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ASYMMETRIC ELLIPTIC PROBLEMS IN RN

JEAN-PIERRE GOSSEZ, LIAMIDI LEADI

Abstract. We work on the whole RN and prove the existence of a first non-

principal eigenvalue for an asymmetric problem with weights involving the
p-Laplacian (cf. (1.1) below). As an application we obtain a first nontrivial

curve in the corresponding Fučik spectrum.

1. Introduction

This work is mainly concerned with the following (asymmetric) eigenvalue prob-
lem

−∆pu = λ[m(x)(u+)p−1 − n(x)(u−)p−1] in RN . (1.1)

Here ∆pu := div(|∇u|p−2∇u), 1 < p <∞, is the p-Laplacian, λ is a real parameter,
m and n are weights whose properties will be specified later, and u± = max{±u, 0}.
Our assumptions on the weights will guarantee the existence of a unique positive
principal eigenvalue λ1(m) for the following (symmetric) eigenvalue problem

−∆pu = λm(x)|u|p−2u in RN . (1.2)

The principal motivation for considering problem (1.1) comes from the study of
the Fučik spectrum. This spectrum is defined as the set Σ of those (α, β) ∈ R2

such that
−∆pu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in RN (1.3)

has a nontrivial solution u. The relation between (1.3) and (1.1) is clear since the
line of slope r through the origin of R2 meets Σ at a point (α, β = rα) if and only
if α is an eigenvalue of (1.1) for the weights m and rn.

Many works have been devoted to the study of the Fučik spectrum in the case
of a bounded domain. But to our knowledge nothing has been done in the case of
an unbounded domain, in particular RN , even in the linear case p = 2. It should
be pointed out here that in RN , the presence of weights becomes essential since for
instance (1.2) has no principal eigenvalue if m ≡ 1 ( cf. [4, 11] when N ≤ p, [15]
when N > p).
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A study of (1.1) together with applications to the Fučik spectrum and to non-
resonance was carried out recently in [2] in the case of a bounded domain Ω ⊂ RN :

−∆pu = λ[m(x)(u+)p−1 − n(x)(u−)p−1] in Ω, u(x) = 0 on ∂Ω. (1.4)

Denoting by µ1(m) the first positive eigenvalue of the Dirichlet p-Laplacian with
weight m on Ω and by ψm the associated normalized positive eigenfunction, it was
shown in [2] that (1.4) always admits a positive nonprincipal eigenvalue, which
in addition is the first eigenvalue of (1.4) greater than µ1(m) and µ1(n). This
distinguished eigenvalue was constructed by applying a version of the mountain pass
theorem to the functional

∫
Ω
|∇u|p restricted to the C1 manifold {u ∈ W 1,p

0 (Ω) :∫
Ω
[m(u+)p + n(u−)p] = 1}. In this process the (PS) condition was easily verified

by using the (S)+ property of the p-Laplacian while the geometry of the mountain
pass was derived from the observation that ψm and −ψn were strict local minima.

When trying to adapt the above approach to the case of the whole RN , the
relevant functional is

J(u) :=
∫

RN

|∇u|p (1.5)

restricted to

Mm,n :=
{
u ∈W : Bm,n(u) :=

∫
RN

[m(u+)p + n(u−)p] = 1
}
, (1.6)

where the space W is a suitable weighted Sobolev space on RN which will be defined
later. One of the main difficulties lies, as expected, in the verification of the (PS)
condition. This is carried out in Proposition 3.3, whose proof uses some technique
from [1, 11] as well as a result from [9] about the compact imbedding of W into a
weighted Lebesgue space. Other difficulties arise in connection with the geometry
of the functional (cf. the proof of Proposition 3.1) as well as in the construction
of some suitable auxiliary weights (cf. Lemma 4.2 and the proof of Theorem 4.1).
One should also point out that the study of the continuous dependance of our
distinguished eigenvalue of (1.1) with respect to the weights requires some special
care due in particular to the fact that these weights generally do not satisfy any
integrability condition on RN (cf. Proposition 4.7 and Corollary 4.8).

The existence of a positive nonprincipal eigenvalue for (1.1) is derived in Section
3. In Section 4, we prove that the eigenvalue c(m,n) constructed in Section 3 is the
first nonprincipal eigenvalue of (1.1). We also study there some of the properties
of c(m,n) as a function of (m,n). Section 5 is devoted to the Fučik spectrum. We
show the existence of a first nontrivial curve in Σ ∩ (R+ × R+) whose asymptotic
behaviour exhibits some similarity with what is happening for the Dirichlet prob-
lem on a bounded domain. In the preliminary Section 2, we collect some known
results relative to the eigenvalue problem (1.2) and to various Sobolev imbeddings
or Poincaré’s type inequalities to be used later.

2. Preliminaries

Throughout this work, we write the weights m and n in the form m = m1−m2,
n = n1 − n2, and we assume the following conditions:

(H1) m1, n1 ≥ 0, m1, n1 ∈ L∞loc(RN ) ∩ Ls(RN ), where s = N/p if N > p and
s = N0/p for some integer N0 > p if N ≤ p;
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(H2) m2, n2 ≥ 0, m2, n2 ∈ L∞loc(RN ), with in addition m2(x), n2(x) ≥ ε0 for
some ε0 > 0 a.e. in RN if N ≤ p;

(H3) m+ 6≡ 0, n+ 6≡ 0;
(H4) for some a, b > 0: am2(x) ≤ n2(x) ≤ bm2(x) a.e. in RN .

Note that the decomposition m = m1 −m2 does not necessarily coincide with the
decomposition m = m+ −m−.

Associated with m2, we define a weighted Sobolev space W as the closure of
C∞c (RN ) with respect to the norm

‖u‖W :=
[ ∫

RN

(|∇u|p +m2|u|p)
]1/p

. (2.1)

Note that by (H4), n2 would lead to the same space W . Note also that as observed
in [9], the space W does not depend on the decomposition of m into m1−m2. The
following imbeddings hold (cf. e.g. [3]): W ↪→ D1,p(RN ) ↪→ Lp∗(RN ) if N > p,
W ↪→ W 1,p(RN ) ↪→ Lq(RN ) for all q ∈ [p,+∞[ if N = p and for all q ∈ [p,+∞] if
N < p. Here D1,p(RN ) denotes when N > p the closure of C∞c (RN ) with respect
to the norm (

∫
RN |∇u|p)1/p and p∗ := Np/(N − p) is the critical Sobolev exponent.

With s as in (H1) above and s′ its Hölder conjugate, we will denote later by A the
constant of the imbedding of D1,p(RN ) into Lps′(RN ) = Lp∗(RN ) when N > p,
and by B the constant of the imbedding of W 1,p(RN ) into Lps′(RN ) when N ≤ p.
One also has the compact imbedding of W into Lp(m1,RN ), the Lp space on RN

with weight m1 (cf. [9]).
By a solution u of (1.1) (or of related equations), we mean a weak solution, i.e.

u ∈W with∫
RN

|∇u|p−2∇u∇v = λ

∫
RN

[m(u+)p−1 − n(u−)p−1]v ∀v ∈W. (2.2)

Note that by the above imbeddings, every integral in (2.2) is well-defined. Regu-
larity results from [14] and [16] on general quasilinear equations imply that such a
weak solution u belongs to C1(RN ). It is also known that if N < p, or if N > p and
(H4) is replaced by (H ′

4) (cf. Remark 2.5 below), then a weak solution u decays to
zero at infinity (cf. [3] for N < p, [8, 10] for N > p).

Let us define

λ1(m) := inf
{ ∫

RN

|∇u|p : u ∈W and
∫

RN

m|u|p = 1
}
.

It is known (cf. [1, 7, 8, 9, 10]) that this infimum is achieved and that λ1(m) is the
unique positive principal eigenvalue of (1.2). (By a principal eigenvalue, we mean
an eigenvalue associated to an eigenfunction which does not change sign). Moreover
λ1(m) is simple and admits an eigenfunction ϕm ∈ W ∩ C1(RN ), with ϕm(x) > 0
in RN and

∫
RN mϕp

m = 1. One also knows that λ1(m) is isolated in the spectrum,
which implies

λ2(m) := inf {λ ∈ R : λ eigenvalue of (1.2) with λ > λ1(m)} > λ1(m). (2.3)

As we will see later (cf. Remark 3.4 or Theorem 4.1), this infimum (2.3) is also
achieved, and consequently λ2(m) is really the second positive eigenvalue of (1.2).

Remark 2.1. Assume thatm satisfies (H1), (H2), (H3) and thatm− 6≡ 0. IfN > p
and m2 ∈ LN/p(RN ), then (1.2) also has a unique negative principal eigenvalue
λ−1(m) = −λ1(−m). If N ≤ p, then (1.2) generally does not admit a negative
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principal eigenvalue; this follows from the nonexistence results of [4] for p = 2 and
[11] for p 6= 2.

The following lemma will play a role in low dimensions. It can be easily derived
from the proof in [1, Theorem 3]. (The assumptions about N0 in (H1) and about
ε0 in (H2) are used here).

Lemma 2.2. Let N ≤ p. There exists C = C(m1,m2, n1, n2, N, p,N0) such that∫
RN

|u|p ≤ C

∫
RN

|∇u|p (2.4)

for all u ∈ W satisfying Bm,n(u) ≥ 0. Moreover the constant C in (2.4) can
be chosen so as to remain bounded when m1 and n1 vary in a bounded subset of
LN0/p(RN ).

Remark 2.3. It suffices in all this work to assume that the inequalities in (H2)
and (H4) hold “at infinity”. More precisely denote by (H2)R and (H4)R the same
conditions as (H2) and (H4) except that the inequalities m2(x), n2(x) ≥ some ε0
and am2(x) ≤ n2(x) ≤ bn2(x) are assumed to hold only for a.e. x with |x| ≥ R for
some R ≥ 0. Suppose now that m = m1 −m2, n = n1 − n2 satisfy (H1), (H2)R,
(H3), (H4)R. By writing m = m̃1 − m̃2, n = ñ1 − ñ2 where m̃1, m̃2, ñ1, ñ2 are
obtained from m1, m2, n1, n2 by adding 1BR

(the characteristic function of the ball
with center 0 and radius R), one easily sees that m = m̃1 − m̃2, n = ñ1 − ñ2 now
satisfy (H1), (H2), (H3), (H4).

Remark 2.4. In the situation of Remark 2.3, one can also show that the space
W associated to m2 coincides with the space W associated to m̃2. (The proof of
this fact uses the inequality that if Ω is a smooth bounded domain and if E is a
subset of Ω of positive measure, then there exists a constant c such that ‖u‖Lp(Ω) ≤
c(‖u‖Lp(E) +‖∇u‖Lp(Ω)) for all u ∈W 1,p(Ω)). It follows from this observation that
the space W does not depend on the decomposition of m into m1−m2 when m1,m2

satisfy (H1) and (H2)R.

Remark 2.5. In high dimensions, assumption (H4) can be replaced in all this work
by

(H ′
4) N > p and m2, n2 ∈ LN/p(RN ).

This situation is in fact much simpler (for instance W is then equal to D1,p(RN )).
Without (H4), (H4)R (i.e. when m2 and n2 are unrelated) or (H ′

4), it is not clear
how to deal with the asymmetric problems (1.1) and (1.3).

Let us conclude this section with some general definitions relative to the (PS)
condition. Let E be a real Banach space and

M := {u ∈ E : g(u) = 1}, (2.5)

where g ∈ C1(E,R) and 1 is a regular value of g. Let f ∈ C1(E,R) and denote
by f̃ the restriction of f to M . The differential of f̃ at u ∈ M has a norm which
will be denoted by ‖f̃ ′(u)‖∗ and which is given by the norm of the restriction of
f ′(u) ∈ E∗ to the tangent space of M at u:

TuM := {v ∈ E : 〈g′(u), v〉 = 0},

where 〈, 〉 denotes the pairing between E and its dual E∗. A critical point of f̃ is a
point u ∈ M such that ‖f̃ ′(u)‖∗ = 0; f̃(u) is then called a critical value of f̃ . We
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recall that f̃ is said to satisfy the (PS) condition if for any sequence uk ∈ M such
that f̃(uk) is bounded and ‖f̃ ′(uk)‖∗ → 0, one has that uk admits a convergent
subsequence.

3. Construction of a nonprincipal eigenvalue

In this section and in the following one, we consider the eigenvalue problem (1.1).
It will always be assumed that the weights m and n satisfy the hypothesis (H1),
(H2), (H3) and (H4).

We look for eigenvalues λ of (1.1) with λ > 0. Clearly the only positive principal
eigenvalues of (1.1) are λ1(m) and λ1(n). Moreover multiplying by u+ or u−,
one easily sees that if (1.1) with λ > 0 has a solution which changes sign, then
λ > max{λ1(m), λ1(n)}. Proving the existence of such a solution which changes
sign is our purpose in this section.

We will use a variational approach and consider the functionals J and Bm,n

defined in (1.5) and (1.6), which are C1 functionals on W , and the restriction J̃
of J to the manifold Mm,n defined in (1.6). In this context one easily verifies that
λ > 0 is an eigenvalue of (1.1) if and only if λ is a critical value of J̃ .

A first critical point of J̃ comes from global minimization. Indeed

J̃(u) ≥ λ1(m)
[ ∫

RN

m(u+)p
]+

+ λ1(n)
[ ∫

RN

n(u−)p
]+

≥ min{λ1(m), λ1(n)}

for all u ∈ Mm,n, and one has J̃(u) = min{λ1(m), λ1(n)} for either u = ϕm or
u = −ϕn. Consequently either ϕm or −ϕn is a global minimum of J̃ and so a
critical point of J̃ .

A second critical point of J̃ comes from the following proposition.

Proposition 3.1. ϕm and −ϕn are strict local minimum of J̃ , with corresponding
critical values λ1(m) and λ1(n).

Proof. The present proof is partly different from that of the analogous result in
[2]; the difficulty lies at the level of [2, Lemma 3]. We adapt to our situation some
technique from [7].

Let us consider ϕm (similar argument for −ϕn). Assume by contradiction the
existence of a sequence uk ∈ Mm,n with uk 6= ϕm, uk → ϕm in W and J̃(uk) ≤
λ1(m). We first observe that uk changes sign for k sufficiently large. Indeed, since
uk → ϕm, uk must be > 0 somewhere. If uk ≥ 0 in RN , then

J̃(uk) =
∫

RN

|∇uk|p > λ1(m)
∫

RN

mup
k = λ1(m)

since uk 6= ϕm and uk ∈Mm,n. But this contradicts J̃(uk) ≤ λ1(m). So uk changes
sign for k sufficiently large. Now we have

λ1(m)
∫

RN

[m(u+
k )p + n(u−k )p] = λ1(m) ≥ J̃(uk)

=
∫

RN

|∇u+
k |

p +
∫

RN

|∇u−k |
p

≥ λ1(m)
∫

RN

m(u+
k )p +

∫
RN

|∇u−k |
p.



212 J.-P. GOSSEZ, L. LEADI EJDE/CONF/14

Consequently

λ1(m)
∫

RN

n(u−k )p ≥
∫

RN

|∇u−k |
p. (3.1)

Let vk := u−k /(
∫

RN |∇u−k |p)1/p and Ω−k := {x ∈ RN : uk(x) < 0}. We deduce from
(3.1) that

1
λ1(m)

≤
∫

RN

n(vk)p ≤
∫

Ω−k

n1(vk)p. (3.2)

Consider first the case N > p. We deduce from (3.2), using Hölder inequality,
that

1
λ1(m)

≤ ‖n1‖Ls(Ω−k )‖vk‖p

Lp∗ (RN )
≤ Ap‖n1‖Ls(Ω−k ),

where the imbedding constant A was defined in Section 2, and consequently

‖n1‖Ls(Ω−k ) ≥
1

Apλ1(m)
= ε. (3.3)

Take now r > 0 sufficiently large so that ‖n1‖s
Ls(Bc

r) ≤ εs/2, where Bc
r = RN\Br

and Br denotes the ball of radius r centred at the origin. We deduce from (3.3)
that ‖n1‖s

Ls(Ω−k ∩Br)
≥ εs/2, and consequently

|Ω−k ∩Br| ≥
εs

2‖n1‖s
L∞(Br)

> 0, (3.4)

where |E| denotes the measure of the set E. Since uk → ϕm in Lp(Br) and
ϕm(x) > 0 for all x ∈ Br, one has that |{x ∈ Br : uk(x) < 0}| → 0. But this
contradicts (3.4).

In the case N ≤ p, we have a similar situation. Indeed using Hölder inequality,
the imbedding of W 1,p(RN ) into Lps′(RN ) (with constant B, cf. Section 2) and
Lemma 2.2 (with constant C), one derives from (3.2) that

1
λ1(m)

≤ (1 + C)Bp‖n1‖Ls(Ω−k ). (3.5)

The conclusion then follows as in the case N > p. �

To get a third critical point of J̃ , we will use a version of the mountain pass
theorem on a C1 manifold. Let us introduce the following family of paths in the
manifold Mm,n:

Γ := {γ ∈ C([−1, 1],Mm,n) : γ(−1) = ϕm and γ(1) = −ϕn}. (3.6)

Arguing as in [2, p. 589 ], one shows that Γ is nonempty, and so the minimax value

c(m,n) := inf
γ∈Γ

max
u∈γ([−1,1])

J̃(u), (3.7)

is finite. The following is the main result in this section.

Theorem 3.2. c(m,n) is an eigenvalue of (1.1) which satisfies

max{λ1(m), λ1(n)} < c(m,n). (3.8)

The rest of this section is devoted to the proof of the above theorem. We first
consider the (PS) condition.

Proposition 3.3. The functional J̃ satisfies the (PS) condition on Mm,n



EJDE/CONF/14 FUČIK SPECTRUM WITH WEIGHTS 213

Proof. Let uk ∈ Mm,n be a (PS) sequence for J̃ . So
∫

RN |∇uk|p remains bounded
and for some εk → 0, ∣∣ ∫

RN

|∇uk|p−2∇uk∇w
∣∣ ≤ εk‖w‖W (3.9)

for all w ∈ Tuk
(Mm,n).

We will first prove that uk remains bounded in W . In case N > p, uk clearly
remains bounded in D1,p(RN ) and consequently in Lp∗(RN ). Using Bm,n(uk) = 1
and (H4), one has

min(a, 1)
∫

RN

m2|uk|p ≤ −1 +
∫

RN

[m1(u+
k )p + n1(u−k )p], (3.10)

where the right hand side remains bounded (by (H1) and Hölder inequality). Con-
sequently

∫
RN m2|uk|p remains bounded. In the case N ≤ p, Lemma 2.2 implies

that uk remains bounded in W 1,p(RN ) and consequently in Lps′(RN ). One then
again deduces from (3.10) that

∫
RN m2|uk|p remains bounded. Hence in any case

N > p or N ≤ p, uk remains bounded in W . It follows that for a subsequence (still
denoted by uk), uk → u weakly in W , strongly in Lp(m1,RN ) and in Lp(n1,RN ),
and

∫
RN |∇uk|p converges.

In the rest of the proof we will assume N > p (a similar argument holds in the
case N ≤ p). Observe that if w ∈ W , then (w − ak(w)uk) ∈ Tuk

(Mm,n) where
ak(w) :=

∫
RN [m(u+

k )p−1 − n(u−k )p−1]w. Putting w = (uk − ul) − ak(uk − ul)uk in
(3.9), one deduces∫

RN

|∇uk|p−2∇uk∇(uk − ul) = tk

∫
RN

[m(u+
k )p−1 − n(u−k )p−1](uk − ul) + 0(εk),

where tk :=
∫

RN |∇uk|p. This implies

0 ≤
∫

RN

(|∇uk|p−2∇uk − |∇ul|p−2∇ul)∇(uk − ul)

= tk

∫
RN

m[(u+
k )p−1 − (u+

l )p−1](uk − ul)

+ tk

∫
RN

n[−(u−k )p−1 + (u−l )p−1](uk − ul)

+ (tk − tl)
∫

RN

[m(u+
l )p−1 − n(u−l )p−1](uk − ul) + 0(εk) + 0(εl)

≤ tk(I1 + I2) + |tk − tl|I3 + 0(εk) + 0(εl),

(3.11)

where

I1 :=
∫

RN

m1[(u+
k )p−1 − (u+

l )p−1](uk − ul),

I2 :=
∫

RN

n1[−(u−k )p−1 + (u−l )p−1](uk − ul),

I3 :=
∫

RN

|m(u+
l )p−1 − n(u−l )p−1‖uk − ul|.

We claim that the right hand side of (3.11) approaches zero when k, l → +∞.
Indeed using Hölder inequality and the strong convergence of uk in Lp(m1,RN ),
one sees that I1 → 0. Similarly I2 → 0 . Furthermore Hölder inequality implies
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that I3 remains bounded. Since (tk − tl) → 0, we conclude that the right hand side
of (3.11) goes to 0 as k, l→ +∞, and the claim is proved .

To go on in the proof of Proposition 3.3, we observe that for some constant
d = d(p) and for any α, β ∈ RN ,

|α− β|p ≤ d{(|α|p−2α− |β|p−2β)(α− β)}r/2(|α|p + |β|p)1−r/2, (3.12)

where r = p if p ∈]1, 2[ and r = 2 if p ≥ 2 (cf. [13]). Applying (3.12) and Hölder
inequality, one easily derives from the claim that ∇uk → ∇u in Lp(RN ). Moreover
the calculation leading to (3.11) gives, using (H4),

0 ≤ min(a, 1)tk
∫

RN

m2(|uk|p−2uk − |ul|p−2ul)(uk − ul)

≤ tk(I1 + I2) + |tk − tl|I3 + 0(εk) + 0(εl),

where the right hand side goes to zero by the claim. We then deduce from the above
that

∫
RN m2|uk − ul|p → 0 by applying successively (3.12), Hölder inequality and

the fact that limk→+∞ tk =
∫

RN |∇u|p 6= 0 (the latter quantity is nonzero because
u ∈ W and W does not contain any nonzero constant). Consequently uk → u in
W and Proposition 3.3 is proved. �

Remark 3.4. The arguments in the above proof can be used to show that the
positive part of the spectrum of (1.2) is closed (cf. chap.2 of [12] for details).

We now have all the ingredients for the next proof.

Proof of Theorem 3.2. The conclusion follows by applying the mountain pass the-
orem on a C1 manifold as given in [2, Proposition 4] or in [5, Proposition 2.1]: the
(PS) condition is provided by Proposition 3.3 and the geometry comes by combining
Proposition 3.1 with [2, Lemma 6]. �

4. A first nonprincipal eigenvalue

We have seen at the beginning of Section 3 that λ1(m) and λ1(n) are the first
two positive eigenvalues of (1.1). The present section is mainly devoted to the proof
that the eigenvalue c(m,n) constructed in (3.7) is the next positive eigenvalue of
(1.1).

Theorem 4.1. Problem (1.1) does not admit any eigenvalue between the values
max{λ1(m), λ1(n)} and c(m,n).

Proof. The present proof is partly different from that of the analogous result in [2];
the difficulty lies at the level of the construction of some auxiliary weights.

Assume by contradiction that there exists an eigenvalue λ of problem (1.1) with
max{λ1(m), λ1(n)} < λ < c(m,n). Our goal is to construct a path in Γ on which
J̃ remains ≤ λ, which yields a contradiction with the definition (3.7) of c(m,n).

Let u ∈ Mm,n be a critical point of J̃ at level λ. Since u changes sign, one
obtains from the equation satisfied by u,

0 <
∫

RN

|∇u+|p = λ

∫
RN

m(u+)p and 0 <
∫

RN

|∇u−|p = λ

∫
RN

n(u−)p. (4.1)

The desired path will be constructed in several steps, using u as starting point.
First we go from u to v := u+/Bm,n(u+)1/p ≡ (u+)m,n by writing

γ1(t) :=
[
tu+ (1− t)u+

]
m,n

, t ∈ [0, 1]. (4.2)
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Using (4.1), it is easy to show that γ1(t) is well-defined, belongs to Mm,n and
satisfies J̃(γ1(t)) = λ ∀t ∈ [0, 1]. In a similar way we go from u to (−u−)m,n in
Mm,n by staying at level λ. We now describe the construction of a path in Mm,n

from v to ϕm which stays at levels ≤ λ. A similar construction would yield a path
in Mm,n from (−u−)m,n to −ϕn which stays at levels ≤ λ. Putting everything
together, we get the desired path from ϕm to −ϕn.

To construct the path from v to ϕm, first consider the manifold Mm,m. Clearly
v ∈ Mm,m. The critical points of the restriction of J to Mm,m are the normalized
eigenfunctions of (1.2). Since v does not change sign and vanishes on a set of positive
measure, v is not a critical point of this restriction of J to Mm,m. Consequently
there exists a C1 path ν :] − ε, ε[→ Mm,m with ν(0) = v and d

dtJ(ν(t))
∣∣
t=0

6= 0.
Following a little portion of this path ν in the positive or negative direction ( call
ν1 that portion), we move from v to a point w by a path in Mm,m which, with
the exception on its starting point v where J(v) = λ, lies at levels < λ. The
path γ2(t) = |ν1(t)| then lies in Mm,n (because it lies in Mm,m and is made of
nonnegative functions), goes from v to v1 := |w| and remains, with the exception
of its starting point v where J(v) = λ, at levels < λ (since J(|ν1(t)|) = J(ν1(t)) ).

Let now m(ε) be defined for 0 ≤ ε ≤ 1 by

m(ε) =

{
m if m < 0
εm1 −m2 if m ≥ 0.

One has m(1) ≡ m, m+
(1) 6≡ 0, m(0) ≤ 0 and so m+

(0) ≡ 0. Hence there exists
ε0 ∈]0, 1[ such that

m+
(ε) 6≡ 0 if ε0 < ε < 1,

m+
(ε) ≡ 0 if 0 ≤ ε ≤ ε0.

Using Lemma 4.2 below, we see that for ε > ε0 close to ε0, m(ε) will be a weight l of
the form l1 − l2 such that m, l satisfy (H1), (H2), (H3) and (H4), with in addition
λ1(l) > λ and l ≤ m in RN . Fix such an ε. We then consider the manifold Mm,l

and the sublevel set
O := {u ∈Mm,l : J(u) < λ}.

Clearly v1 and ϕm ∈ O (because they belong to Mm,m, are ≥ 0 and have the right
levels). Moreover the only critical point in O of the restriction of J to Mm,l is ϕm

(because the first two critical levels λ1(m) and λ1(l) verify λ1(m) < λ < λ1(l)).
Applying [2, Lemma 14] to the component of O which contains v1, we get a path
γ3 in O from v1 to ϕm. We then consider the path

γ4(t) :=
|γ3(t)|

(
∫

RN m|γ3(t)|p)1/p
.

By the choice of l, one has

1 =
∫

RN

[m(γ3(t)+)p+l(γ3(t)−)p] ≤
∫

RN

[m(γ3(t)+)p+m(γ3(t)−)p] =
∫

RN

m|γ3(t)|p,

and consequently γ4 is well-defined. Moreover γ4 goes from v1 to ϕm and belongs
to Mm,n. Finally

J(γ4(t)) =

∫
RN |∇γ3(t)|p∫
RN m|γ3(t)|p

≤
∫

RN

|∇γ3(t)|p < λ,
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since γ3(t) ∈ O. The path γ4 thus allows us to move from v1 to ϕm in Mm,n by
staying at levels < λ. �

Lemma 4.2. λ1[m(ε)] →∞ as ε ↓ ε0.
Proof. One has

1
λ1[m(ε)]

=

∫
RN m(ε)ϕ

p
m(ε)∫

RN |∇ϕm(ε) |p
≤
‖(εm1 −m2)+‖Ls(RN )‖ϕm(ε)‖

p

Lps′ (RN )∫
RN |∇ϕm(ε) |p

. (4.3)

If N > p, one deduces from (4.3) that 1/λ1[m(ε)] ≤ A‖(εm1 −m2)+‖Ls(RN ), and
the conclusion follows since (εm1 −m2)+ ∈ Ls(RN ) and (εm1 −m2)+ ↓ 0 as ε ↓ ε0.
If N ≤ p, since Bm(ε),n(ε)(ϕm(ε)) = 1, one has

‖ϕm(ε)‖
p

Lps′ (RN )
≤ Bp(1 + C(ε))

∫
RN

|∇ϕm(ε) |
p,

where C(ε) = C(m(ε), N, p,N0) is the constant from Lemma 2.2 (which remains
bounded as ε varies in ]ε0, 1[) . The conclusion then follows from (4.3) as in the
case N > p. �

Theorem 4.1 for m ≡ n yields the following variational characterization of the
second eigenvalue of the p-Laplacian with weight on RN (cf. (2.3)).

Corollary 4.3. One has

λ2(m) = inf
γ∈Γ0

max
u∈γ([−1,1])

∫
RN

|∇u|p,

where Γ0 := {γ ∈ C([−1, 1],Mm,m) : γ(−1) = ϕm and γ(1) = −ϕm} and Mm,m :=
{u ∈W :

∫
RN m|u|p = 1}.

We conclude this section with some properties of the eigenvalue c(m,n) as a
function of the weights m,n. The following slightly different variational character-
ization of c(m,n) will be useful for this purpose. It can be obtained by an easy
adaptation of arguments in [2].

Proposition 4.4. One has

c(m,n) = inf
γ∈Γ1

max
t∈[−1,1]

J(γ(t)), (4.4)

where Γ1 := {γ ∈ C([−1, 1],Mm,n) : γ(−1) ≥ 0 and γ(1) ≤ 0}.
Proposition 4.5. Let m = m1 −m2, n = n1 − n2, m̂ = m̂1 − m̂2, n̂ = n̂1 − n̂2,
and assume that hypothesis (H1), (H2), (H3) and (H4) hold for the weights m,n
and also for the weights m̂, n̂. If m1 ≤ m̂1, n1 ≤ n̂1, m̂2 ≤ m2 and n̂2 ≤ n2 a.e. in
RN , then c(m,n) ≥ c(m̂, n̂). If in addition∫

RN

(m̂−m)(u+)p +
∫

RN

(n̂− n)(u−)p > 0

for at least one eigenfunction u associated to c(m,n), then c(m,n) > c(m̂, n̂).

Proof. Denote by W (resp. Ŵ ) the weighted Sobolev space defined in Section 2
and associated to the weight m2 (resp. m̂2). One clearly has W ⊂ Ŵ . Once this
has been observed, the proof is easily adapted from that of [2, Propositions 23 and
25]. One uses in particular the fact that if the path γ is admissible in formula (3.7)
for c(m,n), then γ(t) ∈ Ŵ for all t ∈ [−1, 1], and so by normalization one can
construct a path in Ŵ which will be admissible in formula (4.4) for c(m̂, n̂). �
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Let us also observe that definition (3.7) clearly implies that c(m,n) is homo-
geneous of degree −1: c(sm, sn) = c(m,n)/s for s > 0. Some sort of separate
sub-homogeneity also holds, which will be useful later:

Proposition 4.6. Assume that the weights m,n satisfy hypothesis (H1), (H2),
(H3) and (H4). If 0 < s < ŝ, then c(ŝm, n) < c(sm, n) and c(m, ŝn) < c(m, sn).

Proof. Let us first observe that the pair of weights ŝm, n (as well as the other
pairs of weights appearing above) also satisfy hypothesis (H1), (H2), (H3) and
(H4). Moreover the “m2 parts” of all these weights are comparable in the sense of
hypothesis (H4), which implies that a single weighted Sobolev space W can be used.
Once this has been observed, the proof can be easily adapted from [2, Proposition
31]. �

We finally turn to the study of the continuous dependance of c(m,n) with respect
to m,n. The situation here is more involved than in [2].

Proposition 4.7. Let m = m1−m2, n = n1−n2 satisfy (H1), (H2), (H3) and (H4),
and let mk = m1k −m2k, nk = n1k − n2k with m1k,m2k, n1k, n2k ≥ 0, k = 1, 2, . . . .
Assume that m1k, n1k belong to L∞loc(RN )∩Ls(RN ) and converge in Ls(RN ) to m1,
n1 respectively. Assume that m2k, n2k belong to L∞loc(RN ) and converge to m2, n2

respectively in the following sense: for some εk → 0,

|m2k −m2| ≤ εkm2 and |n2k − n2| ≤ εkn2 a.e. in RN . (4.5)

Then c(mk, nk) → c(m,n).

The convergence (4.5) is unusual but Proposition 4.7 will suffice to derive later
the continuity of the first curve in the Fučik spectrum.

Proof of Proposition 4.7. Observe that by our assumptions, the “m2 parts” of all
the weights m,n,mk, nk are comparable in the sense of hypothesis (H4) (with con-
stants a, b independent of k), and so a single space W is involved.

We first prove the upper semicontinuity. Let ε > 0 and take γ ∈ Γ such that
maxt J(γ(t)) < c(m,n) + ε. Let γk(t) := γ(t)/Bmk,nk

(γ(t))1/p. We will show that
γk is well defined and that

max
t
J(γk(t)) < c(m,n) + ε (4.6)

for k sufficiently large. Once this is done, one deduces from Proposition 4.4
that c(mk, nk) < c(m,n) + ε and consequently, since ε > 0 is arbitrary, that
lim sup c(mk, nk) ≤ c(m,n).

The path γk is clearly well defined if Bmk,nk
(γ(t)) > 0 ∀t ∈ [0, 1]. To prove that

this latter condition holds for k sufficiently large, assume by contradiction that for
a subsequence, Bmk,nk

(γ(tk)) ≤ 0 for some tk ∈ [0, 1]. For a further subsequence,
tk → t0 and γ(tk) → γ(t0) in W and a.e. in RN . We claim that

Bm,n(γ(t0)) ≤ 0, (4.7)

which is impossible since γ ∈ Γ. Deriving (4.7) is a matter of going to the limit in the
expression Bmk,nk

(γ(tk)) ≤ 0. The “m1k (or n1k) terms” can be handled by Hölder
inequality in a standard way. To handle the “m2k (or n2k) terms”, we observe
that γ(tk) → γ(t0) in Lp(m2,RN ), which means that m1/p

2 γ(tk) → m
1/p
2 γ(t0) in

Lp(RN ), and consequently, for a further subsequence and for some v ∈ Lp(RN ),
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|m1/p
2 γ(tk)| ≤ v a.e. in RN . This inequality and the fact that m2k and n2k are

controlled by m2 (a consequence of (H4) and (4.5)) allow the use of the dominated
convergence theorem to handle these “m2k (or n2k) terms”. Let us now prove that
(4.6) holds. Write maxt J(γk(t)) = J(γk(τk)) and assume by contradiction that for
a subsequence

J(γk(τk)) ≥ c(m,n) + ε. (4.8)
The preceding argument shows that for a further subsequence, one has τk → τ0 and
Bmk,nk

(γ(τk)) → Bm,n(γ(τ0)) = 1. Consequently, by (4.8), J(γ(τ0)) ≥ c(m,n) + ε,
a contradiction with the choice of γ.

To prove the lower semicontinuity, suppose by contradiction that for a subse-
quence, one has c(mk, nk) → c0 with c0 < c(m,n). Let uk ∈ Mmk,nk

be an
eigenfunction associated to c(mk, nk). We first show that uk remains bounded in
W . One clearly has by the equation of uk that

∫
RN |∇uk|p = c(mk, nk) and so∫

RN |∇uk|p remains bounded. To get a bound on
∫

RN m2|uk|p, one starts from
Bmk,nk

(uk) = 1. By using the imbeddings recalled in Section 2 (and Lemma 2.2
when N ≤ p), one easily sees that the “m1k (and n1k) terms” remain bounded.
Replacing in the remaining terms m2k (resp. n2k) by m2 (resp. n2) and using
assumption (H4) and (4.5), one deduces the desired bound on

∫
RN m2|uk|p. It fol-

lows that for a subsequence, uk → u weakly in W , strongly in Lp(m1,RN ) and in
Lp(n1,RN ).

We will now prove that uk → u in W . Taking uk − ul as testing function in the
equations satisfied by uk and by ul, and writing c(mk, nk) = ck, one has∫

RN

|∇uk|p−2∇uk∇(uk − ul) = ck

∫
RN

[mk(u+
k )p−1 − nk(u−k )p−1](uk − ul),

which implies

0 ≤
∫

RN

(|∇uk|p−2∇uk − |∇ul|p−2∇ul)∇(uk − ul)

= ck

∫
RN

mk[(u+
k )p−1 − (u+

l )p−1](uk − ul)

+ ck

∫
RN

nk[−(u−k )p−1 + (u−l )p−1](uk − ul)

+ (ck − cl)
∫

RN

[mk(u+
l )p−1 − nk(u−l )p−1](uk − ul)

+ cl

∫
RN

[(mk −ml)(u+
l )p−1 − (nk − nl)(u−l )p−1](uk − ul)

≤ ck(I1 + I2) + |ck − cl|I3 + clI4,

where

I1 =
∫

RN

m1k[(u+
k )p−1 − (u+

l )p−1](uk − ul),

I2 =
∫

RN

n1k[−(u−k )p−1 + (u−l )p−1](uk − ul),

I3 =
∫

RN

[|mk|(u+
k )p−1 + |nk|(u−l )p−1]|uk − ul|,

I4 =
∫

RN

[|mk −ml|(u+
l )p−1 + |nk − nl|(u−l )p−1]|uk − ul|.
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Arguing as in the proof of Proposition 3.3 , one then easily proves that uk → u in
W . (The full strength of the convergence (4.5) is used here to verify that I4 → 0).

The limit u ∈ Mm,n and is a solution of (1.1) for λ = c0. Since c0 < c(m,n),
Theorem 4.1 implies that c0 = λ1(m) and u = ϕm, or c0 = λ1(n) and u =
−ϕn. Consider the first case (similar argument in the second one). Writing
vk = u−k /(

∫
RN |∇u−k |p)1/p and Ω−k = {x ∈ RN : uk(x) < 0}, we deduce from

the equation satisfied by uk that
1
ck

=
∫

RN

nk(vk)p ≤
∫

Ω−k

n1k(vk)p.

Consider the case N > p (a similar argument holds in the case N ≤ p). We will
argue as in the proof of Proposition 3.1. By Hölder inequality one has

1
ck

≤ ‖n1k‖Ls(Ω−k )‖vk‖p

Lp∗ (RN )
≤ Ap‖n1k‖Ls(Ω−k ),

which implies that for some ε > 0, ‖n1k‖Ls(Ω−k ) ≥ ε for k sufficiently large. More-
over, since n1k → n1 in Ls(RN ), one can choose r > 0 so that ‖n1k‖s

Ls(Bc
r) ≤ εs/2

for k sufficiently large, and consequently ‖n1k‖s
Ls(Ω−kr)

≥ εs/2 where Ω−kr := Ω−k ∩Br.

Since n1k converges to n1 in L∞loc(RN ) one deduces from the latter relation that for
some ζ > 0, |Ω−kr| > ζ for k sufficiently large. But this is impossible since uk → ϕm

in Lp(Br) and ϕm(x) > 0 a.e. in Br. �

Arguing as in Remark 2.3, one can deduce from Proposition 4.7 the following
result.

Corollary 4.8. Let m = m1 −m2, n = n1 − n2 satisfy (H1), (H2)R, (H3), (H4)R,
and let mk = m1k −m2k, nk = n1k − n2k with m1k,m2k, n1k, n2k ≥ 0, k = 1, 2, . . . .
Assume that m1k, n1k belong to L∞loc(RN ) ∩ Ls(RN ) and converge in Ls(RN ) to
m1, n1 respectively. Assume that m2k, n2k belong to L∞loc(RN ) and converge in
L∞loc(RN ) to m2, n2 respectively, with in addition, for some εk → 0,

|m2k −m2| ≤ εkm2 and |n2k − n2| ≤ εkn2 for a.e. x with |x| ≥ R. (4.9)

Then c(mk, nk) → c(m,n).

Remark 4.9. If (H4) is replaced in Proposition 4.7 by (H ′
4) (cf. Remark 2.5),

then (4.5) can be replaced by the natural requirement that m2k, n2k converge in
LN/p(RN ) to m2, n2 respectively.

5. Fučik spectrum in RN

The weights m and n in this section satisfy as before assumptions (H1), (H2),
(H3) and (H4) (or (H ′

4)). The Fučik spectrum Σ was defined in the introduction
(cf. (1.3)) and we will mainly consider here its part which lies in R+ × R+. This
part clearly contains the half lines λ1(m) × R+ and R+ × λ1(n). These half lines
are in fact exactly made of those (α, β) ∈ Σ ∩ (R+ × R+) for which (1.3) admits a
solution which does not change sign. We denote below by Σ∗ the set Σ∩ (R+×R+)
without these 2 trivial half lines. From the properties of the first eigenvalue recalled
in Section 2, it easily follows that if (α, β) ∈ Σ∗, then α > λ1(m) and β > λ1(n).

Theorem 5.1. For any r > 0, the line β = rα in the (α, β) plane intersects Σ∗.
Moreover the first point in this intersection is given by α(r) = c(m, rn), β(r) =
rα(r), where c(., .) is defined in (3.7).
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The proof of the above theorem is an easy consequence of Theorem 3.2 and
Theorem 4.1

Letting r > 0 vary, we thus get a first curve C := {(α(r), β(r)) : r > 0} in Σ∗.
Here are some properties of this curve.

Proposition 5.2. The functions α(r) and β(r) in Theorem 5.1 are continuous.
Moreover α(r) is strictly decreasing and β(r) is strictly increasing. One also has
that α(r) → +∞ if r → 0 and β(r) → +∞ if r → +∞.

Proof. The continuity of the functions α(r) and β(r) follows directly from Proposi-
tion 4.7, and their strict monotonicity from Proposition 4.6. To show that α(r) →
+∞ as r → 0, let us assume by contradiction that α(r) remains bounded as r → 0.
Then β(r) = rα(r) → 0 as r → 0, which is impossible since β(r) > λ1(n) for all
r > 0. Similar argument for the behaviour of β(r) as r → +∞. �

We now investigate the asymptotic values α∞ := limr→+∞ α(r) and β∞ :=
limr→0 β(r) of the first curve in R+ × R+. We will limit ourselves below to the
study of α∞; similar results can be proved for β∞ by interchanging m and n. The
following lemma will be used. It is concerned with the eigenvalue problem

−∆pu = λm|u|p−2u in BR, u = 0 on ∂BR, (5.1)

where BR denotes the ball centred at the origin with radius R. Let λR denote the
first positive eigenvalue of (5.1) and ϕR the associated positive eigenfunction such
that

∫
BR

m(ϕR)p = 1 (which by (H3) clearly exist for R sufficiently large ).

Lemma 5.3. λR → λ1(m) and ϕR → ϕm in W as R→ +∞.

Proof. We will adapt some arguments from [6, Lemma 5.2]. The function ϕR

(extended by 0 outside BR) clearly belongs to W and satisfies
∫

RN m(ϕR)p = 1.
This implies

λ1(m) ≤
∫

RN

|∇ϕR|p = λR,

and so lim inf λR ≥ λ1(m). Let now δ ∈]0, 1[. Since ϕm ∈ W , there exists ψ ∈
C∞c (RN ) such that∣∣ ∫

RN

(|∇ϕm|p − |∇ψ|p)
∣∣ ≤ δ

2
,

∣∣ ∫
RN

m2(ϕp
m − |ψ|p)

∣∣ ≤ δ

2
,∣∣ ∫

RN

m1(ϕp
m − |ψ|p)

∣∣ ≤ δ

2
,

where we have used the imbedding of W into Lp(m1,RN ). This implies that
|
∫

RN m(ϕp
m−|ψ|p)| ≤ δ and since

∫
RN m|ϕm|p = 1, one deduces that

∫
RN m|ψ|p > 0.

We thus have, for R sufficiently large,

λR ≤
∫

RN |∇ψ|p∫
RN m|ψ|p

≤
δ/2 +

∫
RN |∇ϕm|p

−δ +
∫

RN m|ϕm|p
=
δ/2 + λ1(m)
−δ + 1

,

and since δ > 0 is arbitrary, we conclude that lim supλR ≤ λ1(m).
Let us now prove that ϕR → ϕm in W as R→ +∞. One has∫

RN

|∇ϕR|p = λR → λ1(m) =
∫

RN

|∇ϕm|p, (5.2)

and so
∫

RN |∇ϕR|p remains bounded. Moreover using the imbeddings of Section 2
as well as Lemma 2.2, one deduces from

∫
RN m(ϕR)p = 1 that

∫
RN m2(ϕR)p remains



EJDE/CONF/14 FUČIK SPECTRUM WITH WEIGHTS 221

bounded. Consequently ϕR remains bounded in W , and for a subsequence, ϕR → v
weakly in W and strongly in Lp(m1,RN ). One has∫

RN

|∇v|p ≤ lim inf
∫

RN

|∇ϕR|p = λ1(m),

and also
∫

RN m|v|p ≥ 1 (where the latter inequality follows from∫
RN

m2|v|p ≤ lim inf
∫

RN

m2(ϕR)p = −1 +
∫

RN

m1|v|p).

The simplicity of λ1(m) then implies v = ϕm. One also has

lim
∫

RN

m2(ϕR)p = lim
[
− 1 +

∫
RN

m1(ϕR)p
]

= −1 +
∫

RN

m1ϕ
p
m =

∫
RN

m2ϕ
p
m.

(5.3)
Combining (5.2) and (5.3) with the weak convergence yields that ϕR → ϕm in
W . �

The following proposition describes the asymptotic behaviour of the first curve
C. Let us recall that the support of a measurable function u in RN is defined as
the complement in RN of the largest open set on which u = 0 a.e.

Proposition 5.4. If N ≥ p, then α∞ = λ1(m). If N < p, then α∞ = λ1(m) if
suppn+ is unbounded and α∞ > λ1(m) if suppn+ is bounded.

Proof. One starts by introducing

α := inf
{∫

RN

|∇u+|p : u ∈W,
∫

RN

m(u+)p = 1 and
∫

RN

n(u−)p > 0
}

(5.4)

and showing that α∞ = α. The proof of this equality is a direct adaptation of [2].
One also clearly has α ≥ λ1(m).

We first consider the case N ≥ p. In this case, the arguments of [2], which are
local (they essentially involve approximating ϕm by a function which vanishes on a
small ball where n+ 6≡ 0), can be easily adapted to the present situation and give
α = λ1(m).

We now consider the case where N < p and the support of n+ is unbounded.
We will use the function ϕR defined in Lemma 5.3. Since suppn+ is unbounded,
for any R > 0, n+ 6≡ 0 on RN\BR. This allows by a regularization procedure to
construct wR ∈ C∞c (RN\BR) with wR ≥ 0 and

∫
RN nwp

R > 0. It follows that the
function

uR = ϕR − wR

R‖wR‖W

converges to ϕm in W as R → +∞ and is admissible in the definition (5.4) of α.
Since by Lemma 5.3,

∫
RN |∇ϕR|p → λ1(m), we conclude that α ≤ λ1(m), and so

α = λ1(m).
We finally consider the case where N < p and the support of n+ is bounded.

Assume by contradiction α = λ1(m) and let uk be a minimizing sequence for α.
Then

∫
RN |∇u+

k |p remains bounded and since
∫

RN m(u+
k ) = 1, arguing e.g. as in

the proof of Lemma 5.3, one deduces that u+
k remains bounded in W . Hence, for a

subsequence, u+
k → v weakly inW and strongly in Lp(m1,RN ). We then argue as in

the second part of the proof of Lemma 5.3 to derive v = ϕm. Since ϕm ≥ some ε > 0
on the compact set suppn+, it follows from the fact that u+

k → ϕm uniformly on
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suppn+, that u+
k ≥ ε/2 on suppn+ for k sufficiently large. Consequently, for those

k, u−k = 0 on suppn+, which implies∫
RN

n(u−k )p =
∫

RN

n+(u−k )p −
∫

RN

n−(u−k )p = −
∫

RN

n−(u−k )p ≤ 0.

But this contradicts the fact that uk is admissible in the definition (5.4) of α. �

Remark 5.5. The distribution of Σ in the other quadrants of R×R can be studied
in a manner similar to that used in [2]. It follows in particular that if N > p,
m,n ∈ LN/p(RN ) ∩ L∞loc(RN ), and m and n change sign, then Σ contains a first
hyperbolic-like curve in each quadrant. The case N ≤ p however remains unclear
(see in this respect Remark 2.1).
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