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SOLUTION TO A SYSTEM OF EQUATIONS MODELLING
COMPRESSIBLE FLUID FLOW WITH CAPILLARY STRESS

EFFECTS

DIANE L. DENNY

Abstract. We study the initial-value problem for a system of nonlinear equa-

tions that models the flow of a compressible fluid with capillary stress effects.

The system includes hyperbolic equations for the density and for the velocity,
and an algebraic equation (the equation of state) for the pressure. We prove

the existence of a unique classical solution to an initial-value problem for this

system of equations under periodic boundary conditions. The key to the proof
is an a priori estimate for the density and velocity in a high Sobolev norm.

1. Introduction

We begin by considering a system of equations which arises from a model of
the multi-dimensional flow of a compressible fluid with capillary stresses. When
viscosity is neglected, the model consists of the following equations:

Dρ

Dt
= −ρ∇ · v

Dv
Dt

= −ρ−1∇p + c∇∆ρ

where ρ is the density, p is the pressure, and v is the velocity. Here c is a coef-
ficient of capillarity which is a small, positive constant. The material derivative
D/Dt = ∂/∂t +v · ∇. The term c∇∆ρ is due to capillary stresses, from the theory
of Korteweg-type materials described by Dunn and Serrin [5]. The fluid’s thermo-
dynamic state is determined by the density ρ, and the pressure p is then determined
from the density by an equation of state p = p̂(ρ). A derivation of the model’s equa-
tions appears in [4]. Anderson, McFadden and Wheeler [1] have reviewed related
theories, as well as applications to diffuse-interface modelling. Other researchers
have proven the existence of solutions to other versions of this model which include
viscosity and an evolution equation for temperature (see, e.g., [2, 8, 9, 10]). To our
knowledge, this system of equations for inviscid fluid flow with capillary stresses
has not been previously studied.
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With the change of variables
u = ρv,

the system of equations becomes

∂ρ

∂t
= −∇ · u (1.1)

∂u
∂t

= −ρ−1u · ∇u + ρ−2(u · ∇ρ)u

− ρ−1(∇ · u)u−∇p + cρ∇∆ρ
(1.2)

Let ρ̄ = ρ−|Ω|−1
∫
Ω

ρdx. We assume that ρ̄ is small. Since the capillary coefficient
c is very small, we assume that cρ̄ is neglibly small, and we will approximate the
capillary stress term as follows:

cρ∇∆ρ = c
(
ρ̄ + |Ω|−1

∫
Ω

ρdx
)
∇∆ρ ≈ c

(
|Ω|−1

∫
Ω

ρdx
)
∇∆ρ

Then using the equation of state for the pressure, we make the following approxi-
mation to equation (1.2):

∂u
∂t

= −ρ−1u · ∇u + ρ−2(u · ∇ρ)u− ρ−1(∇ · u)u− p′(ρ)∇ρ

+c
(
|Ω|−1

∫
Ω

ρdx
)
∇∆ρ (1.3)

The purpose of this paper is to prove the existence of a unique classical solution
u, ρ to the initial-value problem for equations (1.1), (1.3), for 0 ≤ t ≤ T , using
periodic boundary conditions. Hence, we choose for our domain the N-dimensional
torus TN , where N = 2 or N = 3. We will show that a unique solution exists,
provided that T‖Du0‖s and T‖∇ρ0‖s+1 are sufficiently small, where u0, ρ0 is the
given initial data.

2. Existence theorem

In this section, we prove the existence of a unique classical solution to the initial-
value problem for equations (1.1), (1.3) with periodic boundary conditions.

We will be using the Sobolev space Hs(Ω) (where s ≥ 0 is an integer) of real-
valued functions in L2(Ω) whose distribution derivatives up to order s are in L2(Ω),
with norm given by ‖f‖2s =

∑
|α|≤s

∫
Ω
|Dαf |2dx. We use the standard multi-index

notation. We will be using the standard function spaces L∞([0, T ],Hs(Ω)) and
C([0, T ],Hs(Ω)). L∞([0, T ],Hs(Ω)) is the space of bounded measurable functions
from [0, T ] into Hs(Ω), with the norm ‖f‖2s,T = ess sup0≤t≤T ‖f(t)‖2s.

The set C([0, T ],Hs(Ω)) is the space of continuous functions from [0, T ] into
Hs(Ω). We will also be using the notation |f |L∞,T = ess sup0≤t≤T |f(t)|L∞(Ω).

Theorem 2.1. Let ρ0(x) = ρ(x, 0) ∈ Hs+2(Ω), u0(x) = u(x, 0) ∈ Hs+1(Ω) be
the given initial data, with s > N

2 + 1, and Ω = TN , with N = 2 or N = 3. Let
max {|ρ0|L∞ , |u0|L∞} ≤ L0, for some positive constant L0. Let p = p̂(ρ) be a given
equation of state for the pressure p as a function of ρ. We assume that p is a
sufficiently smooth function of ρ for any ρ ∈ G, where G ⊂ R is an open set. We
assume that in G, ρ is positive and p′(ρ) is positive. We fix convex, bounded open
sets G0 and G1 such that Ḡ0 ⊂ G1 and Ḡ1 ⊂ G, and we require that the initial data
satisfy ρ0(x) ∈ G0, for all x ∈ Ω. Then the initial-value problem for (1.1), (1.3)
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with Ω = TN has a unique, classical solution ρ, u for 0 ≤ t ≤ T , where ρ ∈ Ḡ1,
and

ρ ∈ C([0, T ], C3(Ω)) ∩ L∞([0, T ],Hs+2(Ω))

u ∈ C([0, T ], C2(Ω)) ∩ L∞([0, T ],Hs+1(Ω))

provided T‖Du0‖s and T‖∇ρ0‖s+1 are sufficiently small.

Proof. The proof of the theorem is based on the method of successive approxima-
tions, in which an iteration scheme, based on solving a linearized version of the
equations, is designed and convergence of the sequence of approximating solutions
is sought. Convergence of the sequence is proven in two steps: first, we prove the
uniform boundedness of the approximating sequence {ρk}, {uk}, in a high Sobolev
norm, and then we prove contraction of the sequence in a low Sobolev norm. Stan-
dard compactness arguments complete the proof. �

We will construct the solution of the initial-value problem for (1.1), (1.3) with
Ω = TN through the following iteration scheme. Set ρ0(x, t) = ρ0(x), and u0(x, t) =
u0(x). For k = 0, 1, 2, . . . . construct ρk+1, uk+1 from the previous iterates ρk, uk

by solving

∂ρk+1

∂t
= −∇ · uk+1 (2.1)

∂uk+1

∂t
= −(ρk)−1uk · ∇uk+1 + (ρk)−2uk · ∇ρk+1uk − (ρk)−1(∇ · uk+1)uk

− p′(ρk)∇ρk+1 + c
( 1
|Ω|

∫
Ω

ρkdx
)
∇∆ρk+1

(2.2)

with initial data ρk+1(x,0) = ρ0(x), uk+1(x,0) = u0(x).
Existence of a solution to equations (2.1), (2.2) for fixed k is proven in Appendix

A. The a priori estimates used in the proof are proven in Appendix B. We proceed
now to prove convergence of the iterates as k → ∞ to a unique, classical solution
of (1.1), (1.3).

Since ρk(x, 0) = ρ0 ∈ G0, where Ḡ0 ⊂ G1 and Ḡ1 ⊂ G, we fix δ = δ̂(G1) so that
if |ρ− ρ0|L∞,T ≤ δ, then ρ ∈ Ḡ1. And we fix c1 = ĉ1(G1) > 0 and c2 = ĉ2(G1) > 0,
where c1 < 1, so that c1 < ρ < c2 and c1 < p′(ρ) < c2 for ρ ∈ Ḡ1.

Next, we proceed with the proof of uniform boundedness of the approximating
sequence in a high Sobolev norm.

Proposition 2.2. Assume that the hypotheses of Theorem 2.1 hold. Let δ, R
be given positive constants. Then there are constants L1, L2, such that for k =
0, 1, 2, 3... the following estimates hold

(a) ‖∇ρk‖s,T ≤ L1, ‖∆ρk‖s,T ≤ L1, ‖Duk‖s,T ≤ L1;
(b) |ρk − ρ0|L∞,T ≤ δ, |uk − u0|L∞,T ≤ R;
(c) ‖ρk‖0,T ≤ L1, ‖uk‖0,T ≤ L1;
(d) ‖∂ρk

∂t ‖s,T ≤ L2, ‖∂uk

∂t ‖s−1,T ≤ L2

provided T‖Du0‖s and T‖∇ρ0‖s+1 are sufficiently small.

Proof. The proof is by induction on k, of which we show only the inductive step. We
will derive estimates for ρk+1 and uk+1, and then use these estimates to prescribe
L1 and L2 a priori, independent of k, so that if ρk and uk satisfy (a)–(d), then ρk+1

and uk+1 also satisfy (a)–(d).
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From the statement of the theorem, we have max {|ρ0|L∞ , |u0|L∞} ≤ L0, for
some positive constant L0. By the induction hypothesis, we have |uk−u0|L∞,T ≤ R.
It follows that |uk|L∞,T ≤ |u0|L∞ + R ≤ L0 + R < c3, for some constant c3 > 1
which depends on L0 and R. Then applying Lemma B.2 from Appendix B to
equations (2.1)–(2.2), where we let F = 0 and Qkg = 0 in equation (B.2) of Lemma
B.2, yields the estimate

‖Duk+1‖2s + ‖∇ρk+1‖2s + ‖∆ρk+1‖2s
≤ C4(1 + C4K4TeC4K4T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

(2.3)

where C4 = Ĉ4(s, c, c1, c2, c3), where s > N
2 + 1 with N = 2 or N = 3, so that

s ≥ 3, and where from Lemma B.2

K4 = max
{

1, ‖(ρk)−1‖2s+1,T ‖uk‖2s+1,T , ‖p′(ρk)‖2s+1,T , ‖(ρk)−2‖2s+1,T ‖uk‖4s+1,T ,

‖(ρk)−1
t ‖22,T ‖uk‖22,T , ‖(ρk)−1‖22,T ‖(uk)t‖22,T , ‖(ρk)t‖2,T , ‖(p′(ρk))t‖2,T

}
We estimate K4 ≤ C6, where the constant C6 = Ĉ6(c1, L1, L2), by the induction
hypothesis. Then after using this estimate for K4 in equation (2.3), we obtain

‖Duk+1‖2s + ‖∇ρk+1‖2s + ‖∆ρk+1‖2s
≤ C4(1 + C4C6TeC4C6T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

= (C4 + C7TeC7T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

(2.4)

where C7 = Ĉ7(s, c, c1, c2, c3, L1, L2). Recall that C4 does not depend on L1 or L2.
Therefore, it follows that

‖Duk+1‖2s,T + ‖∇ρk+1‖2s,T + ‖∆ρk+1‖2s,T ≤ L2
1

provided that we choose L1 large enough so that

L2
1

2
≥ C4(‖Du0‖2s + ‖∇ρ0‖2s+1), (2.5)

and provided that T‖Du0‖s and T‖∇ρ0‖s+1 are sufficiently small so that

C7TeC7T (‖Du0‖2s + ‖∇ρ0‖2s+1) ≤
L2

1

2
. (2.6)

Thus, either the time interval 0 ≤ t ≤ T is chosen to be sufficiently small, or the
norms of the initial gradients, ‖Du0‖s and ‖∇ρ0‖s+1, are sufficiently small, or both
are small. This completes the proof of part (a).

Next, from (2.1) for ρk+1, we have

|ρk+1 − ρ0| ≤
∫ t

0

|ρk+1
t |L∞dτ ≤ C

∫ T

0

‖∇ · uk+1‖sdt

≤ CT‖Duk+1‖s,T

≤ CT
(
(C4 + C7TeC7T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

)1/2

(2.7)
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Similarly, from equation (2.2), we obtain

|uk+1 − u0| ≤
∫ t

0

|uk+1
t |L∞dτ

≤ C

∫ T

0

‖(ρk)−1‖s−1‖uk‖s−1‖Duk+1‖s−1dτ

+ C

∫ T

0

‖(ρk)−2‖s−1‖uk‖2s−1‖∇ρk+1‖s−1dτ

+ C

∫ T

0

‖(ρk)−1‖s−1‖uk‖s−1‖∇ · uk+1‖s−1dτ

+ C

∫ T

0

‖p′(ρk)‖s−1‖∇ρk+1‖s−1dτ

+ C

∫ T

0

‖c
( 1
|Ω|

∫
Ω

ρkdx
)
∇∆ρk+1‖s−1dτ

≤ C8T (‖Duk+1‖s,T + ‖∇ρk+1‖s,T + ‖∆ρk+1‖s,T )

≤ 3C8T
(
(C4 + C7TeC7T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

)1/2

(2.8)

where C8 = Ĉ8(s, c, c1, c2, L1). It follows from (2.7), (2.8) that

|ρk+1 − ρ0|L∞,T ≤ δ,

|uk+1 − u0|L∞,T ≤ R

provided that T‖Du0‖s and T‖∇ρ0‖s+1 are small enough to satisfy

CT
(
(C4 + C7TeC7T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

)1/2

≤ δ (2.9)

and provided that T‖Du0‖s and T‖∇ρ0‖s+1 are small enough to satisfy

3C8T
(
(C4 + C7TeC7T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

)1/2

≤ R (2.10)

This completes the proof of part (b).
Using the fact that max {|ρ0|L∞ , |u0|L∞} ≤ L0, and the result just obtained

for part (b), it follows that |ρk+1|L∞,T ≤ |ρ0|L∞ + δ ≤ L0 + δ and |uk+1|L∞,T ≤
|u0|L∞ + R ≤ L0 + R. Therefore, we have

‖ρk+1‖0,T ≤ |Ω|1/2|ρk+1|L∞,T ≤ |Ω|1/2(L0 + δ) ≤ L1

and
‖uk+1‖0,T ≤ |Ω|1/2|uk+1|L∞,T ≤ |Ω|1/2(L0 + R) ≤ L1

provided that we choose L1 large enough so that

L1 ≥ |Ω|1/2(L0 + δ) (2.11)

and we choose L1 large enough so that

L1 ≥ |Ω|1/2(L0 + R) (2.12)

This completes the proof of part (c). Since ‖∇ρk‖2s+1,T ≤ C‖∆ρk‖2s,T when
Ω = TN (a proof appears in [3]), it follows from parts (a) and (c) that ρk+1 ∈
L∞([0, T ],Hs+2).
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Finally, using equations (2.1), (2.2), and using the results just obtained in parts
(a) and (c), we can directly estimate

‖ρk+1
t ‖s,T ≤ C9, ‖uk+1

t ‖s−1,T ≤ C10

where C9 = Ĉ9(s, L1) and C10 = Ĉ10(s, c, c1, L1). Therefore, ‖ρk+1
t ‖s,T ≤ L2 and

‖uk+1
t ‖s−1,T ≤ L2 provided we choose L2 large enough so that

L2 ≥ C9, L2 ≥ C10 (2.13)

This completes the proof of part (d).
Summarizing, if we fix L1, L2, a priori and independent of k, so that (2.5), (2.6),

(2.9), (2.10), (2.11), (2.12), (2.13) are satisfied, then ρk and uk satisfy (a)–(d) for
all k ≥ 0. This completes the proof. �

Next, we give the proof of contraction in low norm.

Proposition 2.3. Assume that the hypotheses of Theorem 2.1 hold. Then it follows
that

∞∑
k=1

(
‖ρk+1 − ρk‖23,T + ‖uk+1 − uk‖22,T

)
< ∞

Proof. Subtracting (2.1), (2.2) for ρk, uk from (2.1), (2.2) for ρk+1, uk+1 yields

∂(ρk+1 − ρk)
∂t

= −∇ · (uk+1 − uk), (2.14)

∂(uk+1 − uk)
∂t

= −(ρk)−1uk · ∇(uk+1 − uk) + (ρk)−2uk · ∇(ρk+1 − ρk)uk

− (ρk)−1(∇ · (uk+1 − uk))uk − p′(ρk)∇(ρk+1 − ρk)

+ c
(
|Ω|−1

∫
Ω

ρkdx
)
∇∆(ρk+1 − ρk) + F

(2.15)

where (ρk+1 − ρk)(x, 0) = 0, and (uk+1 − uk)(x, 0) = 0, and where

F = −((ρk)−1uk − (ρk−1)−1uk−1) · ∇uk

+ (((ρk)−2uk − (ρk−1)−2uk−1) · ∇ρk)uk + (ρk−1)−2(uk−1 · ∇ρk)(uk − uk−1)

− (∇ · uk)((ρk)−1uk − (ρk−1)−1uk−1)− (p′(ρk)− p′(ρk−1))∇ρk

+ c
(
|Ω|−1

∫
Ω

(ρk − ρk−1)dx
)
∇∆ρk

From Lemma B.2 in Appendix B, using r = 1, where we let Qkg = 0 in equation
(B.2) of Lemma B.2, we obtain the following inequality

‖D(uk+1−uk)‖21 +‖∇(ρk+1−ρk)‖21 +‖∆(ρk+1−ρk)‖21 ≤ C11

∫ t

0

‖F‖22dτ (2.16)

where C11 = Ĉ11(c, c1, c2, c3, L1, L2, T ), and where we have used the results from
Proposition 2.2.

From Lemma B.2 in Appendix B, where we let Qkg = 0 in equation (B.2) of
Lemma B.2, and using the results from Proposition 2.2, we obtain the L2 estimate

‖uk+1 − uk‖20 + ‖ρk+1 − ρk‖20 + ‖∇(ρk+1 − ρk)‖20

≤ C12

∫ t

0

(‖D(uk+1 − uk)‖20 + ‖F‖20)dτ
(2.17)
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where C12 = Ĉ12(c, c1, c2, c3, L1, L2, T ). After adding (2.16), (2.17), and putting
additional terms on the right-hand side, we obtain

‖uk+1 − uk‖20 + ‖ρk+1 − ρk‖20 + ‖∇(ρk+1 − ρk)‖20
+ ‖D(uk+1 − uk)‖21 + ‖∇(ρk+1 − ρk)‖21 + ‖∆(ρk+1 − ρk)‖21

≤ C13

∫ t

0

(‖uk+1 − uk‖20 + ‖ρk+1 − ρk‖20 + ‖∇(ρk+1 − ρk)‖20)dτ

+ C13

∫ t

0

(‖D(uk+1 − uk)‖21 + ‖∇(ρk+1 − ρk)‖21)dτ

+ C13

∫ t

0

(‖∆(ρk+1 − ρk)‖21 + ‖F‖22)dτ

(2.18)

where C13 = Ĉ13(c, c1, c2, c3, L1, L2, T ). From the definition of F, and using Propo-
sition 2.2, we obtain the estimate

‖F‖22 ≤ C14(‖uk − uk−1‖22 + ‖ρk − ρk−1‖22) (2.19)

where C14 = Ĉ14(c, c1, L1). Here, we used the fact that s > N
2 + 1, so that s ≥ 3,

and we used the Sobolev inequality |f |L∞ ≤ C‖f‖s0 (see, e.g., [3], [6]), where
s0 = [N

2 ] + 1 = 2, when we estimated the term

‖c
(
|Ω|−1

∫
Ω

(ρk − ρk−1)dx
)
∇∆ρk‖22 ≤ c|ρk − ρk−1|2L∞‖∇∆ρk‖22 ≤ CL2

1‖ρk − ρk−1‖22

in the definition of F. Applying Gronwall’s inequality to (2.18), and using (2.19),
yields

‖uk+1 − uk‖20 + ‖ρk+1 − ρk‖20 + ‖∇(ρk+1 − ρk)‖20
+ ‖D(uk+1 − uk)‖21 + ‖∇(ρk+1 − ρk)‖21 + ‖∆(ρk+1 − ρk)‖21

≤ C15

∫ t

0

‖F‖22dτ

≤ C16

∫ t

0

(‖ρk − ρk−1‖22 + ‖uk − uk−1‖22)dτ

(2.20)

where C15 = Ĉ15(c, c1, c2, c3, L1, L2, T ), C16 = Ĉ16(c, c1, c2, c3, L1, L2, T ). It follows
that

‖ρk+1 − ρk‖23 + ‖uk+1 − uk‖22 ≤ C17

∫ t

0

(‖ρk − ρk−1‖23 + ‖uk − uk−1‖22)dτ (2.21)

where C17 = Ĉ17(c, c1, c2, c3, L1, L2, T ). Here we used the fact that ‖∇(ρk+1 −
ρk)‖22 ≤ C‖∆(ρk+1 − ρk)‖21 when |Ω| = TN (a proof appears in [3]).

Repeatedly applying (2.21) yields

‖ρk+1 − ρk‖23,T + ‖uk+1 − uk‖22,T ≤
(C17T )k

k!
(‖ρ1 − ρ0‖23,T + ‖u1 − u0‖22,T )

It follows that
∞∑

k=1

(
‖ρk+1 − ρk‖23,T + ‖uk+1 − uk‖22,T

)
< ∞

This completes the proof. �
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Using Propositions 2.2 and 2.3, we now complete the proof of Theorem 2.1 by
using a standard argument (see, for example, [6], [11]). From Proposition 2.3, we
conclude that there exist ρ ∈ C([0, T ],H3(Ω)), and u ∈ C([0, T ],H2(Ω)) so that
‖ρk−ρ‖3,T → 0, and ‖uk−u‖2,T → 0 as k →∞. Using the standard interpolation
inequalities (see, e.g., [6])

‖ρk+1 − ρk‖s′+2 ≤ C‖ρk+1 − ρk‖β
3‖ρk+1 − ρk‖1−β

s+2

‖uk+1 − uk‖s′+1 ≤ C‖uk+1 − uk‖β
2‖uk+1 − uk‖1−β

s+1

with β = s−s′

s−1 , and Propositions 2.2 and 2.3, we can conclude that ‖ρk−ρ‖s′+2,T →
0, and ‖uk − u‖s′+1,T → 0 as k → ∞ for any s′ < s. For s′ > N

2 + 1, Sobolev’s
lemma implies that ρk → ρ in C([0, T ], C3(Ω)), and uk → u in C([0, T ], C2(Ω)).
From the linear system of equations (2.1), (2.2) it follows that ‖ρk

t−ρt‖s′,T → 0, and
‖uk

t − ut‖s′−1,T → 0 as k → ∞, so that ρk
t → ρt ∈ C([0, T ], C1(Ω)), and uk

t → ut

in C([0, T ], C(Ω)), and ρ, u is a classical solution of the system of equations (1.1),
(1.3).

The additional facts that ρ ∈ L∞([0, T ],Hs+2(Ω)), u ∈ L∞([0, T ],Hs+1(Ω)),
can be deduced from the uniform boundedness of {ρk} in L∞([0, T ],Hs+2(Ω)) and
of {uk} in L∞([0, T ],Hs+1(Ω)) from Proposition 2.2, and from the weak-* com-
pactness of bounded sets in L∞([0, T ],Hr(Ω)), i.e., by Alaoglu’s theorem (see, for
example, [6], [11]). The uniqueness of the solution follows by a standard proof,
using estimates similar to the proof of Proposition 2.3.

Appendix A. Existence for the linear problem

We now present a proof of the existence of a classical solution ρ, u to the linear
equations (2.1), (2.2):

∂ρ

∂t
= −∇ · u (A.1)

∂u
∂t

= −a−1
1 v · ∇u− a−1

1 (∇ · u)v + a−2
1 (v · ∇ρ)v − a2∇ρ

+ c
(
|Ω|−1

∫
Ω

a1dx
)
∇∆ρ

(A.2)

Lemma A.1. Given

v ∈ C([0, T ],H0(Ω)) ∩ L∞([0, T ],Hs+1(Ω)),

a1 ∈ C([0, T ],H0(Ω)) ∩ L∞([0, T ],Hs+2(Ω)),

a2 ∈ C([0, T ],H0(Ω)) ∩ L∞([0, T ],Hs+2(Ω)),

vt ∈ L∞([0, T ],Hs−1(Ω)),

(a1)t, (a2)t ∈ L∞([0, T ],Hs(Ω)),

where s > N
2 +1, Ω = TN , with N = 2 or N = 3, and where 0 < c1 < a1(x,t) < c2,

0 < c1 < a2(x,t) < c2, and |v(x, t)| < c3 for some constants c1, c2, c3, with c1 < 1,
c3 > 1 and 0 ≤ t ≤ T , there is a classical solution ρ, u of the initial value problem
for (A.1), (A.2), with initial data ρ(x, 0) = ρ0(x) ∈ Hs+2(Ω), u(x, 0) = u0(x) ∈
Hs+1(Ω), and

ρ ∈ C([0, T ], C3(Ω)) ∩ L∞([0, T ],Hs+2(Ω)),

u ∈ C([0, T ], C2(Ω)) ∩ L∞([0, T ],Hs+1(Ω)).
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Proof. Since we are solving the initial-value problem under periodic boundary con-
ditions, we will use Galerkin’s method, with the standard orthonormal basis in L2

of trigonometric functions {wi}∞i=1, to construct the solution. Here wi has the form
cos(2πni · x) or sin(2πni · x) with ni ∈ ZN

+ . The proof by Galerkin’s method is a
standard one, and is included here for the sake of completeness.

We will write the system of equations (A.1), (A.2) equivalently as follows:

∂ρ

∂t
= −∇ · u, (A.3)

∂ui

∂t
= −a−1

1 v · ∇ui − a−1
1 (∇ · u)vi + a−2

1 (v · ∇ρ)vi

− a2
∂ρ

∂xi
+ c

(
|Ω|−1

∫
Ω

a1dx
) ∂

∂xi
(∆ρ),

(A.4)

where i = 1, . . . , N . Here ui is the ith component of the vector u and vi is the ith
component of the vector v.

Let Pk denote the orthogonal projection of L2 onto the finite dimensional sub-
space Vk = span{w1, . . . , wk}. The finite-dimensional approximation ρk ∈ Vk and
uk

i ∈ Vk, where uk
i is the ith component of uk, is the solution of the equations

∂ρk

∂t
= −∇ · uk, (A.5)

∂uk
i

∂t
= −Pk(a−1

1 v · ∇uk
i )− Pk(a−1

1 (∇ · uk)vi) + Pk(a−2
1 (v · ∇ρk)vi)

− Pk

(
a2

∂ρk

∂xi

)
+ Pk

(
c
(
|Ω|−1

∫
Ω

a1dx
) ∂

∂xi
(∆ρk)

)
,

(A.6)

with ρk(x,0) = Pkρ(x, 0), and uk
i (x,0) = Pkui(x, 0), for i = 1, . . . , N .

Because ρk ∈ Vk and uk
i ∈ Vk, we can write

ρk =
k∑

j=1

αj(t)wj , (A.7)

uk
i =

k∑
j=1

γi,j(t)wj . (A.8)

After substituting (A.7), (A.8) into (A.5) and (A.6) we take the L2 inner product
of (A.5) and (A.6) with wl for l = 1, . . . , k, which transforms (A.5) and (A.6) into
the following equivalent linear system of ordinary differential equations for the
coefficients αl(t) and γi,l(t), where i = 1, . . . , N , and l = 1, . . . , k:

dαl

dt
= −

k∑
j=1

(
N∑

m=1

γm,j(t)
∂wj

∂xm
, wl),

dγi,l

dt
= −

k∑
j=1

(
(a−1

1 v · ∇wj , wl)γi,j(t)− (a−1
1 (

N∑
m=1

γm,j(t)
∂wj

∂xm
)vi, wl)

)

+
k∑

j=1

(
(a−2

1 (v · ∇wj)vi, wl)αj(t)− (a2
∂wj

∂xi
, wl)αj(t)

)
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+
k∑

j=1

((
c
(
|Ω|−1

∫
Ω

a1dx
) ∂

∂xi
(∆wj), wl

)
)αj(t)

)
.

Also αl(0) = (ρ(x, 0), wl), and γi,l(0) = (ui(x, 0), wl).
The coefficients in this system of equations are continuous, and it has a unique

solution {αl(t)}k
l=1 ∈ C1([0, T ]) and {γi,l(t)}k

l=1 ∈ C1([0, T ]), for i = 1, . . . , N . It
follows that ρk ∈ C1([0, T ],Hr(Ω)) and uk

i ∈ C1([0, T ],Hr(Ω)) for any r ≥ 0.
Next, we obtain estimates for ρk, uk in high Sobolev norm. Let Qk = I − Pk,

where I is the identity operator. Then we write (A.5), (A.6) equivalently as follows:

∂ρk

∂t
= −∇ · uk (A.9)

∂uk

∂t
= −a−1

1 v · ∇uk − a−1
1 (∇ · uk)v + a−2

1 (v · ∇ρk)v − a2∇ρk

+ c
(
|Ω|−1

∫
Ω

a1dx
)
∇∆ρk −Qkg

(A.10)

where

Qkg = −Qk(a−1
1 v · ∇uk)−Qk(a−1

1 (∇ · uk)v) + Qk(a−2
1 (v · ∇ρk)v)−Qk(a2∇ρk)

Note that by the orthogonality of the projections Pk and Qk, we have (Qkg,uk) = 0,
(∇ · (Qkg)α,∇ · uk

α) = 0, and (∇ × (Qkg)α,∇ × uk
α) = 0 for |α| ≥ 0. Also, note

that Qk(c
(
|Ω|−1

∫
Ω

a1dx
)
∇∆ρk) = 0. Then applying Lemma B.2 in Appendix B

to equations (A.9), (A.10) yields the following estimates

‖Duk‖2s +‖∇ρk‖2s +‖∆ρk‖2s ≤ C4(1+C4K4TeC4K4T )(‖Du0‖2s +‖∇ρ0‖2s+1) (A.11)

and
‖uk‖20 + ‖ρk‖20 + ‖∇ρk‖20
≤ C5(1 + C5K4TeC5K4T )(‖u0‖20 + ‖ρ0‖20 + ‖∇ρ0‖20)

+ C5(1 + C5K4TeC5K4T )
∫ t

0

‖Duk‖20dτ

≤ C5(1 + C5K4TeC5K4T )(‖u0‖20 + ‖ρ0‖20 + ‖∇ρ0‖20)
+ C5(1 + C5K4TeC5K4T )TC4(1 + C4K4TeC4K4T )(‖Du0‖2s + ‖∇ρ0‖2s+1)

(A.12)
where the constants C4, C5, K4 are defined in Lemma B.2. Here, we used the fact
that ‖Pkρ0‖r ≤ ‖ρ0‖r and ‖Pku0‖r ≤ ‖u0‖r. And we used estimate (A.11) in the
right-hand side of estimate (A.12).

From (A.11), (A.12) it follows that {ρk} is bounded in L∞([0, T ],Hs+2(Ω)) and
{uk} is bounded in L∞([0, T ],Hs+1(Ω)). Here we used the fact that ‖∇ρk‖2s+1,T ≤
C‖∆ρk‖2s,T when Ω = TN (a proof appears in [3]). From equations (A.9), (A.10),
it follows that ‖ρk

t ‖0 and ‖uk
t ‖0 are bounded for all k ≥ 1. Here we used the fact

that ‖Qkg‖0 ≤ ‖g‖0. It follows that {ρk} and {uk} are bounded and equicontinu-
ous in C([0, T ],H0(Ω)). Using the Arzela-Ascoli theorem together with the weak-*
compactness of bounded sets in L∞([0, T ],Hr(Ω)), it follows that there exist sub-
sequences ρkj of ρk and ukj of uk, and there exist functions ρ ∈ C([0, T ],H0(Ω))∩
L∞([0, T ],Hs+2(Ω)), u ∈ C([0, T ],H0(Ω)) ∩ L∞([0, T ],Hs+1(Ω)), such that as
j →∞,

ρkj → ρ strongly in C([0, T ],H0(Ω)),
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ρkj → ρ weak-* in L∞([0, T ],Hs+2(Ω)),

ukj → u strongly in C([0, T ],H0(Ω)),

ukj → u weak-* in L∞([0, T ],Hs+1(Ω))

Using the standard interpolation inequalities (see, e.g., [6]),

‖ukj+1 − ukj‖s′+1 ≤ C‖ukj+1 − ukj‖θ1
0 ‖ukj+1 − ukj‖1−θ1

s+1

‖ρkj+1 − ρkj‖s′+2 ≤ C‖ρkj+1 − ρkj‖θ2
0 ‖ρkj+1 − ρkj‖1−θ2

s+2

with θ1 = s−s′

s+1 , θ2 = s−s′

s+2 , it follows that ρkj → ρ in C([0, T ],Hs′+2(Ω)) and
ukj → u in C([0, T ],Hs′+1(Ω)) for any s′ < s.

From applying the Lebesgue dominated convergence theorem to equations (A.9),
(A.10) and using a standard argument (see, for example, Embid [6] and Majda [11]),
it follows that ρ, u is a classical solution of (A.1), (A.2). �

Appendix B. A priori estimates

To obtain a priori estimates, we will be using the Sobolev space Hs(Ω) (where
s ≥ 0 is an integer) of real-valued functions in L2(Ω) whose distribution derivatives
up to order s are in L2(Ω), with norm given by ‖f‖2s =

∑
|α|≤s

∫
Ω
|Dαf |2dx. We use

the standard multi-index notation. For convenience, we will be denoting derivatives
by fα = Dαf . And we will be letting Df denote the gradient of f . In addition, we
will be denoting the L2 inner product by (f, g) =

∫
Ω

f · g dx. We will also be using
the notation |f |L∞,T = ess sup0≤t≤T |f(t)|L∞(Ω). The following lemmas will yield
the a priori estimates needed for the proof of Theorem 2.1.

Lemma B.1 (Low-Norm Commutator Estimate). If Df ∈ Hr1(Ω), g ∈ Hr−1(Ω),
where r1 = max{r − 1, s0}, s0 = [N

2 ] + 1, then for any r ≥ 1, f , g satisfy the
estimate ‖Dα(fg) − fDαg‖0 ≤ C‖Df‖r1‖g‖r−1, where r = |α|, and the constant
C depends on r, Ω.

The proof of the above lemma is based on standard Sobolev calculus inequalities
and appears in [3]. The next lemma provides the key a priori estimate for the
existence proof.

Lemma B.2. Let a1, a2, v, F be sufficiently smooth given functions in the system
of equations

∂ρ

∂t
= −∇ · u (B.1)

∂u
∂t

= −a−1
1 v · ∇u− a−1

1 (∇ · u)v + a−2
1 (v · ∇ρ)v − a2∇ρ

+ c
(
|Ω|−1

∫
Ω

a1dx
)
∇∆ρ + F−Qkg

(B.2)

where Qk is the orthogonal projection operator from Lemma A.1 in Appendix A and

Qkg = −Qk(a−1
1 v ·∇u)−Qk(a−1

1 (∇·u)v)+Qk(a−2
1 (v ·∇ρ)v)−Qk(a2∇ρ) (B.3)

and where (Qkg,u) = 0, (∇ · (Qkg)α,∇ · uα) = 0, (∇× (Qkg)α,∇× uα) = 0 for
|α| ≥ 0. And 0 < c1 < a1(x,t) < c2, 0 < c1 < a2(x,t) < c2, and |v(x, t)| < c3 for
some constants c1, c2, c3, where c1 < 1, c3 > 1. Here, 0 ≤ t ≤ T , and the domain
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Ω = TN . Let ρ0(x) = ρ(x, 0), u0(x) = u(x, 0) be the given initial data, which is
assumed to be sufficiently smooth.

Then ρ, u satisfy the following two inequalities

‖Du‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r ≤ C4(1 + C4K4TeC4K4T )(‖Du0‖2r + ‖∇ρ0‖2r+1)

+ C4(1 + C4K4TeC4K4T )
∫ t

0

‖F‖2r+1dτ

and

‖u‖20 + ‖ρ‖20 + ‖∇ρ‖20 ≤ C5(1 + C5K4TeC5K4T )(‖u0‖20 + ‖ρ0‖20 + ‖∇ρ0‖20)

+ C5(1 + C5K4TeC5K4T )
∫ t

0

(‖Du‖20 + ‖F‖20)dτ ,

where C4 = Ĉ4(r, c, c1, c2, c3), C5 = Ĉ5(c, c1, c2), and r ≥ 1, and where

K4 = max
{

1, ‖a−1
1 ‖2q+1,T ‖v‖2q+1,T , ‖a2‖2q+1,T , ‖a−2

1 ‖2q+1,T ‖v‖4q+1,T ,

‖(a−1
1 )t‖22,T ‖v‖22,T , ‖a−1

1 ‖22,T ‖vt‖22,T , ‖(a1)t‖2,T , ‖(a2)t‖2,T

}
where q = max{r, s0}, where r ≥ 1, and where s0 = [N

2 ] + 1 = 2 for N = 2 or
N = 3.

Proof. First, we will obtain an L2 estimate. Then we will obtain estimates for ∇·u
and for ∇× u, which will be combined to obtain an estimate for Du.

Using the fact that (Qkg,u) = 0, we obtain an L2 estimate as follows:

1
2

d

dt
‖u‖20 = (ut,u)

= −(a−1
1 v · ∇u,u)− (a−1

1 (∇ · u)v,u) + (a−2
1 (v · ∇ρ)v,u)

− (a2∇ρ,u) + c((|Ω|−1

∫
Ω

a1dx)∇∆ρ,u) + (F,u)− (Qkg,u)

=
1
2
(u∇ · (a−1

1 v),u)− (a−1
1 (∇ · u)v,u) + (a−2

1 (v · ∇ρ)v,u)

+ (ρ∇a2,u) + (a2ρ,∇ · u)− c((|Ω|−1

∫
Ω

a1dx)∆ρ,∇ · u) + (F,u)

≤ C(|a−1
1 |L∞ |∇ · v|L∞ + |D(a−1

1 )|L∞ |v|L∞)‖u‖20
+ C|a−1

1 |L∞ |v|L∞‖∇ · u‖0‖u‖0 + C|a−2
1 |L∞ |v|2L∞‖∇ρ‖0‖u‖0

+ C|Da2|L∞‖ρ‖0‖u‖0 − (a2ρ, ρt) + c((|Ω|−1

∫
Ω

a1dx)∆ρ, ρt)

+ C‖F‖0‖u‖0
≤ C(1 + |a−1

1 |L∞ |Dv|L∞ + |D(a−1
1 )|L∞ |v|L∞)‖u‖20

+ C(|a−1
1 |2L∞ |v|2L∞ + |a−2

1 |2L∞ |v|4L∞ + |Da2|2L∞)‖u‖20 + C‖∇ · u‖20

− 1
2

d

dt
(a2ρ, ρ) +

1
2
((a2)tρ, ρ) + C‖ρ‖20 + C‖∇ρ‖20 + C‖F‖20

− c

2
d

dt
((|Ω|−1

∫
Ω

a1dx)∇ρ,∇ρ) +
c

2
((|Ω|−1

∫
Ω

(a1)tdx)∇ρ,∇ρ) (B.4)
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where C is a generic constant, and where we used equation (B.1) to substitute for
∇ · u. Here, we have used Holder’s inequality (f, g) ≤ ‖f‖0‖g‖0. Also, we used
Cauchy’s inequality fg ≤ 1

2 (f2 + g2).
Integrating (B.4) with respect to time, and using the fact that 0 < c1 < a1(x, t) <

c2 and 0 < c1 < a2(x,t) < c2 yields

‖u‖20 + ‖ρ‖20 + ‖∇ρ‖20

≤ C1

(
‖u0‖20 + ‖ρ0‖20 + ‖∇ρ0‖20

)
+ C1K1

∫ t

0

(‖u‖20 + ‖ρ‖20 + ‖∇ρ‖20)dτ + C1

∫ t

0

(‖Du‖20 + ‖F‖20)dτ

(B.5)

where C1 = Ĉ1(c, c1, c2), and where we define K1, which is an upper bound for the
coefficients in (B.4), as follows:

K1 = max
{

1, |a−1
1 |2L∞,T |Dv|2L∞,T , |D(a−1

1 )|2L∞,T |v|2L∞,T , |a−1
1 |2L∞,T |v|2L∞,T ,

|a−2
1 |2L∞,T |v|4L∞,T , |Da2|2L∞,T , |(a2)t|L∞,T , |(a1)t|L∞,T }

(B.6)
where in K1 we have used Cauchy’s inequality fg ≤ 1

2 (f2 + g2), with g = 1 for
some of the terms. Applying Gronwall’s inequality to (B.5) yields

‖u‖20 + ‖ρ‖20 + ‖∇ρ‖20 ≤ C1(1 + C1K1TeC1K1T )(‖u0‖20 + ‖ρ0‖20 + ‖∇ρ0‖20)

+ C1(1 + C1K1TeC1K1T )
∫ t

0

(‖Du‖20 + ‖F‖20)dτ
(B.7)

Next, we will obtain estimates for ∇ · u and for ∇× u. Recall that we use the
notation fα = Dαf . We will let C denote a generic constant which may change
from one instance to the next, but which will depend only on r, where |α| ≤ r.

After applying the operator Dα to (B.1), (B.2), we obtain

∂ρα

∂t
= −∇ · uα (B.8)

∂uα

∂t
= −a−1

1 v · ∇uα − a−1
1 (∇ · uα)v + a−2

1 (v · ∇ρα)v

− a2∇ρα + c
( 1
|Ω|

∫
Ω

a1dx
)
∇∆ρα − (Qkg)α + Gα

(B.9)

where we define Gα as follows:

Gα = Fα − [(a−1
1 v · ∇u)α − a−1

1 v · ∇uα]− [(a−1
1 (∇ · u)v)α − a−1

1 (∇ · uα)v]

+ [(a−2
1 (v · ∇ρ)v)α − a−2

1 (v · ∇ρα)v]− [(a2∇ρ)α − a2∇ρα]
(B.10)
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Next, we will obtain an estimate for ∇ · u. We apply the divergence operator to
equation (B.9), and obtain

∂∇ · uα

∂t
= −2a−1

1 v · ∇(∇ · uα)−∇(a−1
1 ) · (v · ∇uα)− a−1

1 (∇vT : ∇uα)

− (∇ · uα)v · ∇(a−1
1 )− a−1

1 (∇ · uα)∇ · v + (v · ∇ρα)v · ∇(a−2
1 )

+ a−2
1 ∇(v · ∇ρα) · v + a−2

1 (v · ∇ρα)∇ · v −∇ · (a2∇ρα)

+ c

(
1
|Ω|

∫
Ω

a1dx
)

∆2ρα −∇ · (Qkg)α +∇ ·Gα

(B.11)
From equation (B.11), and using the fact that (∇ · (Qkg)α,∇ · uα) = 0 we obtain
the estimate

1
2

d

dt
‖∇ · uα‖20

= (
∂∇ · uα

∂t
,∇ · uα)

= −2(a−1
1 v · ∇(∇ · uα),∇ · uα)− (∇(a−1

1 ) · (v · ∇uα),∇ · uα)

− (a−1
1 (∇vT : ∇uα),∇ · uα)− ((∇ · uα)v · ∇(a−1

1 ),∇ · uα)

− (a−1
1 (∇ · uα)∇ · v,∇ · uα) + ((v · ∇ρα)v · ∇(a−2

1 ),∇ · uα)

+ (a−2
1 ∇(v · ∇ρα) · v,∇ · uα) + (a−2

1 (v · ∇ρα)∇ · v,∇ · uα)

− (∇ · (a2∇ρα),∇ · uα) + (c(|Ω|−1

∫
Ω

a1dx)∆2ρα,∇ · uα)

− (∇ · (Qkg)α,∇ · uα) + (∇ ·Gα,∇ · uα)

= (∇ · (a−1
1 v)∇ · uα,∇ · uα)− (∇(a−1

1 ) · (v · ∇uα),∇ · uα)

− (a−1
1 (∇vT : ∇uα),∇ · uα)− ((∇ · uα)v · ∇(a−1

1 ),∇ · uα)

− (a−1
1 (∇ · uα)∇ · v,∇ · uα) + ((v · ∇ρα)v · ∇(a−2

1 ),∇ · uα)

+ (a−2
1 ∇(v · ∇ρα) · v,∇ · uα) + (a−2

1 (v · ∇ρα)∇ · v,∇ · uα)

+ (∇ · (a2∇ρα), ρt,α)− (c(|Ω|−1

∫
Ω

a1dx)∆2ρα, ρt,α)

+ (∇ ·Gα,∇ · uα) (B.12)

≤ C(|D(a−1
1 )|L∞ |v|L∞ + |a−1

1 |L∞ |∇ · v|L∞)‖∇ · uα‖20
+ C(|D(a−1

1 )|L∞ |v|L∞ + |a−1
1 |L∞ |Dv|L∞)‖∇ · uα‖0‖Duα‖0

+ C(|v|2L∞ |D(a−2
1 )|L∞ + |a−2

1 |L∞ |Dv|L∞ |v|L∞)‖∇ρα‖0‖∇ · uα‖0
+ C|a−2

1 |L∞ |v|2L∞‖∇ρα‖1‖∇ · uα‖0 − (a2∇ρα,∇ρt,α)

− (c(|Ω|−1

∫
Ω

a1dx)∆ρα,∆ρt,α) + ‖∇ ·Gα‖0‖∇ · uα‖0

≤ C(1 + |D(a−1
1 )|2L∞ |v|2L∞ + |a−1

1 |2L∞ |Dv|2L∞)‖∇ · uα‖20
+ C(|v|4L∞ |D(a−2

1 )|2L∞ + |a−2
1 |2L∞ |Dv|2L∞ |v|2L∞)‖∇ · uα‖20

+ C‖∇ρα‖20 + C|a−2
1 |2L∞ |v|4L∞‖∇ · uα‖20 + C‖∆ρα‖20 + C‖Duα‖20

− 1
2

d

dt
(c(|Ω|−1

∫
Ω

a1dx)∆ρα,∆ρα) +
1
2
(c(|Ω|−1

∫
Ω

(a1)tdx)∆ρα,∆ρα)
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− 1
2

d

dt
(a2∇ρα,∇ρα) +

1
2
((a2)t∇ρα,∇ρα) + C‖DGα‖20 (B.13)

where we used Cauchy’s inequality fg ≤ 1
2 (f2 + g2), and where for some of the

terms, we let g = 1. We also used the fact that ‖∇ρα‖21 ≤ C‖∆ρα‖20 when Ω = TN

(a proof appears in [3]). And we used equation (B.8) to substitute for ∇ · uα.
Next, we estimate the term ‖DGα‖20 in (B.12). We apply the Dγ differentiation

operator, where the multi-index |γ| = 1, to equation (B.10) for Gα, which yields

Dγ(Gα) = Fα+γ − [(a−1
1 v · ∇u)α+γ − a−1

1 v · ∇uα+γ ]

+ (a−1
1 )γv · ∇uα + a−1

1 vγ · ∇uα

− [(a−1
1 (∇ · u)v)α+γ − a−1

1 (∇ · uα+γ)v]

+ (a−1
1 )γ(∇ · uα)v + a−1

1 (∇ · uα)vγ

+ [(a−2
1 (v · ∇ρ)v)α+γ − a−2

1 (v · ∇ρα+γ)v]

− (a−2
1 )γ(v · ∇ρα)v − a−2

1 (vγ · ∇ρα)v − a−2
1 (v · ∇ρα)vγ

− [(a2∇ρ)α+γ − a2∇ρα+γ ] + (a2)γ∇ρα

For |γ| = 1 and |α| = k − 1, where 0 ≤ k − 1 ≤ r, and by applying Lemma B.1 to
the terms of the form ‖(fg)α+γ − fgα+γ‖20, we obtain the estimate

‖Dγ(Gα)‖20 ≤ C‖Fα+γ‖20 + C‖(a−1
1 v · ∇u)α+γ − a−1

1 v · ∇uα+γ‖20
+ C‖(a−1

1 )γv · ∇uα‖20 + C‖a−1
1 vγ · ∇uα‖20

+ C‖(a−1
1 (∇ · u)v)α+γ − a−1

1 (∇ · uα+γ)v‖20
+ C‖(a−1

1 )γ(∇ · uα)v‖20 + C‖a−1
1 (∇ · uα)vγ‖20

+ C‖(a−2
1 (v · ∇ρ)v)α+γ − a−2

1 (v · ∇ρα+γ)v‖20
+ C‖(a−2

1 )γ(v · ∇ρα)v‖20 + C‖a−2
1 (vγ · ∇ρα)v‖20

+ C‖a−2
1 (v · ∇ρα)vγ‖20 + C‖(a2∇ρ)α+γ − a2∇ρα+γ‖20

+ C‖(a2)γ∇ρα‖20
≤ C‖F‖2k + C(‖a−1

1 ‖2k1
‖Dv‖2k1

+ ‖D(a−1
1 )‖2k1

‖v‖2k1
)‖Du‖2k−1

+ C(|D(a−1
1 )|2L∞ |v|2L∞ + |a−1

1 |2L∞ |Dv|2L∞)‖Duα‖20
+ C(‖a−1

1 ‖2k1
‖Dv‖2k1

+ ‖D(a−1
1 )‖2k1

‖v‖2k1
)‖∇ · u‖2k−1

+ C(|D(a−1
1 )|2L∞ |v|2L∞ + |a−1

1 |2L∞ |Dv|2L∞)‖∇ · uα‖20
+ C(‖D(a−2

1 )‖2k1
‖v‖4k1

+ ‖a−2
1 ‖2k1

‖Dv‖2k1
‖v‖2k1

)‖∇ρ‖2k−1

+ C(|D(a−2
1 )|2L∞ |v|4L∞ + |a−2

1 |2L∞ |Dv|2L∞ |v|2L∞)‖∇ρα‖20
+ C‖Da2‖2k1

‖∇ρ‖2k−1 + C|Da2|2L∞‖∇ρα‖20
≤ C‖F‖2k + C(‖a−1

1 ‖2k1
‖Dv‖2k1

+ ‖D(a−1
1 )‖2k1

‖v‖2k1
)‖Du‖2k−1

+ C(‖D(a−2
1 )‖2k1

‖v‖4k1
+ ‖a−2

1 ‖2k1
‖Dv‖2k1

‖v‖2k1
)‖∇ρ‖2k−1

+ ‖Da2‖2k1
‖∇ρ‖2k−1

(B.14)

where k1 = max{k − 1, s0} and s0 = [N
2 ] + 1 = 2 for N = 2 or N = 3. Here, we

used the Sobolev inequality |f |L∞ ≤ C‖f‖s0 . We also used the Sobolev calculus
inequality ‖fg‖s ≤ C‖f‖s ‖g‖s for s > N

2 (see, e.g., [6]).
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We integrate equation (B.12) with respect to time, and use estimate (B.14) on
the right-hand side, and then add over 0 ≤ |α| ≤ r, where r ≥ 1, which yields the
estimate

‖∇ · u‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r

≤ C2(‖∇ · u0‖2r + ‖∇ρ0‖2r + ‖∆ρ0‖2r) + C2

∫ t

0

‖F‖2r+1dτ

+ C2K2

∫ t

0

(‖Du‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r)dτ

(B.15)

where C2 = Ĉ2(r, c, c1, c2), and where we define K2, which is an upper bound for
the coefficients in (B.12), (B.14), as follows:

K2 = max
{

1, ‖a−1
1 ‖2q,T ‖Dv‖2q,T , ‖D(a−1

1 )‖2q,T ‖v‖2q,T ,

‖D(a−2
1 )‖2q,T ‖v‖4q,T , ‖a−2

1 ‖2q,T ‖Dv‖2q,T ‖v‖2q,T ,

|a−2
1 |2L∞,T |v|4L∞,T , ‖Da2‖2q,T , |(a1)t|L∞,T , |(a2)t|L∞,T

} (B.16)

where q = max{r, s0}, where r ≥ 1, and where s0 = [N
2 ]+1 = 2 for N = 2 or N = 3.

Here we have used the fact that 0 < c1 < a1(x, t) < c2 and 0 < c1 < a2(x, t) < c2.
We also used the Sobolev inequality |f |L∞ ≤ C‖f‖s0 .

Next, we obtain an estimate for ∇× u. Applying the curl operator to equation
(B.9) yields

∂∇× uα

∂t
= −a−1

1 v · ∇(∇× uα)− (∇ · uα)∇× (a−1
1 v)

−∇(∇ · uα)× (a−1
1 v) +∇× (a−2

1 (v · ∇ρα)v)

−∇a2 ×∇ρα −∇× (Qkg)α +∇×Gα + Hα

(B.17)

where

Hα = −[∇× (a−1
1 v · ∇uα)− a−1

1 v · ∇(∇× uα)] (B.18)

and where we estimate ‖Hα‖20 as follows:

‖Hα‖20 = ‖∇ × (a−1
1 v · ∇uα)− a−1

1 v · ∇(∇× uα)‖20
≤ C(|a−1

1 |2L∞ |Dv|2L∞ + |D(a−1
1 )|2L∞ |v|2L∞)‖Duα‖20

(B.19)
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From (B.17), and using the fact that (∇ × (Qkg)α,∇ × uα) = 0, we obtain the
estimate

1
2

d

dt
‖∇ × uα‖20

= (
∂(∇× uα)

∂t
,∇× uα)

= −(a−1
1 v · ∇(∇× uα),∇× uα)− ((∇ · uα)∇× (a−1

1 v),∇× uα)

− (∇(∇ · uα)× (a−1
1 v),∇× uα)

+ (∇× (a−2
1 (v · ∇ρα)v),∇× uα)− (∇a2 ×∇ρα,∇× uα)

− (∇× (Qkg)α,∇× uα) + (∇×Gα,∇× uα) + (Hα,∇× uα)

≤ C(|a−1
1 |L∞ |∇ · v|L∞ + |D(a−1

1 )|L∞ |v|L∞)‖∇ × uα‖20
+ C(|D(a−1

1 )|2L∞ |v|2L∞ + |a−1
1 |2L∞ |∇ × v|2L∞)‖∇ × uα‖20

+ C‖∇ · uα‖20 − (∇(∇ · uα)× (a−1
1 v),∇× uα)

+ C(|a−2
1 |2L∞ |v|2L∞ |Dv|2L∞ + |D(a−2

1 )|2L∞ |v|4L∞)‖∇ × uα‖20
+ |a−2

1 |2L∞ |v|4L∞‖∇ × uα‖20 + C‖∇ρα‖20 + C‖∇ρα‖21
+ C|Da2|2L∞‖∇ρα‖20 + C‖∇ × uα‖20 + C‖DGα‖20 + C‖Hα‖20

(B.20)

where we used the fact that −(a−1
1 v · ∇(∇ × uα),∇ × uα) = 1

2 ((∇ · (a−1
1 v))(∇ ×

uα),∇× uα).
Next, we estimate the term −(∇(∇ · uα)× (a−1

1 v),∇× uα) from (B.20) above.
When |α| = 0, we obtain the estimate

−(∇(∇ · uα)× (a−1
1 v),∇× uα) ≤ C|a−1

1 |2L∞ |v|2L∞‖∇ × u‖20 + C‖∇ · u‖21 (B.21)

When |α| ≥ 1, we substitute equation (B.8) for ∇ · uα, to obtain the estimate

− (∇(∇ · uα)× (a−1
1 v),∇× uα)

= (∇ρt,α × (a−1
1 v),∇× uα)

=
d

dt
(∇ρα × (a−1

1 v),∇× uα)− (∇ρα × ((a−1
1 )tv),∇× uα)

− (∇ρα × (a−1
1 vt),∇× uα)− (∇ρα × (a−1

1 v),∇× ut,α)

≤ d

dt
(∇ρα × (a−1

1 v),∇× uα) + C|(a−1
1 )t|2L∞ |v|2L∞‖∇ × uα‖20

+ C|a−1
1 |2L∞ |vt|2L∞‖∇ × uα‖20 + C‖∇ρα‖20

− (∇ρα × (a−1
1 v),∇× ut,α)

(B.22)

and then we integrate by parts once to estimate the term −(∇ρα×(a−1
1 v),∇×ut,α)

from (B.22) above as follows:

− (∇ρα × (a−1
1 v),∇× ut,α)

= (∇ρα × ((a−1
1 )γv),∇× ut,α−γ) + (∇ρα × (a−1

1 vγ),∇× ut,α−γ)

+ (∇ρα+γ × (a−1
1 v),∇× ut,α−γ)

≤ C(|D(a−1
1 )|2L∞ |v|2L∞ + |a−1

1 |2L∞ |Dv|2L∞)‖∇ρα‖20
+ C|a−1

1 |2L∞ |v|2L∞‖∇ρα+γ‖20 + C‖∇ × ut,α−γ‖20

(B.23)



62 D. L. DENNY EJDE/CONF/19

where |γ| = 1. From (B.17), we obtain the estimate

‖∇ × ut,α−γ‖20 ≤ C|a−1
1 |2L∞ |v|2L∞‖∇ × uα−γ‖21

+ C(|D(a−1
1 )|2L∞ |v|2L∞ + C|a−1

1 |2L∞ |∇ × v|2L∞)‖∇ · uα−γ‖20
+ C|a−1

1 |2L∞ |v|2L∞‖∇ · uα−γ‖21 + C|a−2
1 |2L∞ |v|4L∞‖∇ρα−γ‖21

+ C(|D(a−2
1 )|2L∞ |v|4L∞ + |a−2

1 |2L∞ |Dv|2L∞ |v|2L∞)‖∇ρα−γ‖20
+ C|Da2|2L∞‖∇ρα−γ‖20 + C‖∇ × (Qkg)α−γ‖20 + C‖DGα−γ‖20
+ C‖Hα−γ‖20

(B.24)
Note that if |α| = 1, then we choose γ = α.

When we estimate the term C‖∇ × (Qkg)‖2r−1 ≤ C‖Qkg‖2r, which comes from
adding inequality (B.24) over 1 ≤ |α| ≤ r, where |γ| = 1, we will use the fact that
‖Qkf‖2r ≤ ‖f‖2r, for any function f ∈ Hr(Ω), which follows by the definition of the
projection operator Qk in Lemma A.1. And we will use the definition (B.3) of Qkg.

Integrating equation (B.20) with respect to time, and using the estimates (B.14),
(B.19), (B.21)-(B.24) on the right-hand side, and using the definition (B.3) of Qkg,
and adding over 0 ≤ |α| ≤ r, where r ≥ 1, yields

1
2
‖∇ × u‖2r

≤ 1
2
‖∇ × u0‖2r + C

∫ t

0

(|a−1
1 |L∞ |∇ · v|L∞ + |D(a−1

1 )|L∞ |v|L∞)‖∇ × u‖2rdτ

+ C

∫ t

0

(|D(a−1
1 )|2L∞ |v|2L∞ + |a−1

1 |2L∞ |∇ × v|2L∞)‖∇ × u‖2rdτ

+ C

∫ t

0

(‖∇ρ‖2r+1 + ‖∇ · u‖2r + ‖∇ρ‖2r)dτ

+
∑

0≤|α|≤r

|a−1
1 |L∞ |v|L∞‖∇ρα‖0‖∇ × uα‖0

+
∑

0≤|α|≤r

|a1(x, 0)−1|L∞ |v0|L∞‖∇(ρ0)α‖0‖∇ × (u0)α‖0

+ C

∫ t

0

(|(a−1
1 )t|2L∞ |v|2L∞ + |a−1

1 |2L∞ |vt|2L∞)‖∇ × u‖2rdτ

+ C

∫ t

0

(|a−2
1 |2L∞ |Dv|2L∞ |v|2L∞ + |D(a−2

1 )|2L∞ |v|4L∞)‖∇ × u‖2rdτ

+ C

∫ t

0

(|a−2
1 |2L∞ |v|4L∞ + |a−1

1 |2L∞ |v|2L∞)‖∇ × u‖2rdτ

+ C

∫ t

0

(|Da2|2L∞ + |D(a−1
1 )|2L∞ |v|2L∞ + |a−1

1 |2L∞ |Dv|2L∞)‖∇ρ‖2rdτ

+ C

∫ t

0

(|a−1
1 |2L∞ |v|2L∞‖∇ρ‖2r+1 + ‖∇ × ut‖2r−1 + ‖∇ × u‖2r)dτ

+ C
∑

0≤|α|≤r

∫ t

0

(‖DGα‖20 + ‖Hα‖20)dτ
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≤ (
1
2

+ ε)‖∇ × u0‖2r +
1
4ε
|a1(x, 0)−1|2L∞ |v0|2L∞‖∇ρ0‖2r

+ ε‖∇ × u‖2r +
1
4ε
|a−1

1 |2L∞ |v|2L∞‖∇ρ‖2r

+ CK3

∫ t

0

(‖Du‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r)dτ + C

∫ t

0

‖F‖2r+1dτ (B.25)

where we used Cauchy’s inequality with ε, namely fg ≤ 1
4εf

2+εg2, where we choose
ε = 1/4, and where we define K3, which is an upper bound for the coefficients, as
follows

K3 = max
{

1, ‖a−1
1 ‖2q,T ‖Dv‖2q,T , ‖D(a−1

1 )‖2q,T ‖v‖2q,T , ‖Da2‖2q,T ,

‖D(a−2
1 )‖2q,T ‖v‖4q,T , ‖a−2

1 ‖2q,T ‖Dv‖2q,T ‖v‖2q,T ,

‖a−1
1 ‖2q,T ‖v‖2q,T , ‖a2‖2q,T , ‖a−2

1 ‖2q,T ‖v‖4q,T , |a−1
1 |2L∞,T |v|2L∞,T ,

|a−2
1 |2L∞,T |v|4L∞,T , |(a−1

1 )t|2L∞,T |v|2L∞,T , |a−1
1 |2L∞,T |vt|2L∞,T }

(B.26)

where q = max{r, s0}, where r ≥ 1, and where s0 = [N
2 ] + 1 = 2 for N = 2 or

N = 3.
After multiplying estimate (B.25) by β, where 0 < β < 1 is a constant, and then

adding the resulting inequality to the estimate (B.15) for ∇ · u, and using the fact
that ε = 1/4, and using the fact that ‖Du‖2r = ‖∇ · u‖2r + ‖∇× u‖2r, which follows
from the identity ∆uα = ∇(∇ · uα)−∇× (∇× uα), we obtain

β

4
‖Du‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r

= β(
1
2
− ε)(‖∇ × u‖2r + ‖∇ · u‖2r) + ‖∇ρ‖2r + ‖∆ρ‖2r

≤ C3(‖∇ × u0‖2r + ‖∇ · u0‖2r + ‖∇ρ0‖2r + ‖∆ρ0‖2r)

+
β

4ε
|a1(x, 0)−1|2L∞ |v0|2L∞‖∇ρ0‖2r +

β

4ε
|a−1

1 |2L∞ |v|2L∞‖∇ρ‖2r

+ C3K4

∫ t

0

(‖Du‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r)dτ + C3

∫ t

0

‖F‖2r+1dτ

(B.27)

where C3 = Ĉ3(r, c, c1, c2), and where we define

K4 = max
{

1, ‖a−1
1 ‖2q+1,T ‖v‖2q+1,T , ‖a2‖2q+1,T , ‖a−2

1 ‖2q+1,T ‖v‖4q+1,T ,

‖(a−1
1 )t‖22,T ‖v‖22,T , ‖a−1

1 ‖22,T ‖vt‖22,T , ‖(a1)t‖2,T , ‖(a2)t‖2,T

} (B.28)

where q = max{r, s0}, where r ≥ 1, and where s0 = [N
2 ] + 1 = 2 for N = 2 or

N = 3. Here, we used the Sobolev inequality |f |L∞ ≤ C‖f‖s0 . Note that K2 ≤ K4

and K3 ≤ K4.
Next, using the fact that 0 < c1 < a1(x, t) < c2 where c1 < 1, and using the fact

that |v(x, t)| < c3, where c3 > 1, we define β = c2
1/(2c2

3) (so that we have β < 1),
and we have already defined ε = 1/4. We obtain the following estimate for one of
the terms from (B.27):

β

4ε
|a−1

1 |2L∞ |v|2L∞‖∇ρ‖2r =
c2
1

2c2
3

|a−1
1 |2L∞ |v|2L∞‖∇ρ‖2r ≤

1
2
‖∇ρ‖2r
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Similarly, we obtain the estimate
β

4ε
|a1(x, 0)−1|2L∞ |v0|2L∞‖∇ρ0‖2r ≤

1
2
‖∇ρ0‖2r

Using these estimates in the right-hand side of (B.27) and then moving the term
1
2‖∇ρ‖2r to the left-hand side, and applying Gronwall’s inequality yields the desired
estimate
‖Du‖2r + ‖∇ρ‖2r + ‖∆ρ‖2r ≤ C4(1 + C4K4TeC4K4T )(‖Du0‖2r + ‖∇ρ0‖2r+1)

+ C4(1 + C4K4TeC4K4T )
∫ t

0

‖F‖2r+1dτ
(B.29)

where C4 = Ĉ4(r, c, c1, c2, c3). From (B.7), we obtain the L2 estimate

‖u‖20 + ‖ρ‖20 + ‖∇ρ‖20 ≤ C5(1 + C5K4TeC5K4T )(‖u0‖20 + ‖ρ0‖20 + ‖∇ρ0‖20)

+ C5(1 + C5K4TeC5K4T )
∫ t

0

(‖Du‖20 + ‖F‖20)dτ

where C5 = Ĉ5(c, c1, c2), and where we used the fact that K1 ≤ CK4, where K1

was defined in (B.6). The preceding two estimates are the desired result. �
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