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ÚTIA, Pod vodárenskou věž́ı 4, 18208 Praha 8, Czech Republic
email: swart@utia.cas.cz

Submitted January 22, 2008, accepted in final form February 25, 2008

AMS 2000 Subject classification: Primary: 82C22; Secondary: 82C24, 82C41, 60K35.
Keywords: Long range voter model, swapping voter model, interface tightness, exclusion pro-
cess.

Abstract

Consider a long-range, one-dimensional voter model started with all zeroes on the negative
integers and all ones on the positive integers. If the process obtained by identifying states
that are translations of each other is positively recurrent, then it is said that the voter model
exhibits interface tightness. In 1995, Cox and Durrett proved that one-dimensional voter
models exhibit interface tightness if their infection rates have a finite third moment. Recently,
Belhaouari, Mountford, and Valle have improved this by showing that a finite second moment
suffices. The present paper gives a new short proof of this fact. We also prove interface
tightness for a long range swapping voter model, which has a mixture of long range voter
model and exclusion process dynamics.

1 Introduction and main results

Let X = (Xt)t≥0 be a long-range, one-dimensional ‘swapping’ voter model, i.e. X is a Markov
process with state space {0, 1}Z and formal generator G := Gv + Gs, where

Gvf(x) :=
∑

ij

q(i − j)1{x(i) 6=x(j)}{f(x{i}) − f(x)},

Gsf(x) := 1
2

∑

ij

p(i − j)1{x(i) 6=x(j)}{f(x{i,j}) − f(x)},
(1.1)
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q and p are functions Z → [0,∞), and p is symmetric, i.e., p(i) = p(−i) (i ∈ Z). Here, for any
x ∈ {0, 1}Z and ∆ ⊂ Z,

x∆(i) :=

{
1 − x(i) if i ∈ ∆,

x(i) if i 6∈ ∆
(1.2)

denotes the configuration obtained from x by flipping all spins in ∆. Note that (1.1) says that
if Xt(i) 6= Xt(j) for some i 6= j, then due to the action of Gv, Xt(i) adopts the type of Xt(j)
with infection rate q(i − j). This describes a long-range, one-dimensional voter model. In
addition, due to the action of Gs, at swapping rate p(i − j) the sites i and j swap their types.
In order for the process to be well-defined (see [Lig85]), we assume that

∑

i(q(i) + p(i)) < ∞.
We will also require irreducibility conditions. We call a rate function r : Z → [0,∞) irreducible
if each i ∈ Z can be written as i = i1 + · · · + in with n ≥ 0 and r(ik) > 0 for all 1 ≤ k ≤ n.
Consider the space

Sint :=
{
x ∈ {0, 1}Z : lim

i→−∞
x(i) = 0, lim

i→∞
x(i) = 1

}
(1.3)

of states describing the interface between two infinite population of zeroes and ones. If the
infection and swapping rates have a finite first moment, i.e.,

∑

i |i|(q(i) + p(i)) < ∞, then
X0 ∈ Sint implies Xt ∈ Sint for all t ≥ 0, a.s. (see [BMV07] for this statement concerning Gv).
Define an equivalence relation on Sint by setting x ∼ y if x and y are translations of each other
and let S̃int := {x̃ : x ∈ Sint}, with x̃ := {y ∈ Sint : y ∼ x}, denote the set of equivalence
classes. Then X̃ = (X̃t)t≥0 is a continuous-time Markov process with countable state space

S̃int. Let xH(i) := 1{i≥0} denote the ‘Heaviside state’. As long as q(i) > 0 for some i 6= 0, it

is not hard to see that x̃H can be reached from any state in S̃int, hence X̃ is an irreducible
Markov process on the set of all states that can be reached from x̃H. Following Cox and
Durrett [CD95], we say that X exhibits interface tightness if X̃ is positively recurrent on this
set.
Theorem 4 in [CD95] states that long-range voter models (without swapping) exhibit interface
tightness provided that their infection rates q are symmetric, irreducible, and have a finite
third moment. Although not carried out there, their proofs also work if q is asymmetric
and qs is irreducible, where qs(i) := 1

2 (q(i) + q(−i)) denote the symmetrized infection rates.
Recently, Belhaouari, Mountford, and Valle [BMV07] improved this result by showing that
a finite second moment suffices. They showed that this condition is sharp in the sense that
interface tightness does not hold if

∑

i |i|
cq(i) = ∞ for some c < 2. We will give a new, short

proof of their sufficiency result. In fact, we will prove more:

Theorem 1. (Interface tightness for long-range swapping voter models)
Assume that

∑

i |i|
2(q(i) + p(i)) < ∞, q(i) > 0 for some i 6= 0, and that qs + p is irreducible.

Then X exhibits interface tightness.

For the symmetric nearest-neighbor case, Theorem 1 has been proved in [BFMP01, Theo-
rem 1.1 (ii) (b)]. They also have results for asymmetric exclusion dynamics (but symmetric
voter dynamics). We note that the symmetric nearest-neighbor swapping voter model arises as
the dual and interface model of certain systems of parity preserving branching and annihilating
random walks, see [SS08, Section 2.1] and references there. Finally, we mention that for long-
range voter models, the position of the interface, diffusively rescaled, converges to a Brownian
motion with a known diffusion speed. In [BMSV06], it is shown that for this convergence, a
finite (3 + ε)-th moment of the infection rates is sufficient and a finite (3 − ε)-th moment is
necessary. That paper also contains sharp estimates for the tail distribution of the width of
the interface.
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2 Proof of Theorem 1

The main idea of the proof is the same as in [CD95], namely, to look at the number of
‘inversions’:

fCD(x) := |{(i, j) ∈ Z
2, i < j, x(i) > x(j)}| (x ∈ Sint). (2.1)

In [CD95, Section 4] and [BMV07], this quantity is estimated using duality and (subtle) results
about one-dimensional random walk. Our approach will be to insert fCD into the generator
G and prove that if interface tightness would not hold, then fCD would decrease unboundedly
as time tends to infinity, which yields a contradiction. In a way, our proof is similar to the
methods in [BFMP01], which are based on Lyapunov functions. The function fCD, however,
is not a Lyapunov function for our processs, so our proofs need a probabilistic ingredient as
well, which is provided by Proposition 4 below.

We start by calculating GfCD.

Lemma 2. (Changes in number of inversions) For each x ∈ Sint, one has

GfCD(x) =
∞∑

n=1

(
qs(n) + p(n)

)
n2 −

∞∑

n=1

qs(n)In(x), (2.2)

where

In(x) := |{i ∈ Z : x(i) 6= x(i + n)}| (n ≥ 1). (2.3)

We will need the following lemma:

Lemma 3. (Nonnegative expectation) Assume that
∑

i |i|
2(q(i) + p(i)) < ∞. Then

E[fCD(X0)] +

∫ t

0

E
[
GfCD(Xs)

]
ds ≥ 0 (t ≥ 0). (2.4)

We will also need a result stating that the number of ‘boundaries’ between zeroes and ones,
defined in the sense of (2.3), grows over time if interface tightness does not hold.

Proposition 4. (Interface growth) Assume that
∑

i |i|(q(i)+ p(i)) < ∞, q(i) > 0 for some
i 6= 0, and qs + p is irreducible. Assume that interface tightness does not hold. Then

lim
T→∞

1

T

∫ T

0

dt P[In(Xt) < N ] = 0 (N,n ≥ 1). (2.5)

With these statements we are now in the position to prove Theorem 1. Assume that interface
tightness does not hold. By our assumptions on q and p we can choose i,N ≥ 1 such that

∞∑

n=1

(qs(n) + p(n))n2 < qs(i)N. (2.6)
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Then, by Lemmas 3 and 2, and Proposition 4, the process started in X0 = xH satisfies

0 ≤

∫ T

0

dt E
[
GfCD(Xt)

]
(2.7)

= T

∞∑

n=1

(qs(n) + p(n))n2 −

∞∑

n=1

qs(n)

∫ T

0

dt E
[
In(Xt)

]

≤ T

∞∑

n=1

(qs(n) + p(n))n2 − qs(i)N

∫ T

0

dt P
[
Ii(Xt) ≥ N

]

= T

∞∑

n=1

(qs(n) + p(n))n2 − (T − o(T ))qs(i)N,

as T → ∞. Due to (2.6) the right-hand side of (2.7) tends to −∞ as T → ∞, which yields a
contradiction.

3 Proof of Lemmas 2 and 3, and Proposition 4

Proof of Lemma 2 We need to count the number of pairs of sites i, j with i < j and
x(i) > x(j) that are created and deleted due to the various possible jumps. We will first
consider GsfCD, i.e. the changes due to swapping. So consider the case that x(i) 6= x(i + n)
for some n ∈ N, while there are l ones on the left of i, r zeroes on the right of i + n, and n0

zeroes and n1 ones between i and i + n. Then the changes in fCD(x) due to swapping can be
summarized as follows:

. . .
︸︷︷︸

l×1

0 . . .
︸︷︷︸

n0×0, n1×1

1 . . .
︸︷︷︸

r×0

→ . . . 1 . . . 0 . . . n0 + n1 + 1 = n

. . .
︸︷︷︸

l×1

1 . . .
︸︷︷︸

n0×0, n1×1

0 . . .
︸︷︷︸

r×0

→ . . . 0 . . . 1 . . . −(n0 + n1 + 1) = −n
(3.1)

Thus, if we define

Iab
n (x) := |{i : x(i) = a, x(i + n) = b}| (n ≥ 0, ab = 01, 10) (3.2)

then we obtain

GsfCD(x) =

∞∑

n=1

p(n)(n · I01
n (x) − n · I10

n (x)) (3.3)

Now, for any 0 ≤ m < n, set

Iab
n,m(x) := |{r ∈ Z : x(nr + m) = a, x(n(r + 1) + m) = b}|. (3.4)

Walking along the thinned-out lattice nZ +m from −∞ to +∞, we see one more change from
0 to 1 than we see changes from 1 to 0, i.e., I01

n,m(x) = I10
n,m(x) + 1 for all x ∈ Sint. Since

Iab
n (x) =

∑n−1
m=0 Iab

n,m(x), it follows that

I01
n (x) = I10

n (x) + n (x ∈ Sint). (3.5)
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This implies that (3.3) simplifies to

GsfCD(x) =

∞∑

n=1

p(n)n2. (3.6)

In order to consider the effect of Gv on fCD we write

GvfCD(x) =
∑

k

q(−k)
( ∑

i: x(i)=1

∑

j: j>i

(
1{x(j)=1, x(j+k)=0} − 1{x(j)=0, x(j+k)=1}

)

+
∑

i: x(i)=0

∑

j: j<i

(
1{x(j)=0, x(j+k)=1} − 1{x(j)=1, x(j+k)=0}

))

.
(3.7)

We observe that for any x ∈ Sint and k > 0,
∑

j: j>i

(
1{x(j)=1, x(j+k)=0} − 1{x(j)=0, x(j+k)=1}

)

=
i+k∑

j=i+1

∑

n≥0

(
1{x(j+nk)=1, x(j+(n+1)k)=0} − 1{x(j+nk)=0, x(j+(n+1)k)=1}

)

= −

i+k∑

j=i+1

1{x(j)=0}.

(3.8)

To see why the last equality in (3.8) holds, observe that since k > 0, the sequence x(j), x(j +
k), x(j + 2k) . . . is eventually one. Hence, if x(j) = 1, then the number of changes from 0 to 1
equals the number of changes from 1 to 0 and all terms cancel, while if x(j) = 0 there is one
extra change from 0 to 1, leading to a contribution of minus one.
Likewise, for any x ∈ Sint and k > 0,

∑

j: j<i

(
1{x(j)=0, x(j+k)=1} − 1{x(j)=1, x(j+k)=0}

)

=

i−1∑

j=i−k

∑

n≥0

(
1{x(j−nk)=0, x(j−(n−1)k)=1} − 1{x(j−nk)=1, x(j−(n−1)k)=0}

)

=

i+k−1∑

j=i

∑

n≥0

(
1{x(j−(n+1)k)=0, x(j−nk)=1} − 1{x(j−(n+1)k)=1, x(j−nk)=0}

)

=

i+k−1∑

j=i

1{x(j)=1}.

(3.9)

It follows that for any k > 0,
∑

i: x(i)=1

∑

j: j>i

(
1{x(j)=1, x(j+k)=0} − 1{x(j)=0, x(j+k)=1}

)

+
∑

i: x(i)=0

∑

j: j<i

(
1{x(j)=0, x(j+k)=1} − 1{x(j)=1, x(j+k)=0}

)

= −
∑

i

i+k∑

j=i+1

1{x(i)=1, x(j)=0} +
∑

i

i+k−1∑

j=i

1{x(i)=0, x(j)=1}

=

k−1∑

n=1

I01
n (x) −

k∑

n=1

I10
n (x),

(3.10)
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Using (3.5), the expression in (3.10) can be rewritten as

− I10
k (x) +

k−1∑

n=1

(I01
n (x) − I10

n (x)) = − 1
2 (Ik(x) − k) +

k−1∑

n=1

n = 1
2 (k2 − Ik(x)), (3.11)

which holds for k > 0. Using symmetry with respect to the map x 7→ x′ where x′(i) :=
1 − x(−i), it is not hard to see that we get the same formula for the expression in (3.10) if
k < 0. Inserting this into (3.7), we arrive at

GvfCD(x) =

∞∑

n=1

qs(n)(n2 − In(x)). (3.12)

Taking (3.6) and (3.12) together now implies (2.2).

Proof of Lemma 3 If the function fCD were bounded, then standard theory would tell us
that the process

Mt := fCD(Xt) −

∫ t

0

GfCD(Xs)ds (t ≥ 0) (3.13)

is a martingale with respect to the filtration generated by X. In particular, since E[Mt] =
E[M0] and fCD ≥ 0, this would imply (2.4). In the present case, since fCD is unbounded, we
have to work a bit. Let

w(x) := max{i : x(i) 6= x(i + 1)} − min{i : x(i) 6= x(i + 1)} (3.14)

denote the ‘width’ of an interface state x ∈ Sint. We can couple Xt to a continuous-time
random walk (Rt)t≥0, started in R0 = w(X0), which jumps from r to r + n with rate

a(n) :=
∞∑

k=n

2(qs(k) + p(k)), (3.15)

in such a way that Rt ≥ w(Xt) for all t ≥ 0 a.s. We check that

∞∑

n=1

a(n)n =

∞∑

n=1

∞∑

k=n

2(qs(k) + p(k))n =

∞∑

k=1

k∑

n=1

2(qs(k) + p(k))n

=

∞∑

k=1

2(qs(k) + p(k)) 1
2k(k + 1) < ∞.

(3.16)

Let XK be the process with generator given by

GKf(x) :=
∑

ij: |i−j|≤K

q(i − j)1{x(i) 6=x(j)}{f(x{i}) − f(x)},

+ 1
2

∑

ij: |i−j|≤K

p(i − j)1{x(i) 6=x(j)}{f(x{i,j}) − f(x)},
(3.17)

started in XK
0 = X0. We set

τK,N := inf{t ≥ 0 : w(XK
t ) > N} (3.18)
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and define τN similarly, with XK replaced by X. It follows from standard theory that

M
K,N
t := fCD(XK

t∧τK,N
) −

∫ t∧τK,N

0

GKfCD(XK
s ) ds (t ≥ 0) (3.19)

is a martingale, where by Lemma 2,

GKfCD(x) =

K∑

n=1

(
qs(n) + p(n)

)
n2 −

K∑

n=1

qs(n)In(x). (3.20)

Using an obvious coupling, we may arrange that XK converges a.s. to X in such a way that
there exists a random K0 such that for all K ≥ K0, one has τK,N = τN and XK

t = Xt for all
t ≤ τN . Since moreover τN → ∞ as N → ∞ (which follows from the estimate w(Xt) ≤ Rt),
taking into account (2.2) and (3.20), it follows that

lim
N→∞

lim
K→∞

∫ t∧τK,N

0

GKfCD(XK
s ) ds =

∫ t

0

GfCD(Xs) ds a.s. (3.21)

Since MK,N is a martingale,

0 ≤ E
[
fCD(XK

t∧τK,N
)
]

= E
[
fCD(X0)

]
+ E

[ ∫ t∧τK,N

0

GKfCD(XK
s ) ds

]

. (3.22)

Letting K → ∞ and then N → ∞ in (3.22), using (3.21), we arrive at (2.4), provided we show
(in view of (3.20)) that the random variables

K∑

n=1

qs(n)

∫ t∧τK,N

0

In(XK
s ) ds (K,N ≥ 1) (3.23)

are uniformly integrable. We can couple the XK to a random walk (Rt)t≥0 with jump rates
a(n) as in (3.15), in such a way that Rt ≥ w(XK

t ) for all t ≥ 0 and K ≥ 1 a.s. Hence, since
In(x) ≤ n + w(x), we may estimate

K∑

n=1

qs(n)

∫ t∧τK,N

0

In(XK
s ) ds ≤

∞∑

n=1

qs(n)

∫ t

0

(n + Rs) ds. (3.24)

By (3.16), the right-hand side of (3.24) has finite expectation, proving the required uniform
integrability.

Remark 5. (Martingale problem) If
∑

i |i|
3(q(i) + p(i)) < ∞, then the jump rates a(n)

in (3.15) have a finite second moment. Using this and the estimate fCD(x) ≤ w(x)2, one can
prove that in this case the process in (3.13) is a martingale.

Proof of Proposition 4 Consider the ‘boundary process’

Yt(i) := 1{Xt(i) 6=Xt(i+1)} (t ≥ 0, i ∈ Z), (3.25)

which is a Markov process in

Sbound :=
{
y ∈ {0, 1}Z :

∑

i

y(i) is finite and odd
}
. (3.26)
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Then (Yt)t≥0 is a Markov process in {0, 1}Z with formal generator

GY f(y) :=
∑

i<j

1
{
∑j

k=i+1 y(k) is odd}
q(i − j)

{
f(y{i,i+1}) − f(y)

}

+
∑

i>j

1
{
∑i

k=j+1 y(k) is odd}
q(i − j)

{
f(y{i,i+1}) − f(y)

}

+
∑

i<j−1

1
{
∑j

k=i+1 y(k) is odd}
p(i − j)

{
f(y{i,i+1,j,j+1}) − f(y)

}

+
∑

i

1{y(i + 1) = 1}p(1)
{
f(y{i,i+2}) − f(y)

}
.

(3.27)

Using the fact that
∑

i |i|(q(i) + p(i)) < ∞, one can check that Y is a parity preserving
cancellative spin system in the sense of [SS08]. We will show that the process started in y,
denoted by Y y, satisfies

inf
{
P
[
|Y y

t | = n
]

: |y| = n + 2, y(i) = 1 = y(j) for some i 6= j, |i − j| ≤ L
}

> 0 (3.28)

(L ≥ 1, n ≥ 0, t > 0). As a result of (3.28), we can apply [SS08, Proposition 13] to conclude
that

lim
T→∞

1

T

∫ T

0

dt P[I1(Xt) < N ] = 0 (N ≥ 1). (3.29)

See also Proposition 2.6 in [Han99] for similar arguments concerning a dual process to the
threshold voter model.
To give a rough idea of the proof and of the importance of condition (3.28), think of the sites
with Yt(i) = 1 as being occupied by a particle. Then Y is a parity preserving particle system,
i.e., if Y is started in an odd (even) initial state, then the number of particles always stays odd
(even). Let Ỹ denote the process obtained from Y by identifying states that are a translation
of each other. If X̃ is not positively recurrent, then the same is true for Ỹ . The main idea of
the proof of (3.29) is to use induction on n to show that there cannot be less than n particles
for a positive fraction of time. This is obviously true for n = 1; imagine that it holds for a
certain n. If we see n particles for a positive fraction of time, then most of the time these
particles must be situated far from each other, for else with positive probability at least two
would annihilate each other due to (3.28), violating the induction hypothesis. However, since
Ỹ is not positively recurrent, n single particles far from each other will soon each produce
three particles, hence we cannot see n particles for a positive fraction of time.
To boost up (3.29) to the statement in (2.5), it suffices to show that the process started in x,
denoted by Xx, satisfies

lim
N→∞

inf
|I1(x)|≥N

P[In(Xx
t ) < M ] = 0 (M,n ≥ 1, t > 0). (3.30)

For if (3.30) holds, then for each t, ε > 0 we can choose N large enough such that the limit in
(3.30) is smaller than ε, and therefore, by (3.29) and a restart argument

lim sup
T→∞

1

T

∫ t+T

t

ds P[In(Xs) < M ] ≤ ε (M ≥ 1). (3.31)

Since ε > 0 is arbitrary, this implies (2.5).
We still need to prove (3.28) and (3.30). We start with the former. Choose k 6= 0 such that
q(k) > 0. By symmetry, we may without loss of generality assume that k > 0. It suffices to
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prove (3.28) for L ≥ k. So fix L ≥ k, n ≥ 0, and t > 0. Let y = δi1 + · · ·+ δin
where δi(j) := 1

if i = j and = 0 otherwise, and i1 < · · · < in. Assume that

M :=
{
m′ ∈ {1, . . . , n − 1} : im′+1 − im′ ≤ L

}
(3.32)

is not empty and let m := inf(M). Then x(im + 1 − L) = · · · = x(im) 6= x(im + 1), and
hence, since L ≥ k, there is a positive probability that during the time interval [0, t], the sites
im + 1, . . . , im+1 get infected successively by the sites im + 1 − k, . . . , im+1 − k, leading to a
decrease in I1(Xt) of 2. Using the fact that

∑

i |i|(q(i) + p(i)) < ∞, it is not hard to see that
moreover, with positive probability, no other infections take place, and that this probability is
uniformly bounded from below in all y satisfying our assumptions.
To prove (3.30), we view the dynamics of our process X as follows. For each ordered pair (i, j)
with i 6= j, at times selected according to an independent Poisson point process with intensity
q(i− j), the type of site j infects the site i. Likewise, for each unordered pair {i, j} with i 6= j,
at times selected according to an independent Poisson point process with intensity p(i − j),
the sites i and j swap their types.
We claim that if we view the evolution of types in this way, then we can find a j ∈ Z such that
with positive probability Xt(j) inherits its type from x(0) and Xt(j +n) inherits its type from
x(1). To see this, we will make a number of infections and swaps to transport the type of site
0 to j and the type of site 1 to j + n. Let us say that in the k-th step of our construction,
we have transported the type of site 0 to the site lk and the type of site 1 to rk. Then, in the
(k + 1)-th step of our construction, by making an infection with rate q(i), we may transport
the type of site lk to lk + i and set (lk+1, rk+1) := (lk + i, rk), or we may transport the type
of site rk to rk + i and set (lk+1, rk+1) := (lk, rk + i), and similarly for swaps. Thus, in each
step, we may increase rk − lk by d for each d ∈ G := {i ∈ Z : qs(i) + p(i) > 0}. We must only
make sure that when we move the type of one site to a new position, we do not influence the
type of the other site. To avoid this sort of influence, we will make sure that at each point
in our construction lk < rk. We claim that this is possible. Set nk := rk − lk. We need to
show that there exist (strictly) positive integers n0, . . . , nm such that n0 = 1, nm = n, and
(nk − nk−1) ∈ G for all 1 ≤ k ≤ m. By our assumption that qs + p is irreducible we can write
n− 1 = i1 + · · ·+ im with i1, . . . , im ∈ G. (Note that this is the only place in our proofs where
we use irreducibility.) Without loss of generality we may assume that i1 ≥ · · · ≥ im. Then
setting nk := 1 + i1 + · · · + ik proves our claim.
It follows that there exist j ∈ Z and L ≥ j such that whenever x(i) 6= x(i+1), there is a positive
probability that Xt(i+j) inherits its type from x(i) and Xt(i+j+n) inherits its type from x(1)
through a sequence of infections and swaps that are entirely contained in {i−L, . . . , i+L}. If
I1(x) is large, we can find many sites i, situated at least a distance 3L from each other, such
that x(i) 6= x(i + 1). By what we have just proved each pair has an independent probability
to produce at time t two sites i + j and i + j + n such that Xt(i + j) 6= Xt(i + j + n), hence
In(Xt) is with large probability large.

Acknowledgement We thank Rongfeng Sun who found an error in our original statement
of Lemma 3 and told us how to fix it. We thank the referee for bringing reference [BMSV06]
to our attention.

References

[BFMP01] V. Belitsky, P.A. Ferrari, M.V. Menshikov, and S.Y. Popov. A mixture of the exclu-
sion process and the voter model. Bernoulli 7(1): 119–144, 2001. Zbl 0978.60105.



174 Electronic Communications in Probability

MR1811747

[BMSV06] S. Belhaouari, T. Mountford, R.Sun, and G. Valle. Convergence results and sharp
estimates for the voter model interfaces. Electron. J. Probab. 11: Paper No. 30,
768–801, 2006. Zbl 1113.60092. MR2242663

[BMV07] S. Belhaouari, T. Mountford, and G. Valle. Tightness for the interfaces of one-
dimensional voter models. Proc. Lond. Math. Soc. (3) 94(2): 421–442, 2007. Zbl
1112.60074. MR2308233

[CD95] J.T. Cox and R. Durrett. Hybrid zones and voter model interfaces. Bernoulli 1(4):
343–370, 1995. Zbl 0849.60088. MR1369166

[Han99] S.J. Handjani. The complete convergence theorem for coexistent threshold voter
models. Ann. Probab. 27(1): 226–245, 1999. Zbl 0974.60093. MR1681118

[Lig85] T.M. Liggett. Interacting Particle Systems. Springer, New York, 1985. Zbl
0559.60078. MR0776231

[SS08] A. Sturm and J.M. Swart. Voter models with heterozygosity selection. Ann. Appl.
Probab 18(1): 59–99, 2008. MR2380891

http://www.ams.org/mathscinet-getitem?mr=1811747
http://www.ams.org/mathscinet-getitem?mr=2242663
http://www.ams.org/mathscinet-getitem?mr=2308233
http://www.ams.org/mathscinet-getitem?mr=1369166
http://www.ams.org/mathscinet-getitem?mr=1681118
http://www.ams.org/mathscinet-getitem?mr=0776231
http://www.ams.org/mathscinet-getitem?mr=2380891

	Introduction and main results
	Proof of Theorem 1
	Proof of Lemmas 2 and 3, and Proposition 4
	References

