\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations. {\em Electronic Journal of Differential Equations}, Conference 19 (2010), pp. 99--121.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \setcounter{page}{99} \title[\hfilneg EJDE-2010/Conf/19/\hfil Continuous dependence of solutions] {Continuous dependence of solutions for ill-posed evolution problems} \author[M. Fury, R. J. Hughes\hfil EJDE/Conf/19 \hfilneg] {Matthew Fury, Rhonda J. Hughes} % in alphabetical order \address{Matthew Fury \newline Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010, USA} \email{mfury@brynmawr.edu} \address{Rhonda J. Hughes \newline Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010, USA} \email{rhughes@brynmawr.edu} \thanks{Published September 25, 2010.} \subjclass[2000]{47A52, 42C40} \keywords{Continuous dependence on modelling; time-dependent problems; \hfill\break\indent Ill-posed problems} \begin{abstract} We prove H\"older-continuous dependence results for the difference between certain ill-posed and well-posed evolution problems in a Hilbert space. Specifically, given a positive self-adjoint operator $D$ in a Hilbert space, we consider the ill-posed evolution problem \begin{gather*} \frac{du(t)}{dt} = A(t,D)u(t) \quad 0\leq t\omega $$ and every finite sequence $0\leq t_1\leq t_2,\dots ,t_k\leq T$, $k=1,2,\dots $. \end{definition} \noindent \textbf{Remark.} If for $t\in [0,T]$, $A(t)$ is the infinitesimal generator of a $C_0$ semigroup $\{S_t(s)\}_{s\geq 0}$ satisfying $\|S_t(s)\|\leq e^{\omega s}$, then by the Hille-Yosida theorem (cf. \cite{p1}), the family $\{A(t)\}_{t\in [0,T]}$ is stable with constants $M=1$ and $\omega$. We now use the theory of stable families of operators to gain well-posedness of \eqref{star} in the following way. Let $X$ and $Y$ be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|_Y$ respectively. Assume that $Y$ is densely and continuously imbedded in $X$, that is $Y$ is a dense subspace of $X$ and there is a constant $C$ such that $$ \|y\|\leq C\|y\|_Y \quad \text{for } y\in Y. $$ For each $t\in [0,T]$, let $A(t)$ be the infinitesimal generator of a $C_0$ semigroup $\{S_t(s)\}_{s\geq 0}$ on $X$. Assume the following conditions (cf. \cite{k1,p1}): \begin{itemize} \item[(H1)] $\{A(t)\}_{t\in [0,T]}$ is a stable family with stability constants $M$, $\omega$. \item[(H2)] For each $t\in [0,T]$, $Y$ is an invariant subspace of $S_t(s),s\geq 0$, the restriction $\tilde{S}_t(s)$ of $S_t(s)$ to $Y$ is a $C_0$ semigroup in $Y$, and the family $\{\tilde{A}(t)\}_{t\in [0,T]}$ of parts $\tilde{A}(t)$ of $A(t)$ in $Y$, is a stable family in $Y$. \item[(H3)] For $t\in [0,T]$, $\operatorname{Dom}(A(t))\supseteq Y$, $A(t)$ is a bounded operator from $Y$ into $X$, and $t\mapsto A(t)$ is continuous in the $B(Y,X)$ norm $\|\cdot\|_{Y\to X}$. \end{itemize} \begin{theorem}[{\cite[Theorem 4.1]{k1}, \cite[Theorem 5.3.1]{p1}}] \label{thm3} For each $t\in [0,T]$, let $A(t)$ be the infinitesimal generator of a $C_0$ semigroup $\{S_t(s)\}_{s\geq 0}$ on $X$. If the family $\{A(t)\}_{t\in [0,T]}$ satisfies conditions {\rm (H1)--(H3)}, then there exists a unique evolution system $U(t,s)$, $0\leq s\leq t\leq T$, in $X$ satisfying \begin{itemize} \item[(E1)] $\|U(t,s)\|\leq Me^{\omega (t-s)}$ for $0\leq s\leq t\leq T$. \item[(E2)] $\frac{\partial^+}{\partial t}U(t,s)y\big|_{t=s}=A(s)y$ for $y\in Y$, $0\leq s\leq T$. \item[(E3)] $\frac{\partial}{\partial s}U(t,s)y=-U(t,s)A(s)y$ for $y\in Y$, $0\leq s\leq t\leq T$, \end{itemize} where the derivative from the right in (E2) and the derivative in (E3) are in the strong sense in $X$. \end{theorem} This theorem will help in obtaining a certain kind of classical solution of \eqref{star} in the case where the family $\{A(t)\}_{t\in [0,T]}$ of infinitesimal generators of $C_0$ semigroups on $X$ satisfies conditions (H1)--(H3). \begin{definition}[{\cite[Definition 5.4.1]{p1}}] \label{def5} \rm Let $X$ and $Y$ be Banach spaces such that $Y$ is densely and continuously imbedded in $X$ and let $\{A(t)\}_{t\in [0,T]}$ be a family of infinitesimal generators of $C_0$ semigroups on $X$ satisfying the assumptions (H1)--(H3). A function $u\in C([s,T]:Y)$ is a \emph{Y-valued solution} of \eqref{star} if $u\in C^1((s,T):X)$ and $u$ satisfies \eqref{star} in $X$. \end{definition} \noindent \textbf{Remark.} A $Y$-valued solution $u$ of \eqref{star} is a classical solution of \eqref{star} such that $u(t)\in Y\subseteq \operatorname{Dom}(A(t))$ for $t\in [s,T]$ and $u(t)$ is continuous in the stronger $Y$-norm rather than merely in the $X$-norm. \begin{theorem}[{\cite[Thm. 5.4.3]{p1}}] \label{thm4} Let $\{A(t)\}_{t\in [0,T]}$ satisfy the conditions of Theorem \ref{thm3} and let $U(t,s)$, $0\leq s\leq t\leq T$ be the evolution system given in Theorem \ref{thm3}. If \begin{itemize} \item[(E4)] $U(t,s)Y\subseteq Y$ for $0\leq s\leq t\leq T$ and \item[(E5)] For $x\in Y$, $U(t,s)x$ is continuous in $Y$ for $0\leq s\leq t\leq T$, \end{itemize} then for every $x\in Y$, $U(t,s)x$ is the unique $Y$-valued solution of \eqref{star}. \end{theorem} We now use the above theory of stable families of generators to give criteria for well-posedness of the evolution problem \eqref{e2}. Let \eqref{e2'} denote the initial value problem \eqref{e2} with $0$ replaced by $s$ for $s\in [0,T)$; i.e., \begin{equation} \begin{gathered} \label{e2'} \frac{dv(t)}{dt} = f(t,D)v(t) \quad 0\leq s\leq t< T \\ v(s) = \chi. \end{gathered} \end{equation} We determine conditions on $f$ so that the family of operators $\{f(t,D)\}_{t\in [0,T]}$ is stable and such that \eqref{e2'} is well-posed. \begin{proposition} \label{prop1} Let $f:[0,T]\times [0,\infty)\to \mathbb{R}$ be continuous in $t$ and Borel in $\lambda$. Assume there exist $\omega\in \mathbb{R}$ such that $f(t,\lambda)\leq \omega$ for all $(t,\lambda)\in [0,T]\times [0,\infty)$ and a Borel function $r:[0,\infty)\to [0,\infty)$ such that $|f(t,\lambda)|\leq r(\lambda)$ and $\operatorname{Dom}(f(t,D))=\operatorname{Dom}(r(D))$ for all $t\in [0,T]$. Set $Y=\operatorname{Dom}(r(D))$ and let $\|\cdot \|_Y$ denote the graph norm associated with the operator $r(D)$. Further, assume $t\mapsto f(t,D)$ is continuous in the $B(Y,H)$ norm $\|\cdot \|_{Y\to H}$. Then \eqref{e2'} is well-posed and for $\chi \in Y$, $V(t,s)\chi=e^{\int_s^tf(\tau,D)d\tau}\chi$ is a unique $Y$-valued solution of \eqref{e2'}. \end{proposition} \begin{proof} By \cite[Theorem XII.2.6]{d1}, $r(D)$ is a closed operator in $H$ with dense domain. Set $Y=\operatorname{Dom}(r(D))$ and endow $Y$ with the graph norm $\|\cdot\|_Y$ given by $$ \|y\|_Y=\|y\|+\|r(D)y\| $$ for all $y\in Y$. Since $r(D)$ is a closed operator, it follows that $(Y,\|\cdot\|_Y)$ is a Banach space. It is also clear that $Y$ is densely and continuously imbedded in $H$. Since $f(t,\lambda)\leq \omega$ for all $(t,\lambda)\in [0,T]\times [0,\infty)$, we have that for each $t\in [0,T]$, $f(t,D)$ is the infinitesimal generator of the $C_0$ semigroup $\{S_t(s)\}_{s\geq 0}$ on $H$ given by $S_t(s)=e^{sf(t,D)}$. We show that the family $\{f(t,D)\}_{t\in [0,T]}$ satisfies conditions (H1)--(H3). Let $t\in [0,T]$, $x\in H$. Then \[ \|e^{sf(t,D)}x\|^2 = \int_0^{\infty}|e^{sf(t,\lambda)}|^2d(E(\lambda)x,x) \leq (e^{s\omega})^2\int_0^{\infty}d(E(\lambda)x,x) = (e^{s\omega})^2\|x\|^2, \] showing that $\|S_t(s)\|=\|e^{sf(t,D)}\|\leq e^{\omega s}$. Thus, $\{f(t,D)\}_{t\in [0,T]}$ is a stable family with stability constants $M=1$ and $\omega$, and so (H1) is satisfied. Next, let $t\in [0,T]$, $y\in Y$. For any $s\geq 0$, since $y\in Y=\operatorname{Dom}(r(D))$, we have $$ \int_0^{\infty}|r(\lambda)e^{sf(t,\lambda)}|^2d(E(\lambda)y,y)\leq (e^{s\omega})^2\int_0^{\infty}|r(\lambda)|^2d(E(\lambda)y,y)<\infty. $$ Thus, $S_t(s)y\in \operatorname{Dom}(r(D))$ and so $Y$ is an invariant subspace of $S_t(s)$. Let $\tilde{S}_t(s)$ be the restriction of $S_t(s)$ to $Y$. For any positive constant $c$, for $0\leq s\leq c$, $$ |r(\lambda)(e^{sf(t,\lambda)}-1)|^2 \leq |r(\lambda)|^2(e^{c\omega}+1)^2\in L^1(E(\cdot)y,y). $$ Therefore, by Lebesgue's Dominated Convergence Theorem, \begin{align*} \lim_{s\to 0^+}\|r(D)(S_t(s)-I)y\|^2 &= \lim_{s\to 0^+}\int_0^{\infty}|r(\lambda)(e^{sf(t,\lambda)}-1) |^2d(E(\lambda)y,y) \\ &= \int_0^{\infty}\lim_{s\to 0^+}|r(\lambda)(e^{sf(t,\lambda)}-1) |^2d(E(\lambda)y,y) = 0, \end{align*} and so \begin{align*} \|\tilde{S}_t(s)y-y\|_Y &= \|\tilde{S}_t(s)y-y\|+\|r(D)(\tilde{S}_t(s)y-y)\| \\ &= \|S_t(s)y-y\|+\|r(D)(S_t(s)-I)y\| \\ &\to 0 \quad \text{as } s\to 0^+. \end{align*} Thus, $\tilde{S}_t(s)$ is a $C_0$ semigroup on $Y$. Next, consider the family $\{\tilde{f}(t,D)\}_{t\in [0,T]}$ of parts $\tilde{f}(t,D)$ of $f(t,D)$ in $Y$. For each $t\in [0,T]$, $\tilde{f}(t,D)$ is defined by $$ \operatorname{Dom}(\tilde{f}(t,D))=\{x\in \operatorname{Dom}(f(t,D))\cap Y : f(t,D)x\in Y\} $$ and $$ \tilde{f}(t,D)x=f(t,D)x \quad \text{for } x\in \operatorname{Dom}(\tilde{f}(t,D)). $$ It is seen \cite[Theorem 4.5.5]{p1} that $\tilde{f}(t,D)$ is the infinitesimal generator of the $C_0$ semigroup $\tilde{S}_t(s)$. Moreover, for $y\in Y$, \begin{align*} \|\tilde{S}_t(s)y\|_Y &= \|\tilde{S}_t(s)y\| +\|r(D)\tilde{S}_t(s)y\| \\ &= \|S_t(s)y\| +\|r(D)S_t(s)y\| \\ &\leq e^{s\omega}\|y\| + e^{s\omega}\|r(D)y\| \\ &= e^{s\omega}\|y\|_Y. \end{align*} Thus, $\|\tilde{S}_t(s)\|_Y\leq e^{\omega s}$ for all $t\in [0,T]$ and so the family $\{\tilde{f}(t,D)\}_{t\in [0,T]}$ is stable with stability constants $\tilde{M}=1$ and $\omega$. We have shown that (H2) is satisfied. Finally, let $t\in [0,T]$. Since $|f(t,\lambda)|\leq r(\lambda)$, we have for $y\in Y$, $$ \int_0^{\infty}|f(t,\lambda)|^2d(E(\lambda)y,y) \leq \int_0^{\infty}|r(\lambda)|^2d(E(\lambda)y,y)<\infty. $$ Thus $\operatorname{Dom}(f(t,D))\supseteq Y$. Also, for $y\in Y$, \[ \|f(t,D)y\| \leq \|y\| + \|f(t,D)y\| \leq \|y\|+\|r(D)y\| = \|y\|_Y, \] showing that $f(t,D)$ is a bounded operator from $Y$ into $H$. By assumption, $t\mapsto f(t,D)$ is continuous in the $B(Y,H)$ norm $\|\cdot \|_{Y \to H}$ and so (H3) is satisfied. By Theorem \ref{thm3}, there exists a unique evolution system $V(t,s)$, $0\leq s\leq t\leq T$, in $H$ satisfying conditions (E1)-(E3) with the operators $f(t,D)$, $t\in [0,T]$, and $M=1$ in the condition (E1); that is we have \begin{gather*} \|V(t,s)\|\leq e^{\omega (t-s)} \quad \text{for } 0\leq s\leq t\leq T, \\ \frac{\partial^+}{\partial t}V(t,s)y\big|_{t=s}=f(s,D)y \quad \text{for } y\in Y, \; 0\leq s\leq T,\\ \frac{\partial}{\partial s}V(t,s)y=-V(t,s)f(s,D)y \quad \text{for } y\in Y, \; 0\leq s\leq t\leq T, \end{gather*} where the derivatives are in the strong sense in $H$. It can be shown using the Spectral Theorem that $e^{\int_s^tf(\tau,D)d\tau}$ is such an evolution system, and so by uniqueness we must have $V(t,s)=e^{\int_s^tf(\tau,D)d\tau}$. It is also readily seen that $V(t,s)=e^{\int_s^tf(\tau,D)d\tau}$ satisfies (E4) and (E5). Therefore, by Theorem \ref{thm4}, for every $\chi\in Y$, $V(t,s)\chi=e^{\int_s^tf(\tau,D)d\tau}\chi$ is the unique $Y$-valued solution of \eqref{e2'}. Finally, suppose $v_1$ is a classical solution of \eqref{e2'}. Then $v_1(q)\in \operatorname{Dom}(f(q,D))=\operatorname{Dom}(r(D))$ for $q\in (s,T)$. As $V(t,s), \; 0\leq s\leq t\leq T$, satisfies condition (E3) with the operators $f(t,D)$, $t\in [0,T]$, the function $q\mapsto V(t,q)v_1(q)$ is then differentiable and \begin{align*} \frac{\partial}{\partial q} V(t,q)v_1(q) &= -V(t,q)f(q,D)v_1(q)+V(t,q)\frac{d}{dq}v_1(q) \\ &= -V(t,q)f(q,D)v_1(q)+V(t,q)f(q,D)v_1(q) = 0. \end{align*} Thus $V(t,q)v_1(q)$ is constant for $q\in (s,t)$. Since $v_1$ is a classical solution, the function $V(t,q)v_1(q)$ is also continuous for $q\in [s,t]$. Thus we have $$ v_1(t)=V(t,t)v_1(t)=V(t,s)v_1(s)=V(t,s)\chi. $$ Thus condition (ii) of Definition \ref{def2} is satisfied and we see that \eqref{e2'} is well-posed with unique classical solution given by $v(t)=V(t,s)\chi$. \end{proof} \section{The Approximation Theorem} In order that solutions of \eqref{e2} approximate known solutions of \eqref{e1}, we will require additional conditions on $f$. The following definition is inspired by results obtained by Ames and Hughes \cite[Definition 1]{a3} for continuous dependence on modelling in the autonomous case, that is when $A(t)=A$ is independent of $t$. \begin{definition} \label{def6} \rm Let $f:[0,T]\times [0,\infty)\to \mathbb{R}$ be a function continuous in $t$ and Borel in $\lambda $ and assume the hypotheses of Proposition \ref{prop1}. Then $f$ is said to satisfy the \emph{approximation condition with polynomial p} or simply \emph{Condition} $(\mathcal{A},p)$ if there exist a constant $\beta$, with $0<\beta<1$, and a nonzero polynomial $p(\lambda)$ independent of $\beta$ such that for each $t\in [0,T]$, $\operatorname{Dom}(p(D))\subseteq \operatorname{Dom}(A(t,D)) \cap \operatorname{Dom}(f(t,D))$, and $$ \|(-A(t,D)+f(t,D))\psi\|\leq \beta\|p(D)\psi\|, $$ for all $\psi\in \operatorname{Dom}(p(D))$. \end{definition} Now assume $f$ satisfies Condition $(\mathcal{A},p)$. For each $t\in [0,T]$, set $$ g(t,\lambda)=-A(t,\lambda)+f(t,\lambda), $$ and for each $n\geq |\omega|$, set $$ e_n=\{\lambda\in [0,\infty): \max_{t\in [0,T]}|g(t,\lambda)|\leq n\}. $$ Then \begin{gather*} \lambda\in e_n \Rightarrow \max_{t\in [0,T]}|g(t,\lambda)|\leq n \\ \Rightarrow |g(t,\lambda)|\leq n \quad \forall t\in [0,T] \\ \Rightarrow A(t,\lambda)\leq n+f(t,\lambda) \quad \forall t\in [0,T]. \end{gather*} Since $A(t,\lambda)\geq 0$ and $f(t,\lambda)\leq \omega$ for all $(t,\lambda)\in [0,T]\times [0,\infty)$, we have that on $e_n$, $$ \max_{t\in [0,T]}|A(t,\lambda)|\leq n+\omega. $$ Since $f(t,\lambda)=A(t,\lambda)+g(t,\lambda)$, it then follows that on $e_n$, $$ \max_{t\in [0,T]}|f(t,\lambda)|\leq 2n+\omega. $$ Set $E_n=E(e_n)$ and let $\psi\in H$ be arbitrary. Consider the following three evolution problems: \begin{equation} \label{e3} \begin{gathered} \frac{du_n(t)}{dt} = A(t,D)E_nu_n(t) \quad 0\leq s \leq t < T \\ u_n(s) = \psi, \end{gathered} \end{equation} \begin{equation} \label{e4} \begin{gathered} \frac{dv_n(t)}{dt} = f(t,D)E_nv_n(t) \quad 0\leq s \leq t < T \\ v_n(s) = \psi, \end{gathered} \end{equation} \begin{equation} \label{e5} \begin{gathered} \frac{dw_n(t)}{dt} = g(t,D)E_nw_n(t) \quad 0\leq s \leq t < T \\ w_n(s) = \psi. \end{gathered} \end{equation} Problems \eqref{e3}--\eqref{e5}, as we will see, are well-posed due to the action of $E_n$ and their solutions will aid in approximating known solutions of the ill-posed problem \eqref{e1}. \begin{lemma} \label{lem1} For each $t\in [0,T]$, $A(t,D)E_n$ is a bounded operator on $H$ such that $$ \|A(t,D)E_n\|\leq n+\omega, $$ and \eqref{e3} has a unique classical solution $u_n(t)=U_n(t,s)\psi$. The solution operator $U_n(t,s)$ is a bounded operator on $H$ with $$ \|U_n(t,s)\|\leq e^{T(n+\omega)} $$ for all $s,t$ such that $0\leq s\leq t\leq T$. Furthermore, if $\psi$ is replaced by $\psi_n=E_n\psi$ in \eqref{e3}, then $$ U_n(t,s)\psi_n=e^{\int_s^tA(\tau,D)d\tau}\psi_n. $$ \end{lemma} \begin{proof} Fix $t\in [0,T]$. For all $x\in H$, by \cite[Theorem XII.2.6]{d1}, \begin{align*} \|A(t,D)E_nx\|^2 &= \int_0^{\infty}|A(t,\lambda)|^2d(E(\lambda)E_nx,E_nx) \\ &= \int_{e_n}|A(t,\lambda)|^2d(E(\lambda)x,x) \\ &\leq (n+\omega)^2\int_{e_n}d(E(\lambda)x,x) \\ &\leq (n+\omega)^2\int_0^{\infty}d(E(\lambda)x,x) \\ &= (n+\omega)^2\|x\|^2, \end{align*} showing that $A(t,D)E_n$ is a bounded operator on $H$ with $\|A(t,D)E_n\|\leq n+\omega$. Next, let $t_0\in [0,T]$. Since $e_n$ is a bounded subset of $[0,\infty)$, we have that $D^jE_n\in B(H)$ for each $1\leq j\leq k$. Then by continuity of $a_j$ for each $1\leq j\leq k$, we have \begin{align*} \|A(t,D)E_n-A(t_0,D)E_n\| &= \|\sum_{j=1}^k(a_j(t)-a_j(t_0))D^jE_n\| \\ &\leq \sum_{j=1}^k|a_j(t)-a_j(t_0)|\;\|D^jE_n\| \to 0 \quad \text{as} \;\; t\to t_0, \end{align*} showing that $t\mapsto A(t,D)E_n$ is continuous in the uniform operator topology. It follows from Theorem \ref{thm1} that \eqref{e3} has a unique classical solution $u_n(t)=U_n(t,s)\psi$. That $$ \|U_n(t,s)\|\leq e^{T(n+\omega)} $$ follows directly from Theorem \ref{thm2} (i) and the fact that $\|A(t,D)E_n\|\leq n+\omega$ for all $t\in [0,T]$. Next, set $\psi_n=E_n\psi$ and let \eqref{e3'} denote the evolution problem \eqref{e3} with $\psi$ replaced by $\psi_n$; i.e., \begin{equation} \label{e3'} \begin{gathered} \frac{du_n(t)}{dt} = A(t,D)E_nu_n(t) \quad 0\leq s \leq t < T,\\ u_n(s) = \psi_n. \end{gathered} \end{equation} Using the Spectral Theorem it can be shown that $e^{\int_s^tA(\tau,D)d\tau}\psi_n$ is a classical solution of \eqref{e3'}. In particular, using properties of the projection operator $E_n$, we have \begin{align*} \frac{d}{dt}e^{\int_s^tA(\tau,D)d\tau}\psi_n &= A(t,D)e^{\int_s^tA(\tau,D)d\tau}\psi_n \\ &= A(t,D)E_ne^{\int_s^tA(\tau,D)d\tau}\psi_n, \end{align*} and $$ e^{\int_s^sA(\tau,D)d\tau}\psi_n=\psi_n. $$ Therefore, by uniqueness guaranteed by Theorem \ref{thm1}, we have \[ U_n(t,s)\psi_n=e^{\int_s^tA(\tau,D)d\tau}\psi_n. \] \end{proof} \begin{lemma} \label{lem2} For each $t\in [0,T]$, $f(t,D)E_n$ is a bounded operator on $H$ such that $$ \|f(t,D)E_n\|\leq 2n+\omega, $$ and \eqref{e4} has a unique classical solution $v_n(t)=V_n(t,s)\psi$. The solution operator $V_n(t,s)$ is a bounded operator on $H$ with $$ \|V_n(t,s)\|\leq e^{T(2n+\omega)} $$ for all $s,t$ such that $0\leq s\leq t\leq T$. Furthermore, if $\psi$ is replaced by $\psi_n=E_n\psi$ in \eqref{e4}, then $$ V_n(t,s)\psi_n=e^{\int_s^tf(\tau,D)d\tau}\psi_n. $$ \end{lemma} \begin{proof} Using the fact that on $e_n$, $\max_{t\in [0,T]}|f(t,\lambda)|\leq 2n+\omega$, it is easily shown that for each $t\in [0,T]$, $f(t,D)E_n$ is a bounded operator on $H$ such that $\|f(t,D)E_n\|\leq 2n+\omega$. Next, let $t_0\in [0,T]$. Since $E_nH\subseteq \operatorname{Dom}(f(t,D))=\operatorname{Dom}(r(D))$ for all $t\in [0,T]$, we have $r(D)E_n \in B(H)$, and so \begin{align*} &\|f(t,D)E_n-f(t_0,D)E_n\|\\ &= \sup_{x\in H,\,\|x\|\leq 1} \|(f(t,D)-f(t_0,D))E_nx\| \\ &\leq \sup_{x\in H,\, \|x\|\leq 1} \|f(t,D)-f(t_0,D) \|_{Y\to H}\|E_nx\|_Y \\ &= \sup_{x\in H,\, \|x\|\leq 1} \|f(t,D)-f(t_0,D)\|_{Y\to H} (\|E_nx\|+\|r(D)E_nx\|) \\ &\leq \|f(t,D)-f(t_0,D)\|_{Y\to H}(\|E_n\|+\|r(D)E_n\|) \to 0 \quad \text{as } t\to t_0 \end{align*} by the assumption that $t\mapsto f(t,D)$ is continuous in the $B(Y,H)$ norm $\|\cdot \|_{Y\to H}$. Therefore, $t\mapsto f(t,D)E_n$ is continuous in the uniform operator topology. It follows from Theorem \ref{thm1} that \eqref{e4} has a unique classical solution $v_n(t)=V_n(t,s)\psi$. That $$ \|V_n(t,s)\|\leq e^{T(2n+\omega)} $$ follows directly from Theorem \ref{thm2} (i) and the fact that $\|f(t,D)E_n\|\leq 2n+\omega$ for all $t\in [0,T]$. The rest of the proof is similar to that of Lemma \ref{lem1}. \end{proof} \begin{lemma} \label{lem3} For each $t\in [0,T]$, $g(t,D)E_n$ is a bounded operator on $H$ such that $$\|g(t,D)E_n\|\leq n,$$ and \eqref{e5} has a unique classical solution $w_n(t)=W_n(t,s)\psi$. The solution operator $W_n(t,s)$ is a bounded operator on $H$ with $$ \|W_n(t,s)\|\leq e^{Tn} $$ for all $s,t$ such that $0\leq s\leq t\leq T$. Furthermore, if $\psi$ is replaced by $\psi_n=E_n\psi$ in \eqref{e5}, then $$ W_n(t,s)\psi_n=e^{\int_s^tg(\tau,D)d\tau}\psi_n. $$ \end{lemma} \begin{proof} Using the fact that on $e_n$, $\max_{t\in [0,T]}|g(t,\lambda)|\leq n$, it is easily shown that for each $t\in [0,T]$, $g(t,D)E_n$ is a bounded operator on $H$ such that $\|g(t,D)E_n\|\leq n$. Also, by the relation $g(t,D)E_n=-A(t,D)E_n+f(t,D)E_n$, it follows that $t\mapsto g(t,D)E_n$ is continuous in the uniform operator topology. Therefore, by Theorem \ref{thm1}, \eqref{e5} has a unique classical solution $w_n(t)=W_n(t,s)\psi$. That $$ \|W_n(t,s)\|\leq e^{Tn} $$ follows directly from Theorem \ref{thm2} (i) and the fact that $\|g(t,D)E_n\|\leq n$ for all $t\in [0,T]$. The rest of the proof is similar to that of Lemma \ref{lem1}. \end{proof} \begin{corollary} \label{coro1} Let $\psi \in H$ and $\psi_n=E_n\psi$. Then $$ U_n(t,s)W_n(t,s)\psi_n = V_n(t,s)\psi_n = W_n(t,s)U_n(t,s)\psi_n $$ for all $0\leq s\leq t\leq T$. \end{corollary} The corollary above follows immediately from Lemmas \ref{lem1}, \ref{lem2}, and \ref{lem3}, and from properties of the functional calculus for unbounded self-adjoint operators \cite[Corollary XII.2.7]{d1}. We now have all the necessary machinery to prove our approximation theorem. Our strategy will be to extend the solutions $u_n(t)$ of \eqref{e3} with $\psi=\chi_n$, and $v_n(t)$ of \eqref{e4} with $\psi = \chi_n$, into the complex strip $S=\{t+i\eta:t\in [0,T],\;\eta\in \mathbb{R}\}$, and eventually employ Hadamard's Three Lines Theorem (cf. \cite{r1}). To make use of such extensions we will need the following results. Our approach is motivated by work of Agmon and Nirenberg \cite{a1}. \begin{definition}[{\cite[Definition 11.1]{r1}}] \label{def7} \rm Let $\phi(\alpha)$ be a complex function defined in a plane open set $\Omega$. Assume all partial derivatives of $\phi$ exist and are continuous. Define the \emph{Cauchy-Riemann operator} $\bar{\partial}$ as $$ \bar{\partial}=\frac{1}{2} \Big(\frac{\partial}{\partial t}+i\frac{\partial}{\partial \eta}\Big), $$ where $\alpha=t+i\eta$. \end{definition} \begin{theorem}[{\cite[Theorem 11.2]{r1}}] \label{thm5} Suppose $\phi(\alpha)$ is a complex function in $\Omega$ such that all partial derivatives of $\phi$ exist and are continuous. Then $\phi$ is analytic in $\Omega$ if and only if the Cauchy-Riemann equation $$ \bar{\partial}\phi(\alpha)=0 $$ holds for every $\alpha\in \Omega$. \end{theorem} \begin{lemma}[\cite{a1}] \label{lem4} Let $\phi(z)$ be a complex function with $z = x+iy$. Assume $\phi(z)$ is continuous and bounded on $S=\{z=x+iy : x\in [0,T],y\in \mathbb{R}\}$. For $\alpha=t+i\eta \in S$, define $$ \Phi(\alpha)=-\frac{1}{\pi}\int \int_S \phi(z) \Big(\frac{1}{z-\alpha}+\frac{1}{\bar{z}+1+\alpha}\Big)\,dx\,dy. $$ Then $\Phi(\alpha)$ is absolutely convergent, $\bar{\partial}\Phi(\alpha)=\phi(\alpha)$, and there exists a constant $K$ such that $$ \int_{-\infty}^{\infty}\big|\frac{1}{z-\alpha} +\frac{1}{\bar{z}+1+\alpha}\big|dy \leq K\Big(1+{\rm{log}}\frac{1}{|x-t|}\Big) $$ if $x\neq t$. \end{lemma} We now state and prove our approximation theorem. \begin{theorem} \label{thm6} Let $D$ be a positive self-adjoint operator acting on $H$ and let $A(t,D)$ be defined as above for all $t\in [0,T]$. Let $f$ satisfy Condition $(\mathcal{A},p)$, and assume that there exists a constant $\gamma$, independent of $\beta$, $\omega$, and $t$ such that $g(t,\lambda)\leq \gamma$, for all $(t,\lambda)\in [0,T]\times [0,\infty)$. Then if $u(t)$ and $v(t)$ are classical solutions of $\eqref{e1}$ and $\eqref{e2}$ respectively, and if there exist constants $M',M'',M'''\geq 0$ such that $\|u(T)\|\leq M'$, $\|p(D)\chi\|\leq M''$, and $\|p(D)A(t,D)u(T)\|\leq M'''$ for all $t\in [0,T]$, then there exist constants $C$ and $M$ independent of $\beta$ such that for $0\leq t