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Abstract. This paper deals with the coupling of a quasilinear parabolic prob-

lem with a first order hyperbolic one in a multidimensional bounded domain
Ω. In a region Ωp a diffusion-advection-reaction type equation is set while

in the complementary Ωh ≡ Ω\Ωp, only advection-reaction terms are taken
into account. Suitable transmission conditions at the interface ∂Ωp ∩ ∂Ωh are

required. We find a weak solution characterized by an entropy inequality on

the whole domain.

1. Introduction

We are interested in a coupling of a quasilinear parabolic equation with an hyper-
bolic first-order one in a bounded domain Ω of Rn, n ≥ 1. The main motivation for
considering this problem is the study of infiltration processes in an heterogeneous
porous media. For instance, in a stratified subsoil made up of layers with differ-
ent geological characteristics, the effects of diffusivity may be negligible in some
layers. Such a coupled problem occurs also in fluid-dynamical theory for viscous-
compressible flows around a rigid profile so that near this profile the viscosity effects
have to be taken into account while at a distance they can be neglected. Another
example arises in heat transfer studies as mentioned in [6].

We consider the case of two layers, that is sufficient. Then, the geometrical
configuration is such that:

Ω = Ωh ∪ Ωp; Ωh and Ωp are two disjoint bounded domains with Lipschitz
boundaries denoted by Γl = ∂Ωl, l ∈ {h, p} and Γhp = Γh ∩ Γp. In addition we
set Q =]0, T [×Ω and for l in {h, p}, Ql =]0, T [×Ωl, Σl =]0, T [×Γl. Now, for q in
[0, n+1], Hq is the q-dimensional Hausdorff measure over Rn+1 and for l in {h, p}, νl

is the outward normal unit vector defined Hn-a.e. on Σl. So the interface, denoted
by Σhp =]0, T [×Γhp, is such that Hn(Σhp ∩ (Σl\Σhp)) = 0.
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Now, due to a combination of conservation laws and Darcy’s law, the physical
model is described as follows:

For any positive and finite real T , find a measurable and bounded function u on
Q such that,

∂tu−
n∑

i=1

∂xi
(f(u)∂xi

P ) + g(t, x, u) = 0 in Qh, (1.1)

∂tu−
n∑

i=1

∂xi
(f(u)∂xi

P ) + g(t, x, u) = ∆φ(u) in Qp, (1.2)

u = 0 on ]0, T [×∂Ω, (1.3)

u(0, .) = u0 on Ω. (1.4)

Then, suitable conditions on u across the interface Σhp must be added. As for
the linear problem studied by F. Gastaldi and al. in [6] or for the one dimensional
nonlinear problem studied by G. Aguilar and al. in [2], these transmission con-
ditions include the continuity property of the flux through the interface formally
written here as

−f(u)∇P.νh = (∇φ(u) + f(u)∇P ).νp on Σhp. (1.5)

Let us mention that this problem has already been studied by the authors in [1]
for a nondecreasing flux function f when ∇P.νh ≤ 0 a.e. on Γhp. Here, we still
consider a nondecreasing flux function f , but we give an existence and uniqueness
result holding even when ∇P.νh ≥ 0 a.e. on Γhp.

1.1. Assumptions and notation. The pressure P is a known stationary function
belonging to W 2,+∞(Ω) and such that ∆P = 0 which is not restrictive as soon as
(1.1) and (1.2) include some reaction terms. In addition,

∇P.νh has a constant sign all along Γhp. (1.6)

The reaction function g belongs to W 1,+∞(]0, T [×Ω× R) and we set

M ′
g = ess sup

(t,x,u)∈]0,T [×Ω×R
|∂ug(t, x, u)| and M0 = ess sup

]0,T [×Ω

|gh(t, x, 0)|.

The initial data u0 belongs to L∞(Ω). Thus we can define the nondecreasing time-
depending function

M : t ∈ [0, T ] →M(t) = ‖u0‖L∞(Ω)e
M ′

g t +M0
eM ′

g t − 1
M ′

g

. (1.7)

To simplify we write M = M(T ).
Now, we assume local hypotheses on f and φ.

(i) The flux function f is a nondecreasing Lipschitzian function on [−M,M ] with
constant M ′

f and such that f(0) = 0. To express the boundary conditions on the
frontier of the hyperbolic area, we introduce the nonnegative function F defined on
[−M,M ]3 by

F(a, b, c) =
1
2
{|f(a)− f(b)| − |f(c)− f(b)|+ |f(a)− f(c)|}. (1.8)

(ii) φ is an increasing Lipschitzian function on [−M,M ] such that φ−1 is Hölder
continuous and φ(0) = 0.
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(iii) f ◦ φ−1 is Hölder continuous with exponent θ in [1/2,+∞[ that is there exists
a positive constant C such that

∀(x, y) ∈ [−M,M ]2, |(f ◦ φ−1)(x)− (f ◦ φ−1)(y)| ≤ C|x− y|θ. (1.9)

Remark 1.1. The monotonicity of f and the condition (1.6) involve that
if a.e. on Γhp,∇P.νh ≤ 0, then Σhp is included in the set of outward characteris-

tics for the first-order operator in the hyperbolic domain and along the interface the
information is leaving the hyperbolic domain. This property has been used in [1] to
split the problem by first considering the behavior of a solution in the hyperbolic
area and then in the parabolic one;

if a.e. on Γhp,∇P.νh ≥ 0, then Σhp is included in the set of inward characteristics
for the first-order operator in the hyperbolic domain and along the interface the
information is now entering the hyperbolic domain. This property will also be used
to first consider the behavior of a solution in the parabolic area and then in the
hyperbolic one.

At last, for any positive real µ, sgn µ is the Lipschitzian approximation of the
function sgn defined by:

∀x ∈ [0,+∞[, sgn µ(x) = min(
x

µ
, 1), sgn µ(−x) = − sgn µ(x). (1.10)

For the rest of this work, σ (resp. σ̄) denotes the variable on Σl (resp. Γl),
l ∈ {h, hp, p}. This way, for any t of [0, T ], σ = (t, σ̄).

1.2. Functional spaces. In the sequel, W (0, T ) is the Hilbert space

W (0, T ) ≡ {v ∈ L2(0, T ;H1
0 (Ω)); ∂tv ∈ L2(0, T ;H−1(Ω))}

equipped with the norm ‖w‖W (0,T ) =
(
‖∂tw‖2L2(0,T ;H−1(Ω)) + ‖∇w‖2L2(Q)n

)1/2 and
V is the Hilbert space

V = {v ∈ H1(Ωp), v = 0 a.e. on Γp\Γhp}

equipped with the norm ‖v‖V = ‖∇v‖L2(Ωp)n .
We denote 〈., .〉 the pairing between V and V ′.
At last BV (O) with O = Ωh or O = Qh is the space of summable functions v

with bounded total variation on O where the total variation is given by

TVO(v) = sup
{ ∫

O
v(x)divΦ(x)dx, Φ ∈ (D(O))p, ‖Φ‖(L∞(O))p ≤ 1

}
where p is the dimension of the open set O. Moreover, we denote by γv the trace
on Γhp or Σhp of a function v belonging to BV (O).

The concept of a weak entropy solution to (1.1)-(1.5) is defined in Section 2
through an entropy inequality in the whole domain, the boundary conditions on the
outer frontier of the hyperbolic area being expressed by referring to [8]. Then, we
show some properties of such a solution in the hyperbolic area and in the parabolic
one. The proof of the existence result is given in Section 3 and the uniqueness
property is established in Section 4.
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2. The Entropy Formulation

2.1. Weak entropy solution. The definition of a weak entropy solution to (1.1)-
(1.5) has to include an entropy criterion in Qh where the quasilinear first-order
hyperbolic operator is set. Problem (1.1)-(1.5) can be viewed as an evolutional
problem for a quasilinear parabolic equation that strongly degenerates in a fixed
subdomain Qh of Q. As in [2] or [1], we propose a weak formulation through a
global entropy inequality in the whole Q, the latter giving rise to a variational
equality in the parabolic domain and to an entropy inequality in the hyperbolic
one so as to ensure the uniqueness.

Definition 2.1. A function u is a weak entropy solution to the coupling problem
(1.1)-(1.5) if u ∈ L∞(Q), φ(u) ∈ L2(0, T ;V ) and for all ϕ ∈ D(Q), ϕ ≥ 0, for all
k ∈ R,∫

Q

|u− k|∂tϕdx dt−
∫

Qp

∇|φ(u)− φ(k)|.∇ϕdx dt

−
∫

Q

|f(u)− f(k)|∇P.∇ϕdx dt−
∫

Q

sgn(u− k)g(t, x, u)ϕdx dt ≥ 0,
(2.1)

for all ζ ∈ L1(Σh\Σhp), ζ ≥ 0, for all k ∈ R,

ess lim
τ→0−

∫
Σh\Σhp

F(u(σ + τνh), 0, k)∇P (σ̄).νhζdHn ≤ 0, (2.2)

ess lim
t→0+

∫
Ω

|u(t, x)− u0(x)|dx = 0. (2.3)

2.2. An entropy inequality in the hyperbolic zone. We derive from (2.1) and
(2.2) an entropy inequality in the hyperbolic domain.

Proposition 2.2. Let u be a weak entropy solution to the coupling problem (1.1)-
(1.5). Then for any real k and any ϕ of D(]0, T [×Rn), ϕ ≥ 0,

−
∫

Qh

(|u− k|∂tϕ− |f(u)− f(k)|∇P.∇ϕ− sgn(u− k)g(t, x, u)ϕ) dx dt

≤ ess lim
τ→0−

∫
Σhp

|f(u(σ + τνh))− f(k)|∇P (σ̄).νhϕ(σ)dHn

+
∫

Σh\Σhp

|f(k)|∇P (σ̄).νhϕ(σ)dHn

− ess lim
τ→0−

∫
Σh\Σhp

|f(u(σ + τνh))|∇P (σ̄).νhϕ(σ)dHn.

(2.4)

Proof. From (2.1) it comes that for ϕ in D(Qh), ϕ ≥ 0,∫
Qh

(|u− k|∂tϕ− |f(u)− f(k)|∇P.∇ϕ− sgn(u− k)g(t, x, u)ϕ) dx dt ≥ 0. (2.5)

First, by referring to F.Otto’s works in [8], we deduce from (2.5) that, for any real
k and any β in L1(Σh), the following limit exists:

ess lim
τ→0−

∫
Σh

|f(u(σ + τνh))− f(k)|∇P (σ̄).νhβ(σ)dHn. (2.6)



EJDE/CONF/16 NONLINEAR PARABOLIC-HYPERBOLIC EQUATIONS 19

Then, it results from (2.5) (see [8]) that, for any real k and any ϕ in D(]0, T [×Rn),
ϕ ≥ 0,

−
∫

Qh

(|u− k|∂tϕ− |f(u)− f(k)|∇P.∇ϕ− sgn(u− k)g(t, x, u)ϕ) dx dt

≤ ess lim
τ→0−

∫
Σh

|f(u(σ + τνh))− f(k)|∇P (σ̄).νhϕ(σ)dHn.

To conclude we share the frontier of Ωh into Γhp and Γh\Γhp and we use boundary
condition (2.2) on Σh\Σhp. �

2.3. A variational equality in the parabolic zone. We give now some informa-
tion on the regularity for ∂tu in Qp and we derive from (2.1) a variational equality
satisfied by any weak entropy solution u to the coupling problem (1.1)-(1.5).

Proposition 2.3. Let u be a weak entropy solution to the coupling problem (1.1)-
(1.5). Then ∂tu belongs to L2(0, T ;V ′). Furthermore, for any ϕ in L2(0, T ;V ),

∫ T

0

〈∂tu, ϕ〉dt+
∫

Qp

∇φ(u).∇ϕdx dt+
∫

Qp

f(u)∇P.∇ϕdx dt

+
∫

Qp

g(t, x, u)ϕdx dt+ ess lim
τ→0−

∫
Σhp

f(u(σ + τνh))∇P (σ̄).νhϕdHn = 0.
(2.7)

Remark 2.4. This proposition is proved in [1, Proposition 3.4] independently of
any condition on the hyperbolic characteristics on Σhp.

3. The Existence Result

In this section, we will prove the existence of a weak entropy solution.

Theorem 3.1. The coupling problem (1.1)–(1.5) has at least a weak entropy solu-
tion.

To construct a weak entropy solution to Problem (1.1)-(1.5), we work successively
in the hyperbolic domain and in the parabolic one or vice-versa. Indeed, thanks
to Remark 1.1, when a.e. on Γhp ∇P.νh ≤ 0, we can begin by working in the
hyperbolic zone while, when a.e. on Γhp ∇P.νh ≥ 0, we can begin by working in
the parabolic area.

3.1. Waves going from Qh to Qp. In this section we suppose that, a.e. on
Γhp, ∇P.νh ≤ 0. The existence of a weak entropy solution to Problem (1.1)-(1.5)
is already proved in [1] by the viscosity method. Here, we give a different proof of
this result.

First, thanks to [8], there exists one and only one function wh in L∞(Qh) such
that for all ϕ ∈ D(Qh), ϕ ≥ 0, for all k ∈ R,∫

Qh

(|wh−k|∂tϕ−|f(wh)−f(k)|∇P.∇ϕ−sgn(wh−k)g(t, x, wh)ϕ) dx dt ≥ 0, (3.1)

for all ζ ∈ L1(Σh), ζ ≥ 0, for all k ∈ R,

ess lim
τ→0−

∫
Σh

F(wh(σ + τνh), 0, k)∇P (σ̄).νhζdHn ≤ 0, (3.2)
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ess lim
t→0+

∫
Ωh

|wh(t, x)− u0(x)|dx = 0. (3.3)

Then, thanks to [5], there exists one and only one function wp in L∞(Qp) such that
φ(wp) ∈ L2(0, T ;V ), ∂twp ∈ L2(0, T ;V ′) and for all ϕ ∈ L2(0, T ;V ),∫ T

0

〈∂twp, ϕ〉dt+
∫

Qp

∇φ(wp).∇ϕdx dt+
∫

Qp

f(wp)∇P.∇ϕdx dt

+
∫

Qp

g(t, x, wp)ϕdx dt+ ess lim
τ→0−

∫
Σhp

f(wh(σ + τνh))∇P (σ̄).νhϕdHn = 0,
(3.4)

ess lim
t→0+

∫
Ωp

|wp(t, x)− u0(x)|dx = 0. (3.5)

Indeed the mapping

ϕ 7−→ − ess lim
τ→0−

∫
Σhp

f(wh(σ + τνh))∇P (σ̄).νhϕdHn

belongs to L∞(0, T ;V ′). Therefore to prove Theorem 3.1, we are going to establish
the following lemma.

Lemma 3.2. Let u be defined by u = wh in Qh and u = wp in Qp. Then u is a
weak entropy solution to the coupling problem (1.1)-(1.5).

Moreover if u0|Ωh
belongs to BV (Ωh), then u|Qh

belongs to BV (Qh) and

ess lim
τ→0−

∫
Σhp

|f(u(σ + τνh))− f(γu(σ))|dHn = 0

where γu(σ) is the trace on Σhp in the BV-sense of the BV-function u|Qh
.

Proof. First note that u ∈ L∞(Q) and φ(u) ∈ L2(0, T ;V ). Let ϕ be in D(Q),
ϕ ≥ 0 and let k be in R. As in the proof of Proposition 2.2, we derive from (3.1)
the following inequality∫

Qh

(|wh − k|∂tϕ− |f(wh)− f(k)|∇P.∇ϕ− sgn(wh − k)g(t, x, wh)ϕ) dx dt

≥ − ess lim
τ→0−

∫
Σhp

|f(wh(σ + τνh))− f(k)|∇P (σ̄).νhϕ(σ)dHn.

(3.6)

Then, we choose in (3.4) the test-function ϕ sgn µ(φ(wp)− φ(k)). It follows:

−
∫ T

0

〈∂twp, sgn µ(φ(wp)− φ(k))ϕ〉dt

−
∫

Qp

sgn µ(φ(wp)− φ(k)) ∇(φ(wp)− φ(k)).∇ϕdx dt

−
∫

Qp

sgn µ(φ(wp)− φ(k))(f(wp)− f(k))∇P.∇ϕdx dt

−
∫

Qp

g(t, x, wp) sgn µ(φ(wp)− φ(k))ϕdx dt

=
∫

Qp

sgn ′µ(φ(wp)− φ(k)) ∇(φ(wp)− φ(k)).∇(φ(wp)− φ(k))ϕdx dt
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+
∫

Qp

sgn ′µ(φ(wp)− φ(k))(f(wp)− f(k))∇P.∇(φ(wp)− φ(k))ϕdx dt

+ ess lim
τ→0−

∫
Σhp

f(wh(σ + τνh))∇P.νh sgn µ(φ(wp)− φ(k))ϕdHn

+
∫

Σhp

sgn µ(φ(wp)− φ(k))f(k)∇P.νpϕdHn. (3.7)

Thanks to (1.9) and to the Cauchy-Scharwz inequality there exists a positive con-
stant C such that :∫

Qp

sgn ′µ(φ(wp)− φ(k)) ∇(φ(wp)− φ(k)).∇(φ(wp)− φ(k))ϕdx dt

+
∫

Qp

sgn ′µ(φ(wp)− φ(k))(f(wp)− f(k))∇P.∇(φ(wp)− φ(k))ϕdx dt

≥ −C
∫

Qp

|φ(wp)− φ(k)|2θ sgn ′µ(φ(wp)− φ(k))ϕdx dt,

and the term in the right-hand side goes to 0 with µ as θ ≥ 1/2 thanks to the
Lebesgue’s bounded convergence theorem.

In the first term of (3.7), we use an integration by parts formula based on a
convexity inequality (see e.g. [5], the Mignot-Bamberger Lemma) to obtain

−
∫ T

0

〈∂twp, sgn µ(φ(wp)− φ(k))ϕ〉dt =
∫

Qp

( ∫ wp

k

sgn µ(φ(r)− φ(k))dr
)
∂tϕdx dt.

Therefore, we are able to pass to the limit in (3.7) when µ approaches 0+ in all the
integrals over Qp. For the one on Σhp, we argue from (3.1) and [8] that (2.6) is
valid for wh. Therefore there exists θ in L∞(Σhp) such that for any β in L1(Σhp),

ess lim
τ→0−

∫
Σhp

f(wh(σ + τνh))∇P (σ̄).νhβ(σ)dHn =
∫

Σhp

θ(σ)β(σ)dHn. (3.8)

Therefore, we can use that

lim
µ→0+

∫
Σhp

θ(σ) sgn µ(φ(wp)− φ(k))ϕdHn =
∫

Σhp

θ(σ) sgn(φ(wp)− φ(k))ϕdHn.

After all, we obtain∫
Qp

(|wp − k|∂tϕ− |f(wp)− f(k)|∇P.∇ϕ− sgn(wp − k)g(t, x, wp)ϕ) dx dt

−
∫

Qp

∇|φ(wp)− φ(k)|.∇ϕdx dt

≥ ess lim
τ→0−

∫
Σhp

(f(wh(σ + τνh))− f(k)) sgn(wp(σ)− k)∇P.νhϕdHn

(3.9)

where in (3.9), wp(σ) is defined as φ−1(φ(wp(σ))) and belongs to L∞(Σhp). By
adding the inequalities (3.6) and (3.9), we obtain∫

Q

|u− k|∂tϕdx dt−
∫

Qp

∇|φ(u)− φ(k)|.∇ϕdx dt

−
∫

Q

|f(u)− f(k)|∇P.∇ϕdx dt−
∫

Q

sgn(u− k)g(t, x, u)ϕdx dt
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≥ ess lim
τ→0−

∫
Σhp

(f(wh(σ + τνh))− f(k)) sgn(wp(σ)− k)∇P (σ̄).νhϕ(σ)dHn

− ess lim
τ→0−

∫
Σhp

|f(wh(σ + τνh))− f(k)|∇P (σ̄).νhϕ(σ)dHn.

Now by using the condition ∇P.νh ≤ 0 a.e. on Γhp, we derive that u satisfies
Inequality (2.1).

At last, thanks to (3.2), (3.3) and (3.5), we can conclude that u is a weak entropy
solution to the coupling problem (1.1)-(1.5).

Now, if u0|Ωh
belongs to BV (Ωh), it results from [3] and [8] that wh|Qh

belongs
to BV (Qh). Therefore u|Qh

belongs to BV (Qh) and thanks to the properties of
the trace operator from BV (Qh) into L1(Σh)

ess lim
τ→0−

∫
Σh

|f(u(σ + τνh))− f(γu(σ))|dHn = 0

where γu(σ) is the trace on Σh in the BV-sense of the BV-function u|Qh
. �

3.2. Waves going from Qp to Qh. In this section we suppose that a.e. on
Γhp, ∇P.νh ≥ 0.

First, thanks to [5], there exists one and only one function wp in L∞(Qp) such
that φ(wp) ∈ L2(0, T ;V ), ∂twp ∈ L2(0, T ;V ′) and for all ϕ ∈ L2(0, T ;V ),∫ T

0

〈∂twp, ϕ〉dt+
∫

Qp

∇φ(wp).∇ϕdx dt+
∫

Qp

f(wp)∇P.∇ϕdx dt

+
∫

Qp

g(t, x, wp)ϕdx dt+
∫

Σhp

f(wp(σ))∇P (σ̄).νhϕdHn = 0,
(3.10)

ess lim
t→0+

∫
Ωp

|wp(t, x)− u0(x)|dx = 0. (3.11)

In (3.10), wp(σ) is defined as φ−1(φ(wp(σ))) and belongs to L∞(Σhp).
Then, thanks to [8], there exists one and only one function wh in L∞(Qh) such

that for all ϕ ∈ D(Qh), ϕ ≥ 0, for all k ∈ R,∫
Qh

(|wh−k|∂tϕ−|f(wh)−f(k)|∇P.∇ϕ−sgn(wh−k)g(t, x, wh)ϕ) dx dt ≥ 0; (3.12)

for all ζ ∈ L1(Σh), ζ ≥ 0, for all k ∈ R,

ess lim
τ→0−

∫
Σh\Σhp

F(wh(σ + τνh), 0, k)∇P (σ̄).νhζdHn ≤ 0, (3.13)

ess lim
τ→0−

∫
Σhp

F(wh(σ + τνh), wp(σ), k)∇P (σ̄).νhζdHn ≤ 0, (3.14)

ess lim
t→0+

∫
Ωh

|wh(t, x)− u0(x)|dx = 0. (3.15)

Therefore to prove Theorem 3.1, we establish the following lemma.

Lemma 3.3. Let u be defined by u = wh in Qh and u = wp in Qp. Then u is a
weak entropy solution to the coupling problem (1.1)-(1.5).

Moreover

ess lim
τ→0−

∫
Σhp

|f(u(σ + τνh))− f(u(σ))|dHn = 0
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where u(σ) is defined as φ−1(φ(u(σ))).

Proof. First u ∈ L∞(Q) and φ(u) ∈ L2(0, T ;V ). Now let ϕ be in D(Q), ϕ ≥ 0 and
let k be in R.

Following the proof of (3.9) in Lemma 3.2, we deduce from (3.10) that∫
Qp

(|wp − k|∂tϕ− |f(wp)− f(k)|∇P.∇ϕ− sgn(wp − k)g(t, x, wp)ϕ) dx dt

−
∫

Qp

∇|φ(wp)− φ(k)|.∇ϕdx dt

≥
∫

Σhp

|f(wp(σ))− f(k)|∇P (σ̄).νhϕ(σ)dHn.

(3.16)

Moreover, Inequality (3.6) is still satisfied by wh. By adding the inequalities (3.6)
and (3.16) we obtain∫

Q

|u− k|∂tϕdx dt−
∫

Qp

∇|φ(u)− φ(k)|.∇ϕdx dt

−
∫

Q

|f(u)− f(k)|∇P.∇ϕdx dt−
∫

Q

sgn(u− k)g(t, x, u)ϕdx dt

≥
∫

Σhp

|f(wp(σ))− f(k)|∇P (σ̄).νhϕ(σ)dHn

− ess lim
τ→0−

∫
Σhp

|f(wh(σ + τνh))− f(k)|∇P (σ̄).νhϕ(σ)dHn.

Then, thanks to (3.14) and to the condition ∇P.νh ≥ 0 a.e. on Γhp, we obtain that
u satisfies Inequality (2.1).

Now, thanks to (3.13), (3.15) and (3.11), we conclude that u is a weak entropy
solution to the coupling problem (1.1)-(1.5).

At last, it results from [7] that as Σhp is included in the set of inward char-
acteristics for the first order operator, the solution wh of Problem (3.12)-(3.15)
satisfies

ess lim
τ→0−

∫
Σhp

|f(wh(σ + τνh))− f(wp(σ))|dHn = 0.

�

4. The Uniqueness Property

We have seen in Lemma 3.2 or Lemma 3.3 that Problem (1.1)-(1.5) has at least
a weak entropy solution u for which there exists θ ∈ L1(Σhp), |θ| ≤M and

ess lim
τ→0−

∫
Σhp

|f(u(σ + τνh))− f(θ(σ))|∇P.νhdHn = 0. (4.1)

Indeed, when ∇P.νh ≤ 0 a.e. on Γhp, as soon as u0|Ωh
belongs to BV (Ωh) then

(4.1) is satisfied with θ = γu where γu is the trace on Σhp in the BV-sense of the
BV-function u|Qh

. When ∇P.νh ≥ 0 a.e. on Γhp, (4.1) is satisfied with θ = u where
u is defined as φ−1(φ(u)) and φ(u) is the trace on Σhp of φ(u)|Qp

.
In this section, we prove the uniqueness property in the class of weak entropy

solutions satisfying (4.1). Indeed, we have justified that Problem (1.1)-(1.5) admits
such a solution (under the additional hypothesis u0|Ωh

belongs to BV (Ωh) when
a.e. on Γhp∇P.νh ≤ 0).
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4.1. Preliminaries. To use the method of doubling variables, we introduce a se-
quence of mollifiers (Wδ)δ>0 on Rn+1 defined by

∀δ > 0, ∀r = (t, x) ∈ Rn+1, Wδ(r) = $δ(t)
n∏

i=1

$δ(xi),

where ($δ)δ>0 is a standard sequence of mollifiers on R. We will use classical
results on the Lebesgue set of a summable function on Q and a similar property on
Σ proved in [9]:

Lemma 4.1. Let v and w be in L∞(Qh) such that (2.5) and (4.1) hold. Then for
any continuous function ϕ on Qh,

lim
δ→0+

∫
Qh

∫
Σh\Σhp

|f(v(r))|∇P (σ̄).νhϕ(
σ̃ + r

2
)Wδ(σ̃ − r)dHn

σ̃dr

=
1
2

ess lim
τ→0−

∫
Σh\Σhp

|f(v(σ + τνh))|∇P (σ̄)νhϕ(σ)dHn,

lim
δ→0+

∫
Qh

ess lim
τ→0−

∫
Σh\Σhp

|f(v(σ + τνh))|∇P (σ̄).νhϕ(
σ + r̃

2
)Wδ(σ − r̃)dHn

σdr̃

=
1
2

ess lim
τ→0−

∫
Σh\Σhp

|f(v(σ + τνh))|∇P (σ̄).νhϕ(σ)dHn,

and

lim
δ→0+

∫
Qh

∫
Σhp

|f(θv(σ))− f(w(r̃))|∇P (σ̄).νhϕ(
σ + r̃

2
)Wδ(σ − r̃)dHn

σdr̃

=
1
2

∫
Σhp

|f(θv(σ))− f(θw(σ))|∇P (σ̄)νhϕ(σ)dHn

where θv (resp. θw) is defined by (4.1) for v (resp. w).

4.2. The uniqueness theorem.

Lemma 4.2. Let u1, u2 be two weak solutions to (1.1)-(1.5) for initial data re-
spectively u0,1, u0,2 and such that (4.1) holds with f(θi)∇P.νh = f(ui)∇P.νh, for
i = 1, 2, when ∇P.νh ≥ 0 a.e. on Γhp. Then, for a.e. t of [0, T ],∫

Ω

|u1(t, .)− u2(t, .)|dx ≤ eM ′
g t

∫
Ω

|u0,1 − u0,2|dx.

Theorem 4.3. Let u0 be in L∞(Ω). The coupling problem (1.1)-(1.5) admits
at most one weak entropy solution u such that (4.1) holds with f(θ)∇P.νh =
f(u)∇P.νh when ∇P.νh ≥ 0 a.e. on Γhp.

Moreover, for initial data u0,1 and u0,2 in L∞(Ω) the corresponding weak entropy
solutions u1 and u2 to (1.1)-(1.5) are such that for a.e. t of [0, T ],∫

Ω

|u1(t, .)− u2(t, .)|dx ≤ eM ′
g t

∫
Ω

|u0,1 − u0,2|dx.

Proof of Lemma 4.2. (i) We first compare the two solutions u1 and u2 in the para-
bolic zone. The lack of regularity of the time partial derivative of any weak entropy
solution to (1.1)-(1.5) requires a doubling of the time variable.

Therefore, let χ be a nonnegative element of D(0, T ). We consider δ a positive
real small enough for αδ : (t̃, t) 7−→ αδ(t̃, t) = χ((t + t̃)/2)$δ((t − t̃)/2) to belong
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to D(]0, T [×]0, T [). Then, for µ > 0, in (2.7) for u1 written in variables (t, x)
we consider ϕ(t, x) = sgn µ(φ(u1)(t, x)− φ(u2)(t̃, x))αδ(t̃, t) and in (2.7) written in
variables (t̃, x) for u2, we consider ϕ(t̃, x) = − sgn µ(φ(u1)(t, x)−φ(u2)(t̃, x))αδ(t̃, t).
To simplify the writing, we add a ”tilde” superscript to any function in the t̃
variable. Moreover, thanks to (4.1) we observe that in (2.7), for i = 1, 2,

ess lim
τ→0−

∫
Σhp

f(ui(σ + τνh))∇P (σ̄).νhϕdHn =
∫

Σhp

f(θi(σ))∇P.νhϕdHn.

Then, by adding up, it comes:∫ T

0

∫ T

0

〈∂tu1 − ∂t̃ũ2, sgn µ(φ(u1)− φ(ũ2))〉αδdtdt̃

+
∫

]0,T [×Qp

∇(φ(u1)− φ(ũ2)).∇ sgn µ(φ(u1)− φ(ũ2)) αδ dx dtdt̃

+
∫

]0,T [×Qp

(f(u1)− f(ũ2))∇P.∇ sgn µ(φ(u1)− φ(ũ2)) αδ dx dtdt̃

+
∫

]0,T [×Qp

(g(t, x, u1)− g(t̃, x, ũ2)) sgn µ(φ(u1)− φ(ũ2)) αδ dx dtdt̃

= −
∫ T

0

∫
Σhp

f(θ1(σ))∇P.νh sgn µ(φ(u1)− φ(u2(σ̃)))αδdHn
σdt̃

+
∫ T

0

∫
Σhp

f(θ2(σ̃))∇P.νh sgn µ(φ(u1)− φ(u2(σ̃)))αδdHn
σ̃dt.

(4.2)

In the left-hand side, we use the calculus of the proof of Lemma 3.2. So, we are
able to pass to the limit in (4.2) when µ approaches 0+. Therefore,

−
∫

]0,T [×Qp

|u1 − ũ2|(∂tαδ + ∂t̃αδ) dx dtdt̃

≤
∫

]0,T [×Qp

|g(t, x, ũ2)− g(t̃, x, ũ2)|αδ dx dtdt̃

−
∫ T

0

∫
Σhp

(f(θ1(σ))− f(θ2(σ̃)))∇P.νh sgn µ(φ(u1)− φ(u2(σ̃)))αδdHn
σdt̃.

Now, we come back to the definition of αδ to express the sum ∂tαδ + ∂t̃αδ. Then
we are able to take the limit with respect to δ through the notion of the Lebesgue’s
set of a summable function on ]0, T [. Therefore, as g is Lipschitzian, for any χ in
D(0, T ), χ ≥ 0,

−
∫

Qp

|u1 − u2|χ′(t) dx dt

≤M ′
g

∫
Qp

|u1 − u2|χ(t) dx dt

−
∫

Σhp

(f(θ1(σ))− f(θ2(σ)))∇P.νh sgn(φ(u1)− φ(u2))χ(t)dHn.

(4.3)

(ii) Now, we work in the hyperbolic domain. We use a doubling method for all the
variables . Let ψ be such that ψ ≡ χζ where χ is a function in D(0, T ), χ ≥ 0, as in
Part (i) and ζ is in D(Rn) such that: ζ ≥ 0, ζ ≡ 1 on Qh. We consider δ a positive
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real small enough in order that the mapping (t̃, t) 7−→ χ((t + t̃)/2)wδ((t − t̃)/2)
belongs to D(]0, T [×]0, T [). Then, for any positive δ, we define the function Ψδ in
]0, T [×Rn×]0, T [×Rn by Ψδ(r, r̃) = χ((t+ t̃)/2)ζ((x+ x̃)/2)Wδ(r − r̃).

Due to Proposition 2.2, Inequality (2.4) holds for u1 and u2. We choose in (2.4)
written for u1 in variables (t, x),

k = ũ2 ≡ u2(t̃, x̃) and ϕ(t, x) = Ψδ(t, x, t̃, x̃)

and in (2.4) written for u2 in variables (t̃, x̃),

k = u1(t, x) and ϕ(t̃, x̃) = Ψδ(t, x, t̃, x̃).

By integrating over Qh and adding up, it comes by using (4.1):

−
∫

Qh×Qh

(|u1 − ũ2|(∂tΨδ + ∂t̃Ψδ)− |f(u1)− f(ũ2)|(∇P.∇xΨδ +∇P̃ .∇x̃Ψδ) dr dr̃

+
∫

Qh×Qh

sgn(u1 − ũ2)(g(t, x, u1)− g(t̃, x, ũ2))Ψδ dr dr̃

≤
∫

Qh

∫
Σh\Σhp

|f(ũ2)|∇xP.νhΨδ(σ, r̃)dHn
σdr̃

+
∫

Qh

∫
Σh\Σhp

|f(u1)|∇x̃P̃ .νhΨδ(r, σ̃)dHn
σ̃dr

−
∫

Qh

ess lim
τ→0−

∫
Σh\Σhp

|f(u1(σ + τνh))|∇xP.νhΨδ(σ, r̃)dHn
σdr̃

−
∫

Qh

ess lim
τ→0−

∫
Σh\Σhp

|f(u2(σ̃ + τνh))|∇x̃P̃ .νhΨδ(r, σ̃)dHn
σ̃dr

+
∫

Qh

∫
Σhp

|f(θ1(σ))− f(ũ2)|∇xP.νhΨδ(σ, r̃)dHn
σdr̃

+
∫

Qh

∫
Σhp

|f(θ2(σ̃))− f(u1)|∇x̃P̃ .νhΨδ(r, σ̃)dHn
σ̃dr.

(4.4)
Then through a classical reasoning we pass to the limit with δ on the left-hand side
of (4.4). On the right-hand side, we refer to Lemma 4.1. It comes:

−
∫

Qh

|u1 − u2|χ′(t) dx dt ≤ −
∫

Qh

sgn(u1 − u2)(g(t, x, u1)− g(t, x, u2))χ(t) dx dt

+
∫

Σhp

|f(θ1(σ))− f(θ2(σ))|∇xP.νhχ(t)dHn.

The Lipschitz condition for g provides: for any χ of D(0, T ), χ ≥ 0,

−
∫

Qh

|u1 − u2|χ′(t) dx dt ≤
∫

Σhp

|f(θ1(σ))− f(θ2(σ))|∇xP.νhχ(t)dHn

+M ′
g

∫
Qh

|u1 − u2|χ(t) dx dt.
(4.5)

By adding inequalities (4.3) and (4.5), we obtain

−
∫

Q

|u1 − u2|χ′(t) dx dt
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≤M ′
g

∫
Q

|u1 − u2|χ(t) dx dt+
∫

Σhp

|f(θ1(σ))− f(θ2(σ))|∇xP.νhχ(t)dHn

−
∫

Σhp

(f(θ1(σ))− f(θ2(σ)))∇P.νh sgn(φ(u1)− φ(u2))χ(t)dHn.

Therefore, when a.e. on Γhp, ∇P.νh ≤ 0, we have

|f(θ1(σ))− f(θ2(σ))|∇P.νh ≤ (f(θ1(σ))− f(θ2(σ))) sgn(φ(u1)− φ(u2))∇P.νh.

Now, when a.e. on Γhp, ∇P.νh ≥ 0, a.e. on Σhp,

f(θi(σ))∇P.νh = f(ui(σ))∇P.νh, i = 1, 2.

As a consequence, a.e. on Σhp,

(f(θ1(σ))− f(θ2(σ)))∇P.νh sgn(φ(u1)− φ(u2)) = |f(θ1(σ))− f(θ2(σ))|∇P.νh.

At last in both cases, we have for any χ of D(0, T ), χ ≥ 0,

−
∫

Q

|u1 − u2|χ′(t) dx dt ≤M ′
g

∫
Q

|u1 − u2|χ(t) dx dt.

When χ is the element of a sequence approximating I[0,t], t being given outside a
set of measure zero, the desired inequality of Lemma 4.2 is obtained thanks to the
initial condition (2.3) for u1 and u2 and to the Gronwall Lemma. �

Comments. In this paper we have looked for solutions to the coupling problem
(1.1)-(1.5). We have proved an existence and uniqueness result when along the
interface all the charasteristics have the same behaviour. Either there are all leaving
the hyperbolic domain, either there are all entering this domain. In the first case, we
refer the reader to [1] for a study without condition (4.1) by means of the vanishing
viscosity method and the notion of process solutions [4].
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l’ingénierie pétrolière, S.M.A.I. - Mathématiques & Applications 22 Springer-Verlag (1996).

[6] F. Gastaldi, A. Quateroni, G. Landriani Sacchi; Coupling of two-dimensional hyperbolic and
elliptic equations. Comput. Methods Appl. Mech. Eng. 80 1-3 (1990), 347-354.

[7] J. Malek, J. Necas, M. Rokyta, M. Ruzicka; Weak and measure-valued solutions to evolutionary

PDEs, Applied Mathematics and Mathematical Computation. 13. London. Chapman & Hall
(1996).

[8] F. Otto; Initial-Boundary Value Problem for a Scalar Conservation Law, C.R. Acad. Sci.

Paris 322 Série I (1996), 729-734.
[9] F. Peyroutet F. and Madaune-Tort M.; Error Estimate for a Splitting Method Applied to

Convection-Reaction Equations, Math. Models Methods Appl. Sci. 11 6 (2001), 1081-1100.

Gloria Aguilar
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