = \inf\left\{\mathscr{E}_{\theta}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1\right\}, \ \theta \ge 0.$$
(3.1)

Lemma 3.1. The function $\lambda(\theta)$ is increasing and concave. Moreover, it satisfies $\lim_{\theta\to\infty} \lambda(\theta) = \infty$. *Proof.* It follows from the definition of $\lambda(\theta)$ that it is increasing. For $\theta_1, \theta_2 \ge 0, 0 \le t \le 1$

$$\begin{split} \lambda(t\theta_1 + (1-t)\theta_2) &= \inf\left\{\mathscr{E}_{t\theta_1 + (1-t)\theta_2}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1\right\} \\ &\geq t \inf\left\{\mathscr{E}_{\theta_1}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1\right\} + (1-t) \inf\left\{\mathscr{E}_{\theta_2}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1\right\} \\ &= t\lambda(\theta_1) + (1-t)\lambda(\theta_2). \end{split}$$

We see from Theorem 2.2 that for $u \in \mathscr{D}(\mathscr{E})$ with $\int_{\mathbb{R}^d} u^2 d\mu = 1$, $\mathscr{E}_{\theta}(u, u) \ge 1/||G_{\theta}\mu||_{\infty}$. Hence we have

$$\lambda(\theta) \ge \frac{1}{\|G_{\theta}\mu\|_{\infty}}.$$
(3.2)

By the definition of the Kato class, the right hand side of (3.2) tends to infinity as $\theta \to \infty$.

Lemma 3.2. If $d \leq \alpha$, then $\lambda(0) = 0$.

Proof. Note that for $u \in \mathcal{D}(\mathcal{E})$

$$\lambda(0)\int_{\mathbb{R}^d} u^2 d\mu \leq \mathscr{E}(u,u).$$

Since $(\mathscr{E}, \mathscr{D}(\mathscr{E}))$ is recurrent, there exists a sequence $\{u_n\} \subset \mathscr{D}(\mathscr{E})$ such that $u_n \uparrow 1$ q.e. and $\mathscr{E}(u_n, u_n) \to 0$ ([5, Theorem 1.6.3, Theorem 2.1.7]). Hence if $\lambda(0) > 0$, then $\mu = 0$, which is contradictory.

We see from Theorem 2.3 and Lemma 3.2 that if $d \le \alpha$, then there exist $\theta_0 > 0$ and $h \in \mathcal{D}(\mathscr{E})$ such that

$$\lambda(heta_0) = \inf\left\{\mathscr{E}_{ heta_0}(h,h): \int_{\mathbb{R}^d} h^2 d\mu = 1
ight\} = 1.$$

We can assume that *h* is a strictly positive continuous function (e.g. Section 4 in [14]). Let $M_t^{[h]}$ be the martingale part of the Fukushima decomposition ([5, Theorem 5.2.2]):

$$h(X_t) - h(X_0) = M_t^{[h]} + N_t^{[h]}.$$
(3.3)

Define a martingale by

$$M_t = \int_0^t \frac{1}{h(X_{s-1})} dM_s^h$$

and denote by L_t^h the unique solution of the Doléans-Dade equation:

$$Z_t = 1 + \int_0^t Z_{s-} dM_s.$$
 (3.4)

Then we see from the Doléans-Dade formula that L_t^h is expressed by

$$L_t^h = \exp\left(M_t - \frac{1}{2} \langle M^c \rangle_t\right) \prod_{0 < s \le t} (1 + \Delta M_s) \exp(-\Delta M_s)$$
$$= \exp\left(M_t - \frac{1}{2} \langle M^c \rangle_t\right) \prod_{0 < s \le t} \frac{h(X_s)}{h(X_{s-1})} \exp\left(1 - \frac{h(X_s)}{h(X_{s-1})}\right)$$

Here M_t^c is the continuous part of M_t and $\Delta M_s = M_s - M_{s-}$. By Itô's formula applied to the semi-martingale $h(X_t)$ with the function log x, we see that L_t^h has the following expression:

$$L_t^h = e^{-\theta_0 t} \frac{h(X_t)}{h(X_0)} \exp(A_t^{\mu}).$$
(3.5)

Let $d > \alpha$ and suppose that $\theta_0 = 0$, that is,

$$\lambda(0) = \inf\left\{\mathscr{E}(u,u) : \int_{\mathbb{R}^d} u^2 d\mu = 1\right\} = 1.$$

We then see from [14, Theorem 3.4] that there exists a function $h \in \mathcal{D}_e(\mathscr{E})$ such that $\mathscr{E}(h,h) = 1$. We can also assume that *h* is a strictly positive continuous function and satisfies

$$\frac{c}{|x|^{d-\alpha}} \le h(x) \le \frac{C}{|x|^{d-\alpha}}, \ |x| > 1$$
(3.6)

(see (4.19) in [14]). We define the MF L_t^h by

$$L_t^h = \frac{h(X_t)}{h(X_0)} \exp(A_t^{\mu}).$$
(3.7)

We denote by $\mathbf{M}^h = (\Omega, \mathbb{P}^h_x, X_t)$ the transformed process of \mathbf{M}^{α} by L^h_t ,

$$\mathbb{P}^h_x(d\omega) = L^h_t(\omega) \cdot \mathbb{P}_x(d\omega)$$

Proposition 3.3. The transformed process $\mathbf{M}^h = (\mathbb{P}^h_x, X_t)$ is Harris recurrent, that is, for a nonnegative function f with $m(\{x : f(x) > 0\}) > 0$,

$$\int_{0}^{\infty} f(X_t)dt = \infty \quad \mathbb{P}_x^h \text{-}a.s., \tag{3.8}$$

where m is the Lebesgue measure.

Proof. Set $A = \{x : f(x) > 0\}$. Since \mathbf{M}^h is an $h^2 dx$ -symmetric recurrent Markov process,

$$\mathbb{P}_{x}[\sigma_{A} \circ \theta_{n} < \infty, \ \forall n \ge 0] = 1 \ \text{for q.e.} \ x \in \mathbb{R}^{d}$$

$$(3.9)$$

by [5, Theorem 4.6]. Moreover, since the Markov process \mathbf{M}^h has the transition density function

$$e^{-\theta_0 t} \cdot \frac{p^{\mu}(t,x,y)}{h(x)h(y)}$$

with respect to $h^2 dx$, (3.9) holds for all $x \in \mathbb{R}^d$ by [5, Problem 4.6.3]. Using the strong Feller property and the proof of [8, Chapter X, Proposition (3.11)], we see from (3.9) that \mathbf{M}^h is Harris recurrent.

We see from [14, Theorem 4.15] : If $\theta_0 > 0$, then $h \in L^2(\mathbb{R}^d)$ and \mathbf{M}^h is positive recurrent. If $\theta_0 = 0$ and $\alpha < d \leq 2\alpha$, then $h \notin L^2(\mathbb{R}^d) \mathbf{M}^h$ is null recurrent. If $\theta_0 = 0$ and $d \geq 2\alpha$, then $h \in L^2(\mathbb{R}^d) \mathbf{M}^h$ is positive recurrent.

4 Penalization problems

In this section, we prove Theorem 1.1.

(1°) Recurrent case ($d \le \alpha$)

Theorem 4.1. Assume that $d \leq \alpha$. Then there exist $\theta_0 > 0$ and $h \in \mathscr{D}(\mathscr{E})$ such that $\lambda(\theta_0) = 1$ and $\mathscr{E}_{\theta_0}(h,h) = 1$. Moreover, for each $x \in \mathbb{R}^d$

$$e^{-\theta_0 t} \mathbb{E}_x \left[e^{A_t^{\mu}} \right] \longrightarrow h(x) \int_{\mathbb{R}^d} h(x) dx \text{ as } t \longrightarrow \infty..$$
 (4.1)

Proof. The first assertion follows from Theorem 2.3 and Lemma 3.2. Note that

$$e^{-\theta_0 t} \mathbb{E}_x \left[e^{A_t^{\mu}} \right] = h(x) \mathbb{E}_x^h \left[\frac{1}{h(X_t)} \right]$$

Then by [13, Corollary 4.7] the right hand side converges to $h(x) \int_{\mathbb{R}^d} h(x) dx$.

Theorem 4.1 implies (1.7). Indeed,

$$\frac{\mathbb{E}_{x}\left(\exp(A_{t}^{\mu})|\mathscr{F}_{s}\right)}{\mathbb{E}_{x}\left(\exp(A_{t}^{\mu})\right)} = \frac{e^{-\theta_{0}t}\mathbb{E}_{x}\left(\exp(A_{t}^{\mu})|\mathscr{F}_{s}\right)}{e^{-\theta_{0}t}\mathbb{E}_{x}\left(\exp(A_{t}^{\mu})\right)}$$
$$= \frac{e^{-\theta_{0}s}\exp(A_{s}^{\mu})e^{-\theta_{0}(t-s)}\mathbb{E}_{X_{s}}\left(\exp(A_{t-s}^{\mu})\right)}{e^{-\theta_{0}t}\mathbb{E}_{x}\left(\exp(A_{t}^{\mu})\right)}$$
$$\longrightarrow \frac{e^{-\theta_{0}s}\exp(A_{s}^{\mu})h(X_{s})\int_{\mathbb{R}^{d}}h(x)dx}{h(x)\int_{\mathbb{R}^{d}}h(x)dx} = L_{s}^{h} as t \longrightarrow \infty.$$

We showed in [3, Theorem 2.6 (b)] that the transformed process \mathbf{M}^h is recurrent. We see from this fact that L_t^h is martingale, $\mathbb{E}(L_t^h) = 1$. Therefore Scheff's lemma leads us to Theorem 1.1 (i) (e.g. [9]).

(2°) Transient case ($d > \alpha$)

If $\lambda(0) < 1$, there exist $\theta_0 > 0$ and $h \in \mathscr{D}(\mathscr{E})$ such that $\lambda(\theta_0) = 1$ and $\mathscr{E}_{\theta_0}(h, h) = 1$. Then we can show the equation (4.1) in the same way as above. If $\lambda(0) > 1$, then A_t^{μ} is gaugeable (see Theorem 4.1 below), that is,

$$\sup_{x\in\mathbb{R}^d}\mathbb{E}_x\left[e^{A^{\mu}_{\infty}}\right]<\infty,$$

and thus

$$\lim_{t\to\infty}\mathbb{E}_{x}\left[e^{A_{t}^{\mu}}\right]=\mathbb{E}_{x}\left[e^{A_{\infty}^{\mu}}\right].$$

Hence for any $s \ge 0$ and any \mathscr{F}_s -measurable bounded function *Z*

$$\frac{\mathbb{E}_{x}\left[Ze^{A_{t}^{\mu}}\right]}{\mathbb{E}_{x}\left[e^{A_{t}^{\mu}}\right]} = \frac{\mathbb{E}_{x}\left[Ze^{A_{s}^{\mu}}\mathbb{E}_{X_{s}}\left[e^{A_{t-s}^{\mu}}\right]\right]}{\mathbb{E}_{x}\left[e^{A_{t}^{\mu}}\right]}$$
$$\longrightarrow \frac{\mathbb{E}_{x}\left[Ze^{A_{s}^{\mu}}\mathbb{E}_{X_{s}}\left[e^{A_{\infty}^{\mu}}\right]\right]}{\mathbb{E}_{x}\left[e^{A_{\infty}^{\mu}}\right]} = \frac{1}{h(x)}\mathbb{E}_{x}\left[Ze^{A_{s}^{\mu}}h(X_{s})\right] = \mathbb{E}_{x}^{h}[Z]$$

as $t \to \infty$.

In the remainder of this section, we consider the case when $\lambda(0) = 1$. It is known that a measure $\mu \in \mathscr{K}_{\infty}$ is Green-bounded,

$$\sup_{\alpha \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x - y|^{d - \alpha}} < \infty.$$
(4.2)

To consider the penalisation problem for μ with $\lambda(0) = 1$, we need to impose a condition on μ .

Definition 4.2. (I) A measure $\mu \in \mathcal{K}$ is said to be *special* if

$$\sup_{x \in \mathbb{R}^d} \left(|x|^{d-\alpha} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}} \right) < \infty.$$
(4.3)

We denote by \mathscr{K}^{S}_{∞} the set of special measures. (II) A PCAF A_t is said to be *special* with respect to \mathbf{M}^h , if for any positive Borel function g with $\int_{\mathbb{R}^d} g dx > 0$

$$\sup_{x\in\mathbb{R}^d}\mathbb{E}^h_x\left[\int_0^\infty \exp\left(-\int_0^t g(X_s)ds\right)dA_t\right]<\infty.$$

A Kato measure with compact support belongs to \mathscr{K}^S_{∞} . The set \mathscr{K}^S_{∞} is contained in \mathscr{K}_{∞} ,

$$\mathscr{K}^{S}_{\infty} \subset \mathscr{K}_{\infty}. \tag{4.4}$$

Indeed, since for any R > 0

$$M(\mu) := \sup_{x \in \mathbb{R}^d} \left(|x|^{d-\alpha} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}} \right) \ge R^{d-\alpha} \sup_{x \in B(R)^c} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}},$$

we have

$$\begin{split} \sup_{x \in \mathbb{R}^d} \int_{B(R)^c} \frac{d\mu(y)}{|x - y|^{d - \alpha}} &= \sup_{x \in B(R)^c} \int_{B(R)^c} \frac{d\mu(y)}{|x - y|^{d - \alpha}} \\ &\leq \frac{M(\mu)}{R^{d - \alpha}} \longrightarrow 0, \ R \to \infty. \end{split}$$

Lemma 4.3. Let B_t be a PCAF. Then

$$\mathbb{E}_{x}\left[\int_{0}^{\infty}e^{(A_{t}^{\mu}-B_{t})}dA_{t}^{\mu}\right]=h(x)\mathbb{E}_{x}^{h}\left[\int_{0}^{\infty}e^{-B_{t}}\frac{dA_{t}^{\mu}}{h(X_{t})}\right].$$

Proof. We have

$$h(x)\mathbb{E}_{x}^{h}\left[\int_{0}^{s}e^{-B_{t}}\frac{dA_{t}^{\mu}}{h(X_{t})}\right] = \mathbb{E}_{x}\left[e^{A_{s}^{\mu}}h(X_{s})\int_{0}^{s}e^{-B_{t}}\frac{dA_{t}^{\mu}}{h(X_{t})}\right]$$
$$= \mathbb{E}_{x}\left[\int_{0}^{s}e^{A_{s}^{\mu}}h(X_{s})e^{-B_{t}}\frac{dA_{t}^{\mu}}{h(X_{t})}\right]$$

Put $Y_t = e^{A_s^{\mu}}h(X_s)e^{-B_t}/h(X_t)$. Then since Y_t is a right continuous process, its optional projection is equal to $\mathbb{E}_x[Y_t|\mathscr{F}_t]$ (e.g. [7, Theorem 7.10]). Hence the right hand side equals

$$\mathbb{E}_{x}\left[\int_{0}^{s}\mathbb{E}_{x}\left[Y_{t}|\mathscr{F}_{t}\right]dA_{t}^{\mu}\right]=\mathbb{E}_{x}\left[\int_{0}^{s}e^{A_{t}^{\mu}}e^{-B_{t}}\frac{1}{h(X_{t})}\mathbb{E}_{X_{t}}\left[e^{A_{s-t}^{\mu}}h(X_{s-t})\right]dA_{t}^{\mu}\right].$$

Since $\mathbb{E}_{X_t}\left[e^{A_{s-t}^{\mu}}h(X_{s-t})\right] = h(X_t)$, the right hand side equals

$$\mathbb{E}_{x}\left[\int_{0}^{s}e^{A_{t}^{\mu}-B_{t}}dA_{t}^{\mu}\right].$$

Hence the proof is completed by letting $s \to \infty$.

The next theorem was proved in [15].

Theorem 4.1. ([15]) Suppose $d > \alpha$. For $\mu = \mu^+ - \mu^- \in \mathscr{K}_{\infty} - \mathscr{K}_{\infty}$, let $A_t^{\mu} = A_t^{\mu^+} - A_t^{\mu^+}$. Then the following conditions are equivalent: (i) $\sup_{x \in \mathbb{R}^d} \mathbb{E}_x[e^{A_{\infty}^{\mu}}] < \infty$.

(ii) There exists the Green function $G^{\mu}(x, y) < \infty$ $(x \neq y)$ of the operator $-\frac{1}{2}(-\Delta)^{\alpha/2} + \mu$ such that

$$\mathbb{E}_{x}\left[\int_{0}^{\infty}e^{A_{t}^{\mu}}f(X_{t})dt\right] = \int_{\mathbb{R}^{d}}G^{\mu}(x,y)f(y)dy.$$
(iii) $\inf\left\{\mathscr{E}(u,u) + \int_{\mathbb{R}^{d}}u^{2}d\mu^{-}: \int_{\mathbb{R}^{d}}u^{2}d\mu^{+} = 1\right\} > 1.$

We see from (4.19) in [14] that if one of the statements in Theorem 4.1 holds, then $G^{\mu}(x, y)$ satisfies

$$G(x, y) \le G^{\mu}(x, y) \le CG(x, y).$$
 (4.5)

Lemma 4.4. If
$$\mu \in \mathscr{K}_{\infty}^{S}$$
, then $\int_{0}^{t} \frac{dA_{s}^{\mu}}{h(X_{s})}$ is special with respect to \mathbf{M}^{h} .

Proof. We may assume that g is a bounded positive Borel function with compact support. Note that by Lemma 4.3

$$\mathbb{E}_{x}^{h}\left[\int_{0}^{\infty}\exp\left(-\int_{0}^{t}g(X_{s})ds\right)\frac{dA_{t}^{\mu}}{h(X_{t})}\right]$$

= $\frac{1}{h(x)}\mathbb{E}_{x}\left[\int_{0}^{\infty}\exp\left(A_{t}^{\mu}-\int_{0}^{t}g(X_{s})ds\right)dA_{t}^{\mu}\right]$
= $\frac{1}{h(x)}G^{\mu-g\cdot dx}\mu(x).$

If the measure μ satisfies $\lambda(0) = 1$, then $\mu - g \cdot dx \in \mathscr{H}_{\infty} - \mathscr{H}_{\infty}$ satisfies Theorem 4.1 (iii), and $G^{\mu-g \cdot dx}(x, y)$ is equivalent with G(x, y) by (4.5). Therefore the equation (3.6) implies that (4.3) is equivalent to that $\sup_{x \in \mathbb{R}^d} \left\{ (1/h(x))G^{\mu-g \cdot dx}\mu(x) \right\} < \infty$.

We note that by Lemma 4.3

$$\mathbb{E}_{x}\left[e^{A_{t}^{\mu}}\right] = 1 + \mathbb{E}_{x}\left[\int_{0}^{t} e^{A_{s}^{\mu}} dA_{s}^{\mu}\right] = 1 + h(x)\mathbb{E}_{x}^{h}\left[\int_{0}^{t} \frac{dA_{s}^{\mu}}{h(X_{s})}\right].$$

Thus for a finite positive measure v,

$$\mathbb{E}_{v}\left[e^{A_{t}^{\mu}}\right] = v(\mathbb{R}^{d}) + \langle v, h \rangle \mathbb{E}_{v^{h}}^{h}\left[\int_{0}^{t} \frac{dA_{s}^{\mu}}{h(X_{s})}\right]$$
(4.6)

where $v^h = h \cdot v / \langle v, h \rangle$. For a positive smooth function *k* with compact support, put

$$\psi(t) = \mathbb{E}_x^h \left[\int_0^t k(X_s) ds \right].$$

Then $\lim_{t\to\infty} \psi(t) = \infty$ by the Harris recurrence of \mathbf{M}^h . Moreover,

$$\lim_{t \to \infty} \frac{\psi(t+s)}{\psi(t)} = 1.$$
(4.7)

Indeed,

$$\psi(t+s) = \mathbb{E}_{x}^{h} \left[\int_{0}^{t} k(X_{u}) du \right] + \mathbb{E}_{x}^{h} \left[\mathbb{E}_{X_{t}}^{h} \left[\int_{0}^{s} k(X_{u}) du \right] \right]$$

$$\leq \psi(t) + \|k\|_{\infty} s,$$

and

$$1 \le \frac{\psi(t+s)}{\psi(t)} \le 1 + \frac{\|k\|_{\infty}s}{\psi(t)}$$

We see from [4, Lemma 4.4] that the Revuz measure of A_t^{μ} is $h^2 \mu$ as a PCAF of **M**^{*h*}. Since by (4.6)

$$\frac{1}{\psi(t)}\mathbb{E}_{v}\left[e^{A_{t}^{\mu}}\right] = \frac{v(\mathbb{R}^{d})}{\psi(t)} + \langle v, h \rangle \frac{\mathbb{E}_{v^{h}}^{h}\left[\int_{0}^{t} (1/h(X_{s}))dA_{s}^{\mu}\right]}{\mathbb{E}_{x}^{h}\left[\int_{0}^{t} k(X_{s})ds\right]}$$

and $\int_0^t (1/h(X_s)) dA_s^{\mu}$ and $\int_0^t k(X_s) ds$ are special with respect to \mathbb{M}^h , we see from Chacon-Ornstein type ergodic theorem in [2, Theorem 3.18] that

$$\frac{1}{\psi(t)} \mathbb{E}_{v} \left[e^{A_{t}^{\mu}} \right] \longrightarrow \langle v, h \rangle \cdot \frac{\langle \mu, h \rangle}{\int_{\mathbb{R}^{d}} kh^{2} dx}$$
(4.8)

as $t \to \infty$. Note that $\langle \mu, h \rangle < \infty$ by (3.6) and (4.2). For a bounded \mathscr{F}_s -measurable function *Z*, define a positive finite measure *v* by

$$v(B) = \mathbb{E}_{x}\left[Ze^{A_{s}^{\mu}}; X_{s} \in B\right], \ B \in \mathscr{B}(\mathbb{R}^{d}).$$

Then by the Markov property,

$$\mathbb{E}_{x}\left[Ze^{A_{t}^{\mu}}\right]=\mathbb{E}_{v}\left[e^{A_{t-s}^{\mu}}\right].$$

Therefore

$$\begin{split} \lim_{t \to \infty} \frac{\mathbb{E}_{x} \left[Z e^{A_{t}^{\mu}} \right]}{\mathbb{E}_{x} \left[e^{A_{t}^{\mu}} \right]} &= \lim_{t \to \infty} \frac{\mathbb{E}_{x} \left[Z e^{A_{t}^{\mu}} \right] / \psi(t)}{\mathbb{E}_{x} \left[e^{A_{t}^{\mu}} \right] / \psi(t)} \\ &= \lim_{t \to \infty} \frac{(\psi(t-s)/\psi(t)) \mathbb{E}_{v} \left[e^{A_{t-s}^{\mu}} \right] / \psi(t-s)}{\mathbb{E}_{x} \left[e^{A_{t}^{\mu}} \right] / \psi(t)}. \end{split}$$

By (4.7) and (4.8), the right hand side equals

$$\frac{(\langle v,h\rangle\langle\mu,h\rangle)/\int_{\mathbb{R}^d}kh^2dx}{(h(x)\langle\mu,h\rangle)/\int_{\mathbb{R}^d}kh^2dx} = \frac{\langle v,h\rangle}{h(x)} = \frac{1}{h(x)}\mathbb{E}_x\left[Ze^{A_s^{\mu}}h(X_s)\right] = \mathbb{E}_x^h[Z].$$
(4.9)

Remark 4.5. We suppose that $d > \alpha$ and $\lambda(0) = 1$. If $d > 2\alpha$, then $h \in L^2(\mathbb{R}^d)$ on account of (3.6). Hence \mathbf{M}^h is an ergodic process with the invariant probability measure $h^2 dx$, and thus for a smooth function k with compact support,

$$\frac{\psi(t)}{t} = \frac{1}{t} \mathbb{E}_x^h \left[\int_0^t k(X_s) ds \right] \longrightarrow \int_{\mathbb{R}^d} gh^2 dx$$

Hence we see that for $\mu \in \mathscr{K}^{S}_{\infty}$

$$\lim_{t \to \infty} \frac{1}{t} \mathbb{E}_x \left[e^{A_t^{\mu}} \right] = h(x) \langle \mu, h \rangle.$$
(4.10)

References

- Albeverio, S., Blanchard, P., Ma, Z.M.: Feynman-Kac semigroups in terms of signed smooth measures, in "Random Partial Differential Equations" ed. U. Hornung et al., Birkhäuser, (1991). MR1185735
- Brancovan, M.: Fonctionnelles additives speciales des processus recurrents au sens de Harris, Z. Wahrsch. Verw. Gebiete. 47, 163-194 (1979). MR0523168
- [3] Chen, Z.-Q., Fitzsimmons, P. J., Takeda, M., Ying, J., Zhang, T.-S: Absolute continuity of symmetric Markov processes, Ann. Probab. 32, 2067-2098 (2004). MR2073186

- [4] Fitzsimmons, P.J., Absolute continuity of symmetric diffusions, Ann. Probab. 25, 230-258 (1997). MR1428508
- [5] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin (1994). MR1303354
- [6] Neveu, J.: Potentiel Markovien recurrent des chaines de Harris. Ann. Inst. Fourier 22, 85-130 (1972). MR0380992
- [7] Rogers, L., Williams, D.: Diffusions, Markov Processes, and Martingales, Vol. 2, John Wiley (1987). MR0921238
- [8] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Third edition, Springer-Verlag, Berlin (1999). MR1725357
- [9] Roynette, B., Vallois, P., Yor, M.: Some penalisations of the Wiener measure. Jpn. J. Math. 1, 263-290 (2006). MR2261065
- [10] Roynette, B., Vallois, P., Yor, M.: Limiting laws associated with Brownian motion perturbed by normalized exponential weights. I. Studia Sci. Math. Hungar. 43, 171-246 (2006). MR2229621
- [11] Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures, Potential Analysis 5, 109-138 (1996). MR1378151
- [12] Takeda, M.: Exponential decay of lifetimes and a theorem of Kac on total occupation times, Potential Analysis 11, 235-247, (1999). MR1717103
- [13] Takeda, M.: Large deviations for additive functionals of symmetric stable processes. J. Theoret. Probab. 21, 336-355 (2008). MR2391248
- [14] Takeda, M., Tsuchida, K.: Differentiability of spectral functions for symmetric α-stable processes, Trans. Amer. Math. Soc. 359, 4031-4054 (2007). MR2302522
- [15] Takeda, M., Uemura, T.: Subcriticality and gaugeability for symmetric α -stable processes, Forum Math. **16**, 505-517 (2004). MR2044025
- [16] Yano, K., Yano, Y., Yor, M.: Penalising symmetric stable Lévy paths, J. Math. Soc. Japan. 61, 757-798 (2009). MR2552915