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Abstract

In this note we extend a classical equivalence result for Gaussian stationary processes to the
more general setting of Gaussian processes with stationary increments. This will allow us to
apply it in the setting of aggregated independent fractional Brownian motions.

1 Introduction and main result

It is well known that every mean-square continuous, centered, stationary Gaussian process
X = (Xt)t≥0 admits a spectral representation. Indeed, by Bochner’s theorem there exists a
symmetric, finite Borel measure µ on the line such that

EXsXt =

∫

R

ei(t−s)λ µ(dλ).

The measure µ is called the spectral measure. If it admits a Lebesgue density, this is called
the spectral density of the process.
A classical result in the theory of continuous-time stationary Gaussian processes gives sufficient
conditions for the equivalence of the laws of two centered processes with different spectral
densities, see for instance [7], or [8], Theorem 17 on p. 104. The result says that if the two
densities f , g involved satisfy

∫ ∞

R

∣

∣

∣

g(λ) − f(λ)

f(λ)

∣

∣

∣

2

dλ < ∞ (1.1)

for some R > 0 then, under a regularity condition on the tail behaviour of the densities, the
laws of the associated processes on (R[0,T ],B(R[0,T ])) are equivalent for any T > 0. Here, as
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usual, R
[0,T ] is the collection of all real-valued functions on [0, T ] and B(R[0,T ]) is the σ-field

on R
[0,T ] generated by the projections h 7→ h(t).

Unfortunately, the proof of this result, as given for instance on pp. 105–107 of [8], does not
allow extension to the setting of processes with stationary increments. Processes of the latter
type admit a spectral representation as well. If X = (Xt)t≥0 is a mean-square continuous,
centered Gaussian process with stationary increments that starts from 0, i.e. X0 = 0 (we call
such processes Gaussian si-processes from now on), there exists a unique symmetric Borel
measure µ on the line such that

∫

(1 + λ2)−1 µ(dλ) < ∞, and

EXsXt =

∫

R

(eiλs − 1)(e−iλt − 1)

λ2
µ(dλ)

for all s, t ≥ 0 (cf., e.g., [3]). Slightly abusing terminology we also call µ the spectral measure
of the process X in this case and if it admits a Lebesgue density we call it the spectral density
again. The main example is the fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1), which has spectral density

fH(λ) = cH |λ|1−2H , cH =
sin(πH)Γ(1 + 2H)

2π
(1.2)

(see for instance [9]).
It turns out that if we just do as if equivalence result cited above is valid for si-processes, we
obtain equivalence statements that are actually correct and can be proved rigorously. Consider
for instance the so-called mixed fBm as introduced in [2], which is the sum W +X of a standard
Brownian motion W and an independent fBm X with some Hurst index H ∈ (0, 1). The
process W has spectral density f identically equal to 1/(2π) and hence the mixed fBm has
spectral density g(λ) = 1/(2π) + cH |λ|1−2H . We see that condition (1.1) becomes in this case

∫

|λ|>R

|λ|2−4H dλ < ∞,

which is fulfilled if and only if H > 3/4. This would suggest that the mixed fBm is equivalent
to ordinary Brownian motion if H > 3/4. And indeed, this is exactly what [2] proved, cf. also
[1].
The main purpose of this note is to show that this example is not a coincidence, and that the
classical equivalence result for stationary processes indeed extends to si-processes.
We call two processes equivalent on [0, T ] if the laws they induce on (R[0,T ],B(R[0,T ])) are
equivalent. Recall that an entire function ϕ on the complex plane is said to be of exponential
type τ if

lim sup
r→∞

1

r
max
|z|=r

log |f(z)| = τ.

It is said to be of finite exponential type if it is of exponential type τ for some τ < ∞. We denote
by L e

T the linear span of the collection of functions {λ 7→ (exp(iλt) − 1)/(iλ) : t ∈ [0, T ]}.

Theorem 1. Let X and Y be centered, mean-square continuous Gaussian processes with
stationary increments and spectral densities f and g, respectively. Suppose there exist positive
constants c1, c2 and an entire function ϕ of finite exponential type such that

c1|ϕ(λ)|2 ≤ f(λ) ≤ c2|ϕ(λ)|2 (1.3)
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for all real λ large enough. For T > 0, suppose there exists a constant C > 0 such that
‖ψ‖L2(f) ≤ C‖ψ‖L2(g) for all ψ ∈ L e

T . Then if condition (1.1) holds for some R > 0, the
processes X and Y are equivalent on [0, T ].

As explained on p. 104 of [8], condition (1.3) is for instance fulfilled if for some p ∈ (−∞, 1)
it holds that c1|λ|

p ≤ f(λ) ≤ c2|λ|
p for |λ| large. In the stationary process result of [8] it

is assumed that g satisfies condition (1.3) as well (with the same ϕ). The condition on g in
Theorem 1 gives somewhat more flexibility in special cases, since it is for instance satisfied as
soon as g ≥ Cf for some constant C > 0.
In the next section we present the proof of Theorem 1. Then in Section 3 the result is used to
extend an equivalence result for aggregated fBm’s of [10].

2 Proof

The proof of the theorem exploits the fact that for Gaussian si-processes, we have a reproducing
kernel Hilbert space (RKHS) structure in the frequency domain. For T > 0 and a spectral
measure µ, let LT (µ) be the closure in L2(µ) of the set of functions L e

T , which is defined as
the linear span of the collection {λ 7→ (exp(iλt)−1)/(iλ) : t ∈ [0, T ]}. Then LT (µ) is a RKHS
of entire functions (see for instance [4], or [6]). We denote its reproducing kernel by ST . This
function has the property that ST (ω, ·) ∈ LT (µ) for every ω ∈ R and for every ψ ∈ LT (µ)
and ω ∈ R,

〈ψ, ST (ω, ·)〉L2(µ) = ψ(ω),

where 〈ϕ,ψ〉L2(µ) =
∫

ϕψ̄ dµ. Below we will use the fact that every ψ ∈ LT (µ) has a version
that can be extended to an entire function on the complex plane, that is of finite exponen-
tial type (at most T ). Conversely, the restriction to the real line of an entire function ψ of
exponential type at most T that satisfies

∫

R

|ψ(λ)|2 µ(dλ) < ∞,

belongs to LT (µ) (cf. [4], [6]).
We shall apply the following theorem obtained in [10]. It gives sufficient conditions for equiv-
alence of Gaussian si-processes involving spectral densities and reproducing kernels.

Theorem 2. Let X and Y be centered, mean-square continuous Gaussian processes with
stationary increments and spectral densities f and g, respectively. Fix T > 0 and suppose
there exists a constant C > 0 such that ‖ψ‖L2(f) ≤ C‖ψ‖L2(g) for all ψ ∈ L e

T . Let ST be the
reproducing kernel of LT (f). Then if

∫ ∞

R

(g(λ) − f(λ)

f(λ)

)2

ST (λ, λ)f(λ) dλ < ∞

for some R > 0, the processes X and Y are equivalent on [0, T ].

The following crucial lemma shows that under condition (1.3), we can in fact bound the
reproducing kernel ST of LT (f) on the diagonal by a multiple of 1/f . The proof of Theorem
1 then simply consists of combining this lemma with Theorem 2 above.
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Lemma 3. Suppose the spectral density f satisfies (1.3) for |λ| large enough, with c1, c2 positive
constants and ϕ an entire function of finite exponential type. Then for T > 0 the reproducing
kernel ST of LT (f) satisfies

|ST (ω, λ)|2 ≤ C
ST (ω, ω)

f(λ)

for all real ω and all real λ large enough, where C is a positive constant independent of ω and
λ. In particular,

ST (λ, λ) ≤
C

f(λ)

for |λ| large enough.

Proof. Put f0 = |ϕ|2. Then since ϕ is entire, f0 is bounded near 0 and hence, by the first
inequality in (1.3), f0 is the spectral density of a Gaussian si-process. Let ψk be an arbitrary
orthonormal basis of LT (f0). For every k the function ψkϕ is an entire function of finite
exponential type (not depending on k), say S. Moreover, we have

∫

|ψk(λ)ϕ(λ)|2 dλ =

∫

|ψk|
2f0 = 1 < ∞.

Hence, by the Paley-Wiener theorem, ψkϕ = f̂k for certain fk ∈ L2[−S, S], where ĥ denotes
the Fourier transform of the function h. By the Parseval relation for the Fourier transform,
the fact that the ψk are an orthonormal basis of LT (f0) implies that the fk are orthonormal
in L2[−S, S]. By Bessel’s inequality, it follows that

2π
∑

|ψk(λ)|2f0(λ) =
∑

∣

∣

∣

∫ S

−S

e−iλtfk(t) dt
∣

∣

∣

2

≤

∫ S

−S

|eiλt|2 dt = 2S,

hence
∑

|ψk(λ)|2 ≤ S/(πf0(λ)).
Now fix ω ∈ R and consider ST (ω, ·). This function is entire, of exponential type at most T
and belongs to LT (f) and hence, by the first inequality in (1.3), belongs to LT (f0) as well
(cf. [4], Chapter 6). Expanding it in the basis ψk of the first paragraph gives

ST (ω, λ) =
∑

〈ST (ω, ·), ψk〉L2(f0)
ψk(λ).

By Cauchy-Schwarz, we obtain

|ST (ω, λ)|2 ≤
∑

| 〈ST (ω, ·), ψk〉L2(f0)
|2

∑

|ψk(λ)|2.

By the first paragraph, the second factor on the right is bounded by a constant times 1/f0(λ),
which, by the second inequality of (1.3), is bounded by a constant times 1/f(λ) for |λ| large
enough. The first factor equals ‖ST (ω, ·)‖2

L2(f0)
.

To bound this last quantity, observe that since f0 is bounded near 0, we have for every a > 0
and ψ ∈ L e

T ,
∫

|λ|≤a

|ψ(λ)|2f0(λ) dλ ≤ c

∫

|λ|≤a

|ψ(λ)|2 dλ

for some c > 0. On the other hand, the Gaussian si-processes with spectral measures f and
1[−a,a] + f1[−a,a]c are locally equivalent (see [10], Theorem 5.1), in particular the L2-norms
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corresponding to the two densities are equivalent on L e
T (e.g. Theorem 4.1 of [10]). It follows

that
∫

|λ|≤a

|ψ(λ)|2f0(λ) dλ ≤ c′
∫

|ψ(λ)|2f(λ) dλ,

the constant c′ not depending on ψ. Condition (1.3) implies that for a large enough we have
∫

|λ|>a

|ψ(λ)|2f0(λ) dλ ≤
1

c1

∫

|λ|>a

|ψ(λ)|2f(λ) dλ.

Together we find that for some constant c > 0, it holds that ‖ψ‖L2(f0) ≤ c‖ψ‖L2(f) for all
ψ ∈ L e

T . By passing to the limit we see that the bound holds in fact for all ψ ∈ LT (f).
Applying this with ψ = ST (ω, ·) and using the reproducing property yields

‖ST (ω, ·)‖2
L2(f0)

≤ c2‖ST (ω, ·)‖2
L2(f) = c2ST (ω, ω),

completing the proof of the lemma.

3 Application

One of the main motivations for the present paper is the equivalence result for aggregated fBm’s
given in [10]. Consider a linear combination X =

∑

akXk of independent fBm’s X1, . . . ,Xn

with increasing Hurst indices H1 < · · · < Hn, for some nonzero constants a1, . . . , an. It is
proved in [10] that X is equivalent to a1X

1 on every interval [0, T ] if H2 − H1 > 1/4.
Morally speaking, such an equivalence result should be true under conditions that only restrict
the tails of the spectral densities of the processes involved. The proof of the result presented
in [10] however relies on the explicit form of the frequency domain reproducing kernel of the
fBm (cf. [5]). Using Theorem 1 we can now immediately obtain the following generalization,
which shows that indeed, only conditions on the tails of the spectra are needed.

Theorem 4. Let X and Y be Gaussian si-process with spectral densities f and g, respectively.
Suppose that for p ∈ (−∞, 1) and positive constants c1, c2 we have

c1|λ|
p ≤ f(λ) ≤ c2|λ|

p

for |λ| large. Then if
∫ ∞

R

|g(λ)|2

|λ|2p
< ∞

for some R > 0, the processes X and X + Y are equivalent on every interval [0, T ].

Observe that we recover the cited result of [10] if we apply the theorem with (using the same
notations as above)

f = a1fH1
, g =

n
∑

k=2

akfHk
,

where fH is the spectral density of the fBm given by (1.2).
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