\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small Sixth Mississippi State Conference on Differential Equations and Computational Simulations, {\em Electronic Journal of Differential Equations}, Conference 15 (2007), pp. 127--139.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \setcounter{page}{127} \title[\hfilneg EJDE-2006/Conf/15\hfil A multi-point boundary-value problem] {A non-resonant generalized multi-point boundary-value problem of Dirichelet type involving a p-laplacian type operator} \author[C. P. Gupta\hfil EJDE/Conf/15 \hfilneg] {Chaitan P. Gupta} \address{Chaitan P. Gupta \newline Department of Mathematics, 084\\ University of Nevada, Reno\\ Reno, NV 89557, USA} \email{gupta@unr.edu} \thanks{Published February 28, 2007.} \subjclass[2000]{34B10, 34B15, 34L30, 34L90} \keywords{Generalized multi-point boundary value problems; non-resonance; \hfill\break\indent p-Laplace type operator; a priori estimates; topological degree} \begin{abstract} We study the existence of solutions for the generalized multi-point boundary-value problem \begin{gather*} (\phi (x'))'=f(t,x,x')+e\quad 00$, \begin{equation} \limsup_{z\to \infty }\frac{\phi (Mz)}{\phi (z)}\equiv \alpha (M)<\infty . \label{cond1} \end{equation} (b) For any $\sigma $, $0\leq \sigma <1$, \begin{equation} \widetilde{\alpha }(\sigma )\equiv \limsup_{z\to \infty }\frac{ \phi (\sigma z)}{\phi (z)}<1. \label{cond2} \end{equation} \begin{proposition} \label{Prop0} The boundary-value problem \eqref{1hmbp} has only the trivial solution if and only if \begin{equation} \Big(\sum_{i=1}^{m-2}a_i\xi _i\Big)\Big(1-\sum_{j=1}^{n-2}b_j\Big)\neq \Big(1-\sum_{i=1}^{m-2}a_i\Big)\Big(\sum_{j=1}^{n-2}b_j\tau _j-1\Big). \label{NRcond} \end{equation} \end{proposition} \begin{proof} It is obvious that $x(t)=At+B$, $t\in [0,1]$, $A$, $B\in \mathbb{R}$, is a general solution for the differential equation \begin{equation*} (\phi (x'))'=0, \quad 00$ be such that $\widetilde{\alpha }(\sigma ^{\ast })+\varepsilon <1$ and the constant $C_{\varepsilon }$ be such that \begin{equation} \phi (\sigma ^{\ast }z)\leq (\widetilde{\alpha }(\sigma ^{\ast })+\varepsilon )\phi (z)+C_{\varepsilon },\quad \text{for every }z\in \mathbb{R}. \label{eq1} \end{equation} \begin{proposition}\label{Prop2} Let $\xi _i$,$\tau _j\in (0,1)$, $a_i$, $b_j\in \mathbb{R}$, $i=1, 2, \dots , m-2$, $j=1, 2, \dots, n-2$, $0<\xi _{1}<\xi _{2}<\dots <\xi _{m-2}<1$, $0<\tau _{1}<\tau _{2}<\dots <\tau _{n-2}<1$, with $(\sum_{i=1}^{m-2}a_i\xi _i)(1-\sum_{j=1}^{n-2}b_j)\neq (1-\sum_{i=1}^{m-2}a_i)(\sum_{j=1}^{n-2}b_j\tau _j-1)$ be given. Also let the function $x(t)$ be such that $x(t)$, $x'(t)$ be absolutely continuous on $[0,1]$ with $(\phi (x'))'\in L^{1}(0,1)$ and $x(0)=\sum_{i=1}^{m-2}a_ix(\xi _i)$, $x(1)=\sum_{j=1}^{n-2}b_jx( \tau _j)$. Then \begin{equation} \| \phi (x')\| _{\infty }\leq \frac{1}{1-\widetilde{ \alpha }(\sigma ^{\ast })-\varepsilon }\| (\phi (x'))'\| _{L^{1}(0,1)}+\frac{C_{\varepsilon }}{1-\widetilde{ \alpha }(\sigma ^{\ast })-\varepsilon }, \label{est17} \end{equation} where $\varepsilon $ and $C_{\varepsilon }$ are as in \eqref{eq1}. \end{proposition} \begin{proof} For $i=1,2,\dots,m-2$ we see using mean value theorem that there exist $\chi _i$ in $[0,1]$ such that \begin{equation*} x(\xi _i)-x(0)=\xi _ix'(\chi _i). \end{equation*} It then follows using $x(0)=\sum_{i=1}^{m-2}a_ix(\xi _i)$ that \begin{equation} (1-\sum_{i=1}^{m-2}a_i)x(0)=\sum_{i=1}^{m-2}a_i\xi _ix'(\chi _i). \label{eq2} \end{equation} Again, for $j=1,2,\dots,n-2$ we see using mean value theorem that there exist $\lambda _j$ in $[0,1]$ such that \begin{equation*} x(1)-x(\tau _j)=(1-\tau _j)x'(\lambda _j), \end{equation*} and we see using $x(1)=\sum_{j=1}^{n-2}b_jx(\tau _j)$ that \begin{equation} (\sum_{j=1}^{n-2}b_j-1)x(1)=\sum_{j=1}^{n-2}b_j(1-\tau _j)x'(\lambda _j). \label{eq3} \end{equation} Also, we see that there exists a $\lambda \in [0,1]$ such that \begin{equation} x(1)-x(0)=x'(\lambda ). \label{eq4} \end{equation} Now, we see from equations (\ref{eq2}), (\ref{eq3}), (\ref{eq4}) that \begin{align*} &(1-\sum_{i=1}^{m-2}a_i)(\sum_{j=1}^{n-2}b_j-1)x'(\lambda ) \\ &=(1-\sum_{i=1}^{m-2}a_i)(\sum_{j=1}^{n-2}b_j-1)(x(1)-x(0)) \\ &=(1-\sum_{i=1}^{m-2}a_i)(\sum_{j=1}^{n-2}b_j(1-\tau _j) x'(\lambda _j))-(\sum_{j=1}^{n-2}b_j-1)(\sum_{i=1}^{m-2} a_i\xi_ix'(\chi _i)). \end{align*} It follows that \begin{align*} &(1-\sum_{i=1}^{m-2}a_i)(1-\sum_{j=1}^{n-2}b_j)x'(\lambda )+\sum_{j=1}^{n-2}b_j(1-\tau _j)(1-\sum_{i=1}^{m-2}a_i)x'(\lambda _j) \\ &+\sum_{i=1}^{m-2}a_i\xi _i(1-\sum_{j=1}^{n-2}b_j)x'(\chi_i)=0. \end{align*} Using, next, the intermediate value theorem we see that there exist $\upsilon _{1}$, $\upsilon _{2}$ in $[0,1]$ such that \begin{equation} Ax'(\upsilon _{1})-Bx'(\upsilon _{2})=0, \label{eq15} \end{equation} where $A$, $B$ are as defined in (\ref{defA}), (\ref{defB}). Suppose, now, one of $x'(\upsilon _{1})$, $x'(\upsilon _{2})$ is zero. We then see from one of the following equations \begin{equation} \phi (x'(t))=\phi (x'(\upsilon _{k}))+\int_{\upsilon _{k}}^{t}(\phi (x'))'(s)ds,\quad k=1,2;\; t\in [0,1] \label{eq5} \end{equation} that \begin{equation} \| \phi (x')\| _{\infty }\leq \| (\phi (x'))'\| _{L^{1}(0,1)}. \label{est7} \end{equation} Let us, next, suppose that both $x'(\upsilon _{1})$, $x'(\upsilon _{2})$ are non-zero. Since, now, $A\neq B$, in view of Lemma \ref{lemma1} we see from equation (\ref{eq15}) that $x'(\upsilon _{1})\neq x'(\upsilon _{2})$. We now use the equations \begin{gather*} \phi (x'(t)) =\phi (x'(\upsilon _{1}))+\int_{\upsilon _{k}}^{t}(\phi (x'))'(s)ds =\phi (\frac{B}{A}x'(\upsilon _{2}))+\int_{\upsilon _{k}}^{t}(\phi (x'))'(s)ds, \\ \phi (x'(t)) =\phi (x'(\upsilon _{2}))+\int_{\upsilon _{k}}^{t}(\phi (x'))'(s)ds =\phi (\frac{A}{B}x'(\upsilon _{1}))+\int_{\upsilon _{k}}^{t}(\phi (x'))'(s)ds, \end{gather*} along with the definition of $\sigma ^{\ast }$, as given in \eqref{eq0}, (\ref{eq1}) and the estimate (\ref{est7}) to obtain the estimate (\ref{est17}). This completes the proof of the proposition. \end{proof} \section{Existence Theorem} Let $\phi $ be an odd increasing homeomorphism from $\mathbb{R}$ onto $\mathbb{R}$ satisfying $\phi (0)=0$, $f:[0,1]\times \mathbb{R}\times \mathbb{R}\to \mathbb{R}$ be a function satisfying Carath\'{e}odory conditions and $e:[0,1]\to \mathbb{R}$ be a function in $L^{1}[0,1]$. Let $\xi _i$, $\tau _j\in (0,1)$, $a_i$, $b_j\in \mathbb{R}$, $i=1, 2,\dots,m-2$, $j=1,2,\dots,n-2$, $0<\xi _{1}<\xi _{2}<\dots <\xi _{m-2}<1$, $0<\tau _{1}<\tau _{2}<\dots <\tau _{n-2}<1$ with $(\sum_{i=1}^{m-2}a_i\xi _i)(1-\sum_{j=1}^{n-2}b_j)\neq (1-\sum_{i=1}^{m-2}a_i)(\sum_{j=1}^{n-2}b_j\tau _j-1)$. \begin{theorem} \label{Thm1} Let $f:[0,1]\times \mathbb{R}\times \mathbb{R}\to \mathbb{R}$ be a function satisfying Carath\'{e}odory's conditions such that there exist non-negative functions $d_{1}(t)$, $d_{2}(t)$, and $r(t)$ in $L^{1}(0,1)$ such that \begin{equation*} |f(t,u,v)|\leq d_{1}(t)\phi (|u|)+d_{2}(t)\phi (|v|)+r(t), \end{equation*} for a. e. $t\in [0,1]$ and all $u$, $v\in \mathbb{R}$. Suppose, further, \begin{equation} \alpha (M)\|d_{1}\|_{L^{1}(0,1)}+\|d_{2}\|_{L^{1}(0,1)}<1-\widetilde{\alpha } (\sigma ^{\ast }) \label{existcond} \end{equation} where $M$ is as defined in Proposition \ref{Prop1}, $\alpha (M)$ is as defined in \eqref{cond1}, $\sigma ^{\ast }$ and $\widetilde{\alpha }(\sigma ^{\ast })$ are as defined in \eqref{eq0}, \eqref{eq1}. Then, for every given function $e(t)\in L^{1}[0,1]$, the boundary value problem \eqref{1mbp} has at least one solution $x(t)\in $ $C^{1}[0,1]$. \end{theorem} \begin{proof} We consider the family of boundary-value problems \begin{equation} \begin{gathered} (\phi (x'))'=\lambda f(t,x,x')+\lambda e, 00$, independent of $\lambda \in [0,1]$, such that if $x(t)\in C^{1}[0,1]$ is a solution to (\ref {eq6}), equivalently to the boundary value problems (\ref{f1mbp}), for some $\lambda \in [0,1]$ then $\|x\|_{C^{1}[0,1]}0$ such that $\widetilde{\alpha }(\sigma ^{\ast })+\varepsilon <1$ and \begin{equation} (\alpha (M)+\varepsilon )\|d_{1}\|_{L^{1}(0,1)}+\|d_{2}\|_{L^{1}(0,1)}<1- \widetilde{\alpha }(\sigma ^{\ast })-\varepsilon , \label{eq9} \end{equation} which is possible to do, in view of our assumption (\ref{existcond}). Here $M $ is as defined in Propostion \ref{Prop1} and $\alpha (M)$ is as defined in \eqref{cond1} so that for the $\varepsilon >0$, chosen above, there exists a constant $C_{\varepsilon }^{1}>0$ such that \begin{equation} \phi (Mz)\leq (\alpha (M)+\varepsilon )\phi (z)+C_{\varepsilon }^{1},\quad \text{for every }z\in \mathbb{R}. \label{eq10} \end{equation} Also, from Proposition \ref{Prop2} we see that there is a constant $C_{\varepsilon }^{2}>0$, for the chosen $\varepsilon >0$, such that \begin{equation} \phi (\|x'\|_{\infty })\leq \frac{1}{1-\widetilde{\alpha }(\sigma ^{\ast })-\varepsilon }\|(\phi (x'))'\|_{L^{1}(0,1)}+C_{\varepsilon }^{2}. \label{eq11} \end{equation} We, now, see from the equation in (\ref{f1mbp}), using our assumptions on the function $f$, Proposition \ref{Prop1}, and estimates (\ref{eq10}), (\ref{eq11}) that \begin{align*} &\|(\phi (x'))'\|_{L^{1}(0,1)} \\ &\leq \phi (\|x\|_{\infty })\|d_{1}\|_{L^{1}(0,1)}+\phi (\|x'\|_{\infty })\|d_{2}\|_{L^{1}(0,1)}+\|r\|_{L^{1}(0,1)}+\|e\|_{L^{1}(0,1)} \\ &\leq \phi (M\|x'\|_{\infty })\|d_{1}\|_{L^{1}(0,1)}+\phi (\|x'\|_{\infty})\|d_{2}\|_{L^{1}(0,1)}+\|r\|_{L^{1}(0,1)}+\|e\|_{L^{1}(0,1)} \\ &\leq ((\alpha (M)+\varepsilon)\|d_{1}\|_{L^{1}(0,1)} +\|d_{2}\|_{L^{1}(0,1)})\phi (\|x'\|_{\infty})+\|r\|_{L^{1}(0,1)} +\|e\|_{L^{1}(0,1)} \\ &\quad +C_{\varepsilon }^{1}\|d_{1}\|_{L^{1}(0,1)} \\ &\leq \frac{(\alpha (M)+\varepsilon )\|d_{1}\|_{L^{1}(0,1)}+\|d_{2}\|_{L^{1}(0,1)}}{1-\widetilde{\alpha }(\sigma ^{\ast })-\varepsilon }\|(\phi (x'))'\|_{L^{1}(0,1)}+C\varepsilon , \end{align*} where $C\varepsilon =\|r\|_{L^{1}(0,1)}+\|e\|_{L^{1}(0,1)}+C_{\varepsilon }^{1}\|d_{1}\|_{L^{1}(0,1)}+C_{\varepsilon }^{2}[(\alpha (M)+\varepsilon )\|d_{1}\|_{L^{1}(0,1)}+\|d_{2}\|_{L^{1}(0,1)}]$. It, now, follows from (\ref{eq9}) that there exists a constant $R_{0}$, independent of $\lambda \in [0,1]$, such that if $x(t)\in C^{1}[0,1]$ is a solution to the boundary value problems (\ref{f1mbp}) for some $\lambda \in [0,1]$ then \begin{equation*} \|(\phi (x'))'\|_{L^{1}(0,1)}\leq R_{0}. \end{equation*} This combined with (\ref{eq11}) and (\ref{est0}) give that there exists a constant $R>0$ such that \begin{equation*} \|x\|_{C^{1}[0,1]}0 \\ -1, &\text{if }\det \mathbb{A}<0. \end{cases} \end{equation*} Accordingly, we see from the non-resonance assumption \eqref{NRcond} i.e. \[ \det \mathbb{A=(}1-\sum_{i=1}^{m-2}a_i)(1-\sum_{j=1}^{n-2}b_j\tau _j)+(\sum_{i=1}^{m-2}a_i\xi _i)(1-\sum_{j=1}^{n-2}b_j)\neq 0 \] that $\deg _{LS}(I-\Psi (\cdot ,1),B(0,R),0)\neq 0$ and there is $x(t)\in B(0,R)\subset C^{1}[0,1]$ that satisfies \begin{equation*} x=\Psi (x,1), \end{equation*} equivalently $x(t)$ is a solution to the boundary value \eqref{1mbp}. This completes the proof of the theorem. \end{proof} \begin{thebibliography}{99} \bibitem{B} Bai, Cuan-zhi and Fang, Jin-xuan; \emph{Existence of multiple positive solutions for nonlinear $m$-point boundary value problems}, Applied Mathematics and Computation, 140 (2003), 297-305. \bibitem{b1} Bitsadze A. V., \emph{On the theory of nonlocal boundary value problems}, Soviet Math. Dokl. 30(1984), No.1, p. 8-10. \bibitem{b2} Bitsadze A. V., \emph{On a class of conditionally solvable nonlocal boundary value problems for harmonic functions}, Soviet Math. Dokl. 31(1985), No. 1, p. 91-94. \bibitem{bs} Bitsadze A. V. and Samarski\u{\i} A. A.; \emph{On some simple generalizations of linear elliptic boundary problems}, Soviet Math. Dokl. 10(1969), No. 2, p. 398-400. \bibitem{FW1} Feng W. and Webb J. R. L.; \emph{Solvability of three-point boundary value problems at resonance}, Nonlinear Analysis T.M.A. 30(1997) 3227-3238 . \bibitem{FW2} Feng W. and Webb J.R.L., \emph{Solvability of $m$-point boundary value problems with nonlinear growth}, J. Math. Anal. Appl. 212 (1997) 467--480. \bibitem{GGM1} Garcia-Huidobro M., Gupta C. P. and Manasevich R., \emph{Solvability for a Non-linear Three-Point Boundary Value problem with p-Laplacian-Like Operator at Resonance}, Abstract Analysis and Applications, Vol. 6, No. 4, (2001) pp. 191-213. \bibitem{GGM2} Garcia-Huidobro M., Gupta C. P. and Manasevich R., \emph{An m-point boundary value problem of Neumann type for a p-Laplacian like operator}, Nonlinear Analysis, 56(2004) 1071-1089. \bibitem{GGM3} Garcia-Huidobro M., Gupta C. P. and Manasevich R., \emph{A Dirichelet-Neumann m-Point bvp with a p-Laplacian Like operator}, Nonlinear Analysis, 62(2005) 1067-1089. \bibitem{GM} Garcia-Huidobro M. and Manasevich R., \emph{A three point boundary value problem containing the operator $(\phi (u'))'$}, Discrete and Continuous Dynamical Systems, Proceedings of the fourth international conference on dynamical systems and differential equations, Wilmington, (2003), 313-319. \bibitem{GU1} Gupta C. P., \emph{Solvability of a three-point boundary value problem for a second order ordinary differential equation}, Journal of Mathematical Analysis and Applications, 168(1992) 540-551. \bibitem{GU2} Gupta C. P., \emph{A note on a second order three-point boundary value problem}, Journal of Mathematical Analysis and Applications, 186(1994) 277-281. \bibitem{GU3} Gupta C. P., \emph{A second order m-point boundary value problem at resonance}, Nonlinear Analysis T.M.A., 24(1995) 1483-1489. \bibitem{GU4} Gupta C. P. , \emph{Existence theorems for a second order m-point boundary value problem at resonance}, International Jour. Math. \& Math. Sci. 18(1995) 705-710. \bibitem{GU5} Chaitan P. Gupta, \emph{Solvability of a multi-point boundary value problem at resonance}, Results in Math., 28(1995) 270-276. \bibitem{GU6} Gupta C. P., \emph{A generalized Multi-Point Boundary Value Problem for Second Order Ordinary Differential Equations}, Applied Mathematics and Computation 89(1998), p. 133-146. \bibitem{GNT1} Gupta C. P., Ntouyas S., Tsamatos P.Ch., \emph{On an m-point boundary value problem for second order ordinary differential equations}, Nonlinear Analysis T.M.A., 23(1994) 1427-1436. \bibitem{GNT2} Gupta C. P., Ntouyas S., Tsamatos P.Ch., \emph{Solvability of an m-point boundary value problem for second order ordinary differential equations}, Journal of Mathematical Analysis and Applications, 189(1995) 575-584. \bibitem{GNT3} Gupta C. P., Ntouyas S. K., and Tsamatos P. Ch., \emph{Existence results for m-point boundary value problems}, Diff. Equations and Dynamical Systems, 2(1994), No. 4, p. 289-298. \bibitem{GNT4} Gupta C. P., Ntouyas S. K., and Tsamatos P. Ch., \emph{Existence results for multi-point boundary value problems for second order ordinary differential equations.} Bulletin Greek Math. Soc. 43 (2000) pp. 105-123. \bibitem{GT} Gupta C.P., and Trofimchuk, S., \emph{Solvability of multi point boundary value problem of Neumann type}, Abstract Analysis and Applications, 4(1999) 71-81. \bibitem{I1} Il'in V. A. and Moiseev E. I., \emph{Nonlocal boundary value problem of the first kind for a Sturm Liouville operator in its differential and difference aspects}, Differential Equations, 23(1987) 803-810. \bibitem{I2} Il'in V. A. and Moiseev E. I., \emph{Nonlocal boundary value problem of the second kind for a Sturm Liouville operator}, Differential Equations, 23(1987) 979-987. \bibitem{L4} Liu B., \emph{Solvability of multi point boundary value problem at resonance (IV)}, Applied Mathematics and Computations,143(2003) 275-299. \bibitem{LG} Liu, Y. and Ge, W., \emph{Multiple positive solutions to a three-point boundary value problem with }$p$\emph{-Laplacian}, Journal of Mathematical Analysis and Applications, 277(2003) 293-302. \bibitem{mawhin} J. Mawhin, \emph{Topological degree methods in nonlinear boundary value problems,} in NSF-CBMS Regional Conference Series in Math. No. 40, Amer. Math. Soc., Providence, RI, 1979. \bibitem{SE} Sedziwy, S., \emph{Multipoint boundary value problems for a second order differential equations}, Journal of Mathematical Analysis and Applications, 236(1999) 384-398. \bibitem{TH2} Thompson, H. B. and Tisdell, C., \emph{Three-point boundary value problems for second-order ordinary differential equations}, Math. Comput. Modelling, 34(2001), no. 3-4, 311--318. \end{thebibliography} \end{document}