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Abstract. Fractional diffusion equations are widely used for mass spreading
in heterogeneous media. The correspondence between fractional equations and

random walks based upon stable Lévy laws, keeps in analogy with that be-

tween heat equation and Brownian motion. Several definitions of fractional
derivatives yield operators, which coincide on a wide domain and can be used

in fractional partial differential equations. Then, the various definitions are
useful in different purposes: they may be very close to some physics, or to nu-

merical schemes, or be based upon important mathematical properties. Here

we present a definition, which enables us to describe the flux of particles, per-
forming a random walk. We show that it is a left inverse to fractional integrals.

Hence it coincides with Riemann-Liouville and Marchaud’s derivatives when

applied to functions, belonging to suitable domains.

1. Introduction

Fick’s law is a basic tool for the transport of dissolved matter. When it holds, the
concentration of solute evolves according to heat equation. Nevertheless, there exist
heterogeneous media where experimental evidence indicates that dispersion does
not obey Fick’s law and heat equation: data from electronics [17] [18] and passive
tracer experiments [3][4] show heavy tails, apparently connected with statistics
giving some importance to extreme events, in similarity with densities of stable
probability Lévy laws. Gaussian statistics are a limiting case of the latters, and
distribute successive jump lengths of Brownian motions, which serve as small scale
models for mass transport. On the macroscopic level, the concentration of a cloud
of particles performing Brownian motions, satisfies Fick’s law and heat equation.

Data with heavy tails correspond to Lévy flights, which also are random walks,
with jump lengths distributed according to stable Lévy laws. The correspondence
between small and large scales is obtained by means of time and length references
which we let tend to zero. If, moreover, they satisfy some scaling relation, the
concentration of walkers tends to a limit, evolving according to a variant of heat
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equation, with Laplacean being replaced by derivatives of fractional order. They
are non-local operators.

For unbounded domains, these results were derived from Generalized Master
Equation via Fourier’s transform [5] [16]. They were extended to semi-infinite and
bounded domains after some adaptations, under hypotheses which we want to es-
cape [10]. Here we present a novel definition of Riemann-Liouville or Marchaud’s
derivatives. It seems to us that it makes it possible to interpret fluxes directly
for random walks observed from the macroscopic point of view, without passing
through Generalized Master Equation, Fourier’s transform and space-fractional
heat equation. Later, the gain in simplicity will allow us to tackle problems mixing,
for instance, boundary conditions and skewness.

2. A new expression for Riemann-Liouville’s and Marchaud’s
fractional derivatives

Riemann-Liouville and Marchaud’s fractional derivatives interpolate between in-
teger orders of differentiation, and generalize many aspects of the notion. Real and
complex orders of differentiation can be defined in this context. Here we aim at
introducing a new way of presenting fractional calculus, in connection with par-
ticle counting and random walks. In this purpose, we only need to consider real
valued orders of differentiation. And for the moment, in a sake of simplicity, we
focus on one-dimensional problems, future works will be devoted to more general
dimensions.

After having recalled essentials of the most widely used basic tools of fractional
calculus, we show that a novel definition yields more or less similar objects. Then,
we outline the connection with fluxes of particles.

2.1. Riemann-Liouville Fractional integrals and derivatives. Let α be pos-
itive (the definition applies to complex numbers with positive real part): the left-
sided fractional integral of order α, computed over [a, x] is

Iαa,+ϕ(x) =
1

Γ(α)

∫ x

a

(x− y)α−1ϕ(y)dy (2.1)

according to [15]. Here we will mainly consider the case a = −∞, with the simplified
notation Iα+ϕ(x) = Iα−∞,+ϕ(x) of [14]. Right-sided integrals are

Iαb,−ϕ(x) =
1

Γ(α)

∫ b

x

(y − x)α−1ϕ(y)dy (2.2)

with Iα−ϕ(x) = Iα+∞,−ϕ(x).
The corresponding left-sided Riemann-Liouville derivative of order α is

Dα+ϕ(x) = (
d

dx
)[α]+1I

1−{α}
+ = (

d

dx
)[α]+1 1

Γ([α] + 1− α)

∫ x

−∞
(x− y)−{α}ϕ(y)dy,

(2.3)
where [.] denotes integer part, while {.} is defined by α = [α]+{α}. The right-sided
Riemann-Liouville derivative is

Dα−ϕ(x) = (− d

dx
)[α]+1I

1−{α}
− = (− d

dx
)[α]+1 1

Γ([α] + 1− α)

∫ +∞

x

(y−x)−{α}ϕ(y)dy.

(2.4)
When α is a positive integer, Dα− and Dα+ are usual right and left-sided derivatives
or order α. A natural question is of whether fractional derivatives defined by (2.3)
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and (2.4) share with derivatives of integer order the property of being left inverses
to the corresponding integrals. In fact, when ϕ is in L1

loc(R), if moreover the
integrals I [α]+1

± is absolutely convergent, we have (Dα±Iα±ϕ)(x) = ϕ(x) a.e., due to
[14, Lemma 4.7]. When the above hypotheses are satisfied, Dα± can be thought of
as being a left inverse to Iα±, which fails to hold if I1

±ϕ and I
[α]+1
± ϕ do not belong

to L1(R), even for ϕ in Lp(R) with 1 < p < 1/α. Marchaud’s definition seems to
give a more appropriate left inverse to fractional integrals.

2.2. Marchaud’s Fractional derivatives. Marchaud’s definition combines gen-
eralized finite differences and fractional integrals. A rather general definition of
finite differences was given by [14] in the form

(∆n
t f)(x) =

1
dn

∣∣∣∣∣∣∣∣
f(x− λ0t) 1 λ0 . . . λn−1

0

f(x− λ1t) 1 λ1 . . . λn−1
1

. . . . . . .
f(x− λnt) 1 λn . . . λn−1

n

∣∣∣∣∣∣∣∣ ,
with

dn =

∣∣∣∣∣∣
1 λ1 . . . λn−1

1

. . . . . .
1 λn . . . λn−1

n

∣∣∣∣∣∣ .
For λ0 = 0, λ1 = 1, . . .λn = n, and with Tt denoting the translation of amplitude
t, the definition of ∆n

t just becomes (Id−Tt)nf(x) = Σnj=0(
n
j )(−1)jf(x−jt), which

is f(x − t) − f(x) for n = 1. With these notations, Marchaud’s derivative Dα
± of

function f is the limit, when ε→ 0+ of

Dα
±,εf(x) =

1∫ +∞
0

t−α−1(1− e−t)ndt

∫ +∞

ε

t−α−1∆n
±tf(x)dt, (2.5)

with n > α. For 0 < α < 1, we have n = 1 and (5) becomes

Dα
±,εf(x) =

−1
Γ(−α)

∫ +∞

ε

t−α−1[f(x)− f(x∓ t)]dt.

In this definition, the relative freedom let to ∆n
t , is useful when α is a complex

number. In view of our objective, we will focus on real valued orders for integrals
and derivatives, hence λ0 = 0, λ1 = 1, . . .λn = n with ∆n

t f(x) = (Id − Tt)nf(x),
used by [15] will be enough. For α = 1, we have to put n = 2 in (5) if we want to
use this expression, but we also can consider that Dα

± is the usual left or right-sided
derivative of order α when α is a non-negative integer.

We thus have a left inverse for Iα± in a wider domain, which in some sense is
optimal, since it provides a characterization of Iα±L

p for 1 < p < 1/α. Indeed, for
0 < α < 1, [15, Theorem 6.2] states the following: If the Lp(R) limit of Dα

±,εf
exists when ε → 0+, or if supε>0‖Dα

±,εf‖Lp(R) is finite, if moreover, f belongs
to Lp(R) with 1 ≤ r < ∞, then f belongs to Iα±L

p(R) and there exists ϕ s.t.
f(x) = Iα±ϕ(x) almost everywhere. in R. The theorem was stated in Lp(R), but
the proof adapts without any modification to Lp]−∞, a] for Dα

+ and to Lp[a,+∞[
for Dα

−. Derivatives Dα
± and Dα± coincide for functions of the form Iα±ϕ with ϕ in

L1
loc such that I [α]+1

± converges absolutely [14].
Other expressions yield the left inverse of Iα±. Among them, the Grünwald-

Letnikov fractional derivative [15] or order α of f is the limit, when mesh h tends
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to zero, of h−α times the series Σ∞
k=0(−1)k(αk )f(x− kh). It provides useful approx-

imations to Riemann-Liouville or Marchaud’s derivatives, connected with finite
differences numerical schemes. Here we present a further expression for the left
inverse of Iα±, not very different from Grünwald-Letnikov operator, since it contains
an integrals in place of the above evocated series. Then, we will discuss the physical
meaning.

2.3. A new expression for the inverse of Iα±. Here we consider 0 < α ≤ 1.
With some modifications, the following adapts to all positive values of α.

Notation Let F be a function, while l is positive. Set

Wα,F
l,± f(x) = l−α−1

∫ +∞

0

f(x∓ t)F (t/l)dt. (2.6)

The limit ofWα,F
l,± f when l tends to zero, if it ever exists, will be denoted by Wα,F

± f .

• We will say that F satisfies Hypothesis (H1) if F belongs to L1(R+) with∫∞
0
F (t)dt = 0.

• We will say that F satisfies Hypothesis (H2) if, in a neighborhood [A,+∞[
of +∞, there exists a function F1 such that

∫ +∞
A

yα|F1(y)|dy < ∞ and
F (x) = F1(x) + λx−α−1, for 0 < α < 1 but F (x) = F1(x) + λx−2−ε with
ε > 0 for α = 1.

We will see that (H1) and (H2) imply that Wα,F
± is a left inverse to Iα±. In this

purpose, let us consider Wα,F
± ◦ Iα±.

Let ϕ belong to Lp[a,+∞[. We have

Wα,F
l,− ◦ Iα−ϕ(x) =

l−α−1

Γ(α)

∫ +∞

0

F (t/l)
∫ +∞

x+t

ϕ(y)(y − x− t)α−1dydt.

Setting t = lT yields

Wα,F
l,− ◦ Iα−ϕ(x) =

l−α

Γ(α)

∫ +∞

0

F (T )
∫ +∞

x+lT

ϕ(y)(y − x− lT )α−1dy dT

=
1

Γ(α)

∫ +∞

0

F (T )
∫ +∞

T

ϕ(x+ lθ)(θ − T )α−1dθ dT,

with y = x+ lθ. Then, Fubini’s theorem yields

Wα,F
l,− ◦ Iα−ϕ(x) =

1
Γ(α)

∫ +∞

0

ϕ(x+ lθ)
∫ θ

0

F (T )(θ − T )α−1 dT dθ, (2.7)

as soon as Iα+(HF )(θ) =
∫ θ
0
F (T )(θ−T )α−1 dT is integrable in R+. Let us use this

point, which will be stated in Lemma 2.2 below. Let H denote Heaviside’s function:
on the right-hand side of (2.7) we have

∫
R ϕ(x + lθ)(Iα+(HF ))(θ)dθ which, by [15,

Theorem 1.3] is an approximation of
∫ +∞
0

Iα+(HF )(θ)dθ times Identity in Lp.
For ϕ in Lp]−∞, a], instead of (2.7) we have

Wα,F
l,+ ◦ Iα+ϕ(x) =

1
Γ(α)

∫ +∞

0

ϕ(x− lθ)
∫ θ

0

F (T )(θ − T )α−1 dTdθ. (2.8)

Hence the following Theorem holds.

Theorem 2.1. Suppose F satisfies hypotheses (H1) and (H2), with 0 < α ≤ 1.

(i) For ϕ in Lp[a,+∞[, Wα
l,− ◦Iα−ϕ tends in Lp[a,+∞[ to

∫ +∞
0

Iα+HF (t)dt×ϕ
when l tends to zero, and pointwise everywhere ϕ is right continuous.
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(ii) For ϕ in Lp]−∞, a], Wα
l,+◦Iα+ϕ tends in Lp]−∞, a] to

∫ +∞
0

Iα+HF (t)dt×ϕ
when l tends to zero, and pointwise everywhere ϕ is left continuous.

It remains to prove the following lemma.

Lemma 2.2. If F satisfies (H1) and (H2), with 0 < α ≤ 1, then
∫ θ
0
F (T )(θ −

T )α−1 dT is integrable in R+.

Proof. If F is as F1 in hypothesis (H2)’s statement, [14, Lemma 4.12] shows that

Γ(α)Iα−(HF )(θ) =
∫ θ

0

F (T )(θ − T )α−1 dT

is in L1. It is enough to prove the lemma for F = − 1
αχ[0,1] + x−α−1χ[1,+∞[ if α is

less than 1, for F = − 1
1+εχ[0,1] + x−2−εχ[1,+∞[ if α is equal to 1, since modifying

F1 will immediately lead to the general case. For α = 1, the result is obvious, for
α less than 1, we have∫ x

0

(x− y)α−1χ[0,1](y)dy =
xα − (x− 1)α

α

for x > 1, and∫ x

0

(x− y)α−1y−α−1χ[1,+∞[(y)dy = x−1(G(1)−G(1/x) +
xα − 1
α

)

when x is large enough, withG being defined byG(X) =
∫X
0

[(1−z)α−1−1]z−α−1dz.
From this we deduce∫ x

0

F (t)(x− t)α−1dt

= α−1(xα−1 − α−1xα(1− (1− 1/x)α)) + x−1(G(1)− α−1)− x−1G(1/x).
(2.9)

Function (1−t)α−1−1
t is continuous and integrable in [0, 1[. In the neighborhood of

0, (1−t)α−1−1
t t−α is equivalent to (1 − α)t−α, hence G(1/x) is equivalent to xα−1

when x is large. Hence x−1G(1/x) is integrable in a neighborhood of +∞. It also is
the case for α−1[xα−1−α−1xα(1− (1−1/x)α). We now will check that G(1)−α−1

is zero. To see this, set g(p, q) =
∫ 1

0
((1 − t)q−1 − 1)tp−1dt. For complex valued p

and q satisfying Re(p) > 0 and Re(q) > 0,
∫ 1

0
(1− t)q−1tp−1dt is a beta function [1]

and we have

g(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

− 1
p
. (2.10)

Let us fix q = α, and vary the complex number p: tp is a function of p, whose
derivative tpLn(t) is dominated by the L1]0, 1[ function tp|Ln(t)| for Re(p) ≥ p0 >
−1, so that, by dominated convergence, g(p, α) is derivable with respect to p. Hence
it is analytic for Re(p) ≥ p0 > −1. Since Γ(q)

Γ(p+q) is also analytic in the neighborhood
of 0 while Γ(p) has a simple pole with residuum 1, the right-hand side of (2.10) is
holomorphic for Re(p) ≥ p0 > −1. Hence relation (2.10) holds for p = −α, and
Lemma 2.2 is proved. �

Therefore Theorem 2.1 holds. It states that the operator Wα,F
l,− , which is defined

on Iα−L
p[a; +∞[, has a limit in Lp[a; +∞[ when l tends to zero. Up to multiplication

by a function of F and α, the limit is a left inverse to Iα−, hence it coincides with
Dα
−. Similarly, Wα,F

l,+ , defined in Iα+L
p]−∞, a], tends to Dα

+, times a function of F
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and α. Theorem 2.1 adapts to higher values of α, provided Hypothesis 1 is made
stronger.

For values of α between 0 and 1, will see that Theorem 2.1 allows us to represent
the flux of particles within the frame work of a wide class of Random Walks.

3. Particles flux for Lévy Flights, in the macroscopic limit

Brownian Motion is a particular case of Lévy Flights. The latters are Continuous
Time Random Walks: a large number of particles perform a succession of indepen-
dent jumps, whose lengths Xi are identically distributed. To be more precise, with l
being a length scale, the density of Xi/l is the normalized αstable Lévy density Lα,θ
of exponent α between 1 and 2 and with skewness parameter θ (see Appendix A).
Waiting times Ti between successive jumps are such that the independent random
variables Ti/τ have density ψ, whose average is 1. Here, for definiteness, we set
ψ(t) = e−t. Looking at the cloud of particles from the macroscopic point of view
means that we let length and time scales l and τ tend to zero. Then, if the scaling
relation lα/τ = K holds [5] [16], the probability of finding a particle in a given
interval tends to a limit, which has a density satisfying a space-fractional diffusion
equation such as (3.7). This implies that the flux of particles satisfies a fractional
generalization of Fick’s law [13]. All these results are based upon Generalsized
Master Equation and Fourier’s analysis.

In fact, we will see that Theorem 2.1 connects more directly particle flux and
fractional derivatives.

3.1. Computing the flux for Lévy flights with length scale l and mean
waiting time τ satisfying lα/τ = K. For a given particle, the location after
nth jump is Σni=0Xi, and it happens at time Σni=0Ti. Let us denote by µ(., t)
the measure giving the probability µ(I, t) that the particle be in interval I at
time t. With this notation, the balance of particles crossing abscissa x during
[t, t + dt[ is the difference of two expressions. The first one is the probability∫ x
−∞ F dα,θ(

x−y
l )dµ(y, t)ψ(0)

τ dt of crossing x to the right, with F dα,θ(y/l) being the

probability
∫ +∞
y

1
lLα,θ(z/l)dz =

∫ +∞
y/l

Lα,θ(z)dz for a jump to have an amplitude

of more than y. The second is the probability
∫ +∞
x

F gα,θ(
x−y
l )dµ(y, t)ψ(0)

τ dt of

crossing x to the left, with F gα,θ(−y/l) being the probability
∫ −y/l
−∞

1
lLα,θ(z/l)dz

for a jump to have an amplitude of more than y, but to the left. The flux is the
probability rate, hence the following difference:

Kl−α
[ ∫ x

−∞
F dα,θ(

x− y

l
)dµ(y, t)−

∫ +∞

x

F gα,θ(
x− y

l
)dµ(y, t)

]
.

When µ(., t) has density C(., t), the flux Qα,θl C(., t)(x) is given by

Qα,θl C(., t)(x) = Kl−α
[ ∫ +∞

0

C(x− y, t)F dα,θ(
y

l
)dy −

∫ +∞

0

C(x+ y)F gα,θ(
−y
l

)dy
]
.

(3.1)
Both integrals are similar to (2.6), except that F dα,θ and F gα,θ(−.) satisfy (H2) with
α − 1 instead of α, according to Appendix A, but of course not (H1). Appendix
B shows that

∫ +∞
0

F dα,θ(y)dy =
∫ +∞
0

F gα,θ(−y)dy = Iα,θ. Hence, with fα,θ being a

compactly supported function of class L1 s.t.
∫ +∞
0

fα,θ(y)dy = Iα,θ, setting F̃ dα,θ =
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F dα,θ − fα,θ and F̃ gα,θ(−y) = F gα,θ(−y) − fα,θ(y) yields functions, satisfying (H1)
and (H2) with α− 1 instead of α. Then, we have Qα,θl C(., t)(x) = Qα,θ+,lC(., t)(x)−
Qα,θ−,lC(., t)(x), with

Qα,θ+,lf(x) = Kl−α
∫ +∞

0

F dα,θ(y/l)(f(x− y)− f(x))dy

= K
[
(Wα−1,F̃d

α,θ

l,+ f)(x) + l−α
∫ +∞

0

fα,θ(y/l)(f(x− y)− f(x))dy
] (3.2)

at the left of x, and

Qα,θ−,lf(x) = Kl−α
∫ +∞

0

F gα,θ(−y/l)(f(x+ y)− f(x))dy

= K
[
(W

α−1,F̃ g
α,θ(−.)

l,− f))(x) + l−α
∫ +∞

0

fα,θ(y/l)(f(x+ y)− f(x))dy
]

(3.3)
at the right. Since F̃ dα,θ and F̃ gα,θ(−.) satisfy (H1) and (H2) with α−1 instead of α,

hence (Wα−1,F̃d
α,θ

l,+ f)(x) tends to
∫ +∞
0

Iα−1
+ (HF̃ dα,θ)(y)dyD

α−1
+ (f)(x) in Lp]−∞, a]

when f belongs to Iα−1
+ Lp]−∞, a] and

(W
α−1,F̃ g

α,θ(−.)
l,− f)(x) tends to

∫ +∞

0

Iα−1
+ (HF̃ gα,θ(−.))(y)dyD

α−1
− (f)(x)

in Lp[a,+∞[ when f belongs to Iα−1
− Lp[a,+∞[. We will see that appropriately

choosing fα,θ allows us to see on the right-hand sides of (3.2) and (3.3) expressions
which are “local fractional derivatives”, in the sense of Kolwankar and Gangal.

3.2. Kolwankar and Gangal’s local fractional derivatives. The notion of “a
local fractional derivative” was introduced [9] in view of building a tool, designed for
the study of continuous but nowhere differentiable functions frequently occurring
in Nature and economics. Those fractional derivatives share some properties with
previously defined ones, such as chain rule or generalized Leibniz rule [2]. They are
very useful for to compute fractal dimensions of graphs. In fact, they vanish for
smooth enough functions, and hence can become “invisible”.

For q between 0 and 1, the right-sided Kolwankar and Gangal’s [9] fractional
derivative of order q of function f , computed at x, will be denoted by

DKG,q
+ f(x) = lim

h→0+

d

dh
I1−q
x,+ (f(.)− f(x))(x+ h).

Let us suppose that f is continuous is [x, x + ε], with positive ε. When the limit
exists, it is equal to the limit, when h tends to 0+, of h−1I1−q

x,+ (f(.)− f(x))(x+ h),
due to l’Hôpital’s rule and to limh→0(I

1−q
x,+ (f(.)− f(x))(x+h)) = 0 . Moreover, we

have h−1I1−q
x,+ (f(.)− f(x))(x+ h) = h−q

Γ(1−q)
∫ 1

0
(1− t)−q(f(x+ th)− f(x))dt.

At the left, we have

DKG,q
− f(x) = lim

h→0+

d

dh
I1−q
x,− (f(x)− f(.))(x− h),

also equal to the limit, when h tends to 0+, of h−1I1−q
x,− (f(x)− f(.))(x− h). If, for

positive and finite b− a and with q < q+ ε < 1, function f belongs to Hölder space
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Hq+ε[a, b], then supx,y∈[a,b](
|f(y)−f(x)|
|y−x|q+ε ) is finite, hence Kolwankar and Gangal’s

local derivatives of order q are zero in [a, b].
For α < 2, an appropriate choice of fα,θ yields that the second expressions on

the right-hand sides of (3.2) and (3.3) tend to right and left-sided local fractional
derivatives of order α− 1. The choice is fα,θ(t) = Iα,θ(2−α)(1− t)1−αχ[0,1]; then,
we have l−α

∫ +∞
0

fα,θ(y/l)(f(x+y)−f(x))dy = Iα,θl1−α(2−α)
∫ 1

0
(1− t)1−α(f(x+

lt) − f(x))dt. Consequently, when f has a local derivative of order α − 1 at point
x+, l−α

∫ +∞
0

fα,θ(y/l)(f(x+ y)− f(x))dy has a limit when l tends to zero, and the
limit is Iα,θΓ(3−α) times the right-sided local derivative of order 1−α. The same
holds at the left of x: l−α

∫ +∞
0

fα,θ(y/l)(f(x− y)− f(x))dy tends to Iα,θΓ(3− α)
times the left-sided local derivative of order 1 − α. When f is differentiable at x,
the limit is zero.

For α = 2, we have the usual derivative instead of local Kolwankar and Gangal’s
derivatives, the above choice of fα,θ is no longer relevant, but the end of next
subsection will show that the method yields Fick’s law simply and directly.

We now are ready for looking at the limit of operator flux Qα,θl when l tends to
zero.

3.3. The flux, in the l→ 0 limit. We know from (2.1) that the flux of particles,
passing trough x at time t, is Qα,θl C(., t)(x) = Qα,θ+,lC(., t)(x)−Qα,θ−,lC(., t)(x). More-
over, according to (3.2) and (3.3), Qα,θ±,lf(x) splits into two terms. For 0 < α < 2,

with moreover Dα−1
± f ∈ Lp, the first one, KWα−1,F̃d

α,θ

l,± f , tends to Kλ±Dα−1
± f in

Lp, according to Theorem 2.1, with

λ+ =
∫ +∞

0

Iα−1
+ HF̃ dα,θ(y)dy, (3.4)

λ− =
∫ +∞

0

Iα−1
+ HF̃ gα,θ(−y)dy. (3.5)

The second term Kl−α
∫ +∞
0

fα,θ(y/l)(f(x∓y)−f(x))dy in (3.2) and (3.3) tends to
KIα,θDKG,α−1

± f at points where the local fractional derivative exists. Parameter
Iα,θ can be computed numerically, with the help of integral expressions [20] for
stable Lévy distributions. It also can be deduced from Appendix B. Oppositely,
direct computation of λ± from (3.4) and (3.5) is not easy, but can be avoided and

replaced by directly checking Wα−1,F̃d,g
αθ

± f and Dα−1
± f , with particular functions f

in Iα−1
+ ]−∞, a] or Iα−1

− [a,+∞[ such that the local derivative is zero.
Let us show that considering f = χ[1,2[ yields λ−. Indeed, for x ∈]1, 2[, the local

derivative exists and is equal to zero, while we have

Qα,θ−,lχ[1,2[(x) = l−α
∫ +∞

2−x
F gα,θ(−y/l)dy = Cα,−θ

(2− x)1−α

α− 1
+O(l)

for 1 < α < 2, with Cα,−θ being defined by (3.7). But

Dα−1
− χ[1,2[(x) =

−1
1− α

∫ +∞

2−x
y−αdy = − (2− x)1−α

Γ(2− α)
.

For x ≥ 2, we have Dα−1
− χ[1,2[(x) = 0, hence Dα−1

− χ[1,2[ belongs to Lp[1,+∞[
for 1 ≤ p < 1

α−1 , so that χ[1,2[ belongs to Iα−1
− Lp[1,+∞[. Hence, according to
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[15, Theorem 6.2], we have λ− = −Γ(2−α)
α−1 Cα,−θ = sin π

2 (α+θ)

sinπα , and similarly λ+ =
sin π

2 (α−θ)
sinπα . Hence for sufficiently well-behaved functions (in Lp(R) ∩ Hα−1+ε(R))

the limit of the operator, giving the flux is

f 7→ K(
sin π

2 (α− θ)
sinπα

Dα−1
+ f −

sin π
2 (α+ θ)
sinπα

Dα−1
− f), (3.6)

which is a fractional variant of Ficks law. In fact, for α = 2, the method has to be
slightly adapted but yields Fick’s law itself.

In subsection 2.2, we pointed out that case α = 2 has to be considered separately.
To do this, take A(l) a function, tending to +∞ when l tends to zero, with lA(l)
tending to zero: for instance, we can choose A(l) = l−1/2. Parameter θ is equal
to zero, Lθα is even and superscripts d and g in F g,d2,0 are of no use: instead we put
F2,0. We have

Q2,0
−,lf(x) = Kl−2

∫ +∞

0

F2,0(y/l)(f(x+ y)− f(x))dy

= Kl−1

∫ +∞

0

F2,0(y)(f(x+ ly)− f(x))dy

= K

∫ A(l)

0

F2,0(y)
f(x+ ly)− f(x)

ly
dy

+ l−1K

∫ +∞

A(l)

F2,0(y)(f(x+ ly)− f(x))dy.

If f is differentiable at point x,∫ A(l)

0

F2,0(y)
f(x+ ly)− f(x)

ly
dy

tends to the usual derivative f ′(x), times
∫ +∞
0

F2,0(y)ydy, itself equal to 1/2 due
to F2,0(x) =

∫ +∞
x

1
2
√
π
e−y

2/4dy. And l−1|
∫ +∞
A(l)

F2,0(y)(f(x + ly) − f(x))dy| is less

than l−2F2,0(A(l))
∫ +∞
lA(l)

|f(x + y) − f(x)|dy, which tends to 0 when f is fixed in
L1. Similar results are obtained on the left side of x, hence for α = 2, in the limit
“l tends to zero” operator flux tends to K d

dxf(x) which satisfies Fick’s law.
The fractional version (3.6) implies a space-fractional variant of heat equation.

3.4. Space-fractional heat equation. For functions f of the form Iα−1
± ϕ with ϕ

in Lp(R) ∩ L1(R), if, moreover, f belongs to Hα−1+ε, (3.6) is of the form

K

Γ(2− α)
d

dx

[ sin π
2 (α− θ)
sinπα

∫ x

−∞
(x− y)1−αf(y)dy

+
sin π

2 (α+ θ)
sinπα

∫ +∞

x

(y − x)1−αf(y)dy
]
,

which yields operator flux Q∗ for particles performing Lévy Flights in the diffusive
limit (l and τ tend to zero with lα/τ = K), when f is the concentration at time
t. Casting the expression for Q∗C∗ into mass conservation law ∂tC

∗ = −∂xQ∗C∗

yields for the evolution of the concentration C∗(x, t)

∂tC
∗(x, t) = K∇θx,αC∗(x, t) (3.7)
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with ∇θx,α being the Riesz-Feller fractional derivative of order α and skewness pa-
rameter θ [8], defined by

(∇θx,αf)(x) =
−1

Γ(2− α)
d2

dx2

[ sin π
2 (α− θ)
sinπα

∫ x

−∞
(x− y)1−αf(y)dy

+
sin π

2 (α+ θ)
sinπα

∫ +∞

x

(y − x)1−αf(y)dy
]
,

(3.8)

in agreement with [16].
Two points were essential in the reasoning, leading to (3.6) and (3.8). The

first one is the asymptotic behavior, for x → +∞, of the cumulated probabilities
P{X > x} and P{X < −x} for a jump to have an amplitude X larger than x, and
directed to the right or to the left. Both probabilities have to satisfy (H2) with
α−1 instead of α. An other property of stable laws was used, in view of (H1): it is
the fact that the integrals, over R+, of P{X > x} and P{X < −x}, are equal. This
allowed us to subtract this integral times f(x) from both sides of the difference,
giving the flux, without any net change. In fact, any Continuous Time Random
Walk made of successive independent jumps, identically distributed according to a
random variable lX satisfying both conditions, has a flux whose limit is (3.6) when
l tends to zero, provided mean waiting time τ exists with also lα/τ = K.

Conclusion

Among many objects, interpolating between derivatives of integer orders, several
tools termed fractional derivatives, were designed for various purposes. Some of
them are connected with the idea that integration and derivation are inverses of
each other.

Within this frame work, there are several ways for to define fractional derivatives,
which are more or less similar to each other. They are more or less interesting,
according to the sets of functions, which we want them to operate on. Among them,
Grünwald-Letnikov derivatives led to performing numerical schemes. Theorem 2.1
indicates a novel definition of fractional derivatives, not so far from Grünwald-
Letnikov’s: an integral replaces a series. It seems to be appropriate for to represent
fluxes of particles performing Continuous Time Random Walks satisfying some
hypotheses. Among them, Lévy flights play an important role, since stable laws
are ubiquitous in Nature. We developped this point for random walks in a free
one-dimensional space, also using the local derivatives invented by Kolwankar and
Gangal for fractal graphs.

Combining those objects also applies to situations with boundary conditions, for
instance in a half space {x ∈ R/x > 0} limited by a wall at x = 0. There are
several possibilities for the interaction between wall and particles. For instance, we
can imagine that they do not exchange any energy: particles bouncing on the wall
continue the distance, they had to fly if there were no wall, but they stay on the
same side. Then, when writing down the balance of particles crossing abscissa x,
we have to take into account that, among random walkers flying to the left (in the
direction of the wall) some of them bounce and come back to the right of x: they
have to be excluded from balanceWl,−. If a particle located in y ∈]0, x[ has to jump
a length larger than |y − 2x| to the left, it arrives at the right of the wall and has
to be taken into account in Wl,+. By doing this, we obtain that the flux through x
is the sum of two terms. The first one is the flux corresponding to a concentration
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profile equal to the even extension of the actual one, to a free space without any wall.
The second term is proportional to the left-sided Riemann-Liouville or Marchaud’s
derivative of order α − 1, if α denotes the stability exponent of the jump length
distribution of the Lévy flight. It contains a factor, which becomes zero when the
distribution is symmetric, in agreement with results [10], previously obtained by an
other method.

Appendix A: Densities of alpha stable Lévy laws

Stable laws are a generalization of Gaussian statistics. In many occasions, and
here also, the word “stable” refers to some property, invariant under a definite set
of transformations, as in the following definition.
Definition: Let X be a random variable, distributed according to the probability
law F . Random variable X and law F are said to be stable if [11] for every
(a1, a2) ∈ R+2 and (b1, b2) ∈ R2, there exist a ∈ R+ and b ∈ R such that F (a1x+
b1) ∗ F (a2x+ b2) (the law of the random variable a1X1 + b1 + a2X2 + b2, with X1

and X2 being independent and distributed according to F ) be equal to F (aX + b).
When F is as in the above definition, for any sequence of independent random

variables Xi identically distributed according to F , there exists a sequence cn of
positive numbers such that X1+...Xn

cn
be distributed according to F itself for any

positive integer n [6] [7]. Moreover, cn is a power of n, and the inverse α of the
exponent belongs to ]0, 2] and serves as a label for the law: it is called the stability
exponent of the law, which is said to be α stable. For α = 2 we have normal
law, which is symmetric. For α ∈]0, 2[, stable laws may be symmetric or skewed.
Stable laws play an important role in Nature because they are attractors, which
are defined below.
Definition: Let F be the probability of a sequence of independent random variables
Xn. The probability law G is an attractor for F if there exists sequences An and
Bn, with Bn > 0, such that the law of X1+···+Xn

Bn
−An tends to G when n tends to

∞ [6].
Loosely speaking, α stable laws are attractors for probability laws whose density

behaves asymptotically as x−α−1 if α belongs to ]0, 2[, normal law (with α = 2)is
an attractor for probability laws whose asymptotics is x−α

′−1 with α′ ≥ 2 [6] [7].
Except for some values (e.g. α = 1 or 2), the density of a stable law cannot be

given in closed form. But, up to translations and dilatations, the Fourier transform
is e−|k|

αeisign(k)πθ/2
. The corresponding density Lθα satisfies Lθα(−x) = L−θα (x). Up

to dilatations and translations, two labels determine stable densities: the stability
exponent α, and the skewness parameter θ, which belongs to [α− 2, 2− α].

In neighborhoods of ∞, except for α = 2, Lθα behaves as a negative power of the
variable [19] [12]. For 1 < α < 2, α− 2 < θ ≤ 2− α and x > A > 0, we have

Lθα(x) =
1
πx

Σ+∞
n=1(−x−α)n

Γ(1 + nα)
n!

sin
nπ

2
(θ − α). (3.9)

We will denote by Cθα = −1
π Γ(1+α) sin π

2 (θ − α) the coefficient of the leading term
in expansion (3.9).
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Appendix B: Integrals of cumulated alpha stable Lévy laws

Due to symmetry, the integrals
∫ +∞
0

F dα,θ(y)dy and
∫ +∞
0

F gα,θ(−y)dy are equal
for θ = 0. In fact, and this point is important for us, this equality holds for all
admissible values of θ. Let us prove the claim.

First, notice that F gα,θ(−x) =
∫ −x
−∞ Lθα(y)dy =

∫ +∞
x

L−θα (−y)dy = F dα,−θ(x).

Then, we will uses Mellin’s transform, defined by Mω(z) =
∫ +∞
0

tz−1ω(t)dt for
function ω. With z = 1 we see that

∫ +∞
0

F dα,θ(y)dy = MF dα,θ(1), while we have
F dα,θ(x) = I1

−L
−θ
α (x), hence

∫ +∞
0

F dα,θ(y)dy = (MI1
−L

−θ
α )(1).

For z > 1 and sufficiently good-behaved functions in neighborhoods of ∞, such
as Lθα, we have

(MI1
−ω)(z) =

Γ(z)
Γ(z + 1)

(Mω)(z + 1),

for z < α according to [14] page 44. From this, due to F dα,θ(x) =
∫ +∞
x

Lθα(y)dy =
I1
−L

θ
α(x), we deduce

(MF dα,θ)(z) =
Γ(z)

Γ(z + 1)
(MLθα)(z + 1).

The Mellin transform MLθα is given in [19]:

(MLθα)(z) =
1
α

Γ(z)Γ((1− z)α−1)
Γ((1− z)α−θ2α )Γ(1− (1− z)α−θ2α )

,

which is of the form

(MLθα)(z) =
1
πα

Γ(z)Γ(
1− z

α
) sin ((1− z)π

α− θ

2α
) (3.10)

due to complements formula for Gamma functions [1]. In fact, [19] proved (20)
for 0 < Re(z) < 1. Nevertheless, MLθα(z), as a function of z, is holomorphic for
0 < Re(z) < α+ 1, due to the behavior of Lθα(x) for large real values of x. On the
right-hand side of (3.10), Γ(z)Γ((1− z)α−1) is holomorphic also except at poles of
Γ((1−z)α−1), which means that we have to exclude 1 from {z ∈ C/0 < Re(z) < α+
1}. Then, analytic continuation extends (3.10) to {z ∈ C/0 < Re(z) < α+1}−{1}.

¿From this we deduce∫ +∞

0

F dα,θ(y)dy = (MF dα,θ)(2)

=
Γ(2)Γ(−1/α)

απ
sinπ

θ − α

2α

= −Γ(−1/α)
απ

cosπ
θ

2α
.

We see that
∫ +∞
0

F dα,θ(y)dy is an even function of θ, hence the claimed result.
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