\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 191--205.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{191} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Cauchy problems] {Non-autonomous inhomogeneous boundary Cauchy problems} \author[M. Filali, B. Karim \hfil EJDE/Conf/14 \hfilneg] {Mohammed Filali, Belhadj Karim} % in alphabetical order \address{Mohammed Filali \newline D\'epartement de Math\'ematiques et Informatique \\ Facult\'e des Sciences \\ Universit\'e Mohammed 1er, Oujda, Maroc} \email{filali@sciences.univ-oujda.ac.ma} \address{Belhadj Karim \newline D\'epartement de Math\'ematiques et Informatique \\ Facult\'e des Sciences \\ Universit\'e Mohammed 1er, Oujda, Maroc} \email[B. Karim]{karim@sciences.univ-oujda.ac.ma} \date{} \thanks{Published ??, 2006.} \subjclass[2000]{34G10, 47D06} \keywords{Boundary Cauchy problem; evolution families; solution; \hfill\break\indent well posedness; variation of constants formula} \begin{abstract} In this paper we prove existence and uniqueness of classical solutions for the non-autonomous inhomogeneous Cauchy problem \begin{gather*} \frac{d}{dt}u(t)=A(t)u(t)+f(t), \quad 0 \leq s\leq t\leq T, \\ L(t)u(t)=\Phi(t)u(t)+g(t) , \quad 0\leq s\leq t\leq T, \\ u(s)=x. \end{gather*} The solution to this problem is obtained by a variation of constants formula. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Consider the boundary Cauchy problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=A(t)u(t) , \quad 0\leq s\leq t\leq T,\\ L(t)u(t)=\Phi(t)u(t), \quad 0\leq s\leq t\leq T, \\ u(s)=x. \end{gathered} \label{e1.1} \end{equation} In the autonomous case ($A(t)=A$, $L(t)=L$), the Cauchy problem \eqref{e1.1} was studied by Greiner \cite{g1}. The author used the perturbation of domains of infinitesimal generators to study the homogeneous boundary Cauchy problem. He has also showed the existence of classical solution of \eqref{e1.1} via a variation of constants formula. In the non-autonomous case, Kellerman \cite{k2} and Lan \cite{l1} showed the existence of an evolution family $(U(t,s))_{0\leq s\leq t\leq T } $ which provides classical solutions of homogeneous boundary Cauchy problems. Filali and Moussi \cite{f1} showed the existence and uniqueness of classical solutions to the problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=A(t)u(t), \quad 0\leq s \leq t \leq T,\\ L(t)u(t)=\Phi(t)u(t)+g(t), \quad 0\leq s \leq t \leq T,\\ u(s)=x. \end{gathered}\label{e1.2} \end{equation} In this paper, we prove existence and uniqueness of classical solutions to the problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=A(t)u(t)+f(t), \quad 0\leq s \leq t \leq T,\\ L(t)u(t)=\Phi(t)u(t)+g(t), \quad 0\leq s \leq t \leq T,\\ u(s)=x. \end{gathered}\label{e1.3} \end{equation} Our technique consists on transforming \eqref{e1.3} into an ordinary Cauchy problem and giving an equivalence between the two problems. The solution is explicitly given by a variation of constants formula. \section{Evolution Family} \begin{definition} \label{def2.1} \rm A family of bounded linear operators $(U(t,s))_{0\leq s\leq t\leq T}$ on $X$ is an evolution family if \\ (a) $U(t,r)U(r,s)=U(t,s)$ and $U(t,t)=Id $ for all $0\leq s\leq r\leq t\leq T $; and \\ (b) the mapping $(t,s)\to U(t,s)x $ is continuous on $\triangle$, for all $x\in X $ with $$ \triangle = \{(t,s)\in \mathbb{R}^{2}_{+} :0\leq s\leq t\leq T\}. $$ \end{definition} \begin{definition} \label{def2.2} \rm A family of linear (unbounded) operators $ (A(t))_{0\leq t\leq T} $ on a Banach space $ X $ is a stable family if there are constants $ M \geq 1$, $\omega\in \mathbb{R}$ such that $]\omega,+\infty[\subset\rho(A(t))$ for all $0\leq t\leq T$ and $$ \|\prod^{m}_{i=1}R(\lambda,A(t_{i}))\|\leq M\frac{1}{(\lambda-\omega)^{m}} %\label{e2.1} $$ for $\lambda >\omega $ and any finite sequence $0\leq t_{1} \leq t_{2}\leq\dots \leq t_{m}\leq T$. \end{definition} Let $D,X $ and $Y$ be Banach spaces, $D$ densely and continuously embedded in $X$. Consider families of operators $A(t)\in L(D,X)$, $L(t)\in L(D,Y)$, $\Phi(t)\in L(X,Y)$ for $0\leq t\leq T$. In this section, we use the operator matrices method to prove the existence of classical solutions for the non-autonomous inhomogeneous boundary Cauchy problem \eqref{e1.3}. We use the following theorem due to Tanaka \cite{t1}. \begin{theorem} \label{thm2.3} Let $(A(t))_{0\leq t\leq T}$ be a stable family of linear operators on a Banach space $X$ such that \begin{itemize} \item[(a)] the domain $D=(D(A(t),\|.\|_{D})$ is a Banach space independent of $t$, \item[(b)] the mapping $t\to A(t)x $ is continuously differentiable in $X$ for every $ x\in D$. \end{itemize} Then there is an evolution family $(U(t,s))_{0\leq s\leq t\leq T}$ on $\overline{D}$. Moreover, we have the following properties: (1) $U(t,s)D(s) \subset D(t)$ for all $0\leq s\leq t\leq T$, where $$ D(r)=\{x\in D:A(r)x\in\overline{D}\}, 0\leq r\leq T; $$ (2) the mapping $ t\to U(t,s)x $ is continuously differentiable in $X$ on $[s,T]$ and $$ \frac{d}{dt}U(t,s)x=A(t)U(t,s)x $$ for all $x\in D(s)$ and $t\in [0,T]$. \end{theorem} We will assume that the following hypotheses: \begin{itemize} \item[(H1)] The mapping $t\to A(t)x$ is continuously differentiable for all $ x\in D$. \item[(H2)] The family $(A_{0}(t))_{0\leq t\leq T},A_{0}(t)=A(t)/\ker L(t)$ the restriction of $A(t)$ to $\ker L(t)$, is stable, with $M_{0}$ and $\omega_{0}$ constants of stability. \item[(H3)] The operator $L(t)$ is surjective for every $t\in [0,T]$ and the mapping $ t\to L(t)x $ is continuously differentiable for all $x\in D$. \item[(H4)] The mapping $ t \to \Phi(t)x $ is continuously differentiable for all $x\in X $. \item[(H5)] There exist constants $\gamma >0$ and $\omega_{1} \in \mathbb{R}$ such that \begin{equation} \|L(t)x\|_{Y}\geq \frac{\lambda-\omega_{1}}{\gamma}\|x\|_{X} \label{e2.2} \end{equation} for $x\in \ker (\lambda I-A(t))$, $\omega_{1} < \lambda$ and $ t\in [0,T]$. \end{itemize} Note that under the above hypotheses, Lan \cite{l1} has showed that $A_{0}(t)$ generates an evolution family $(U(t,s))_{0\leq s\leq t\leq T } $ such that: \begin{itemize} \item[(a)] $U(t,r)U(r,s)=U(t,s)$ and $U(t,t)=Id_{X}$ for all $0\leq s\leq t\leq T$; \item[(b)] $(t,s)\to U(t,s)x $ is continuously differentiable on $\Delta$ for all $x\in X$ with $\Delta=\{(t,s)\in \mathbb{R_{+}}^{2}:0\leq s\leq t\leq T\}$; \item[(c)] there exists constants $M_{0} \geq 1$ and $\omega_{0}\in \mathbb{R}$ such that $\|U(t,s)\|\leq M_{0}e^{\omega_{0}(t-s)}$. \end{itemize} The following results with will be used in this article. \begin{lemma}[\cite{g1}] \label{lem2.4} For $t\in [0,T]$ and $\lambda \in \rho (A_{0}(t))$, following properties are satisfied: \begin{enumerate} \item $D=D(A_{0}(t))\oplus \ker (\lambda I-A(t))$ \item $L(t)/\ker (\lambda I-A(t))$ is an isomorphism from $ \ker (\lambda I-A(t))$ onto $ Y$ \item $ t\mapsto L_{\lambda,t}:=(L(t)/\ker (\lambda I-A(t)))^{-1}$ is strongly continuously differentiable. \end{enumerate} \end{lemma} As a consequence of this lemma, we have $L(t)L_{\lambda,t}=Id_{Y}$, $L_{\lambda,t}L(t)$ and $(I-L_{\lambda,t}L(t))$ are the projections from $D$ onto $\ker (\lambda I-A(t))$ and $D(A_{0}(t))$ . \section{The Homogeneous Problem} In this section, we consider the Cauchy problem \eqref{e1.1}. A function $ u:[s,T]\to X $ is called classical solution if it is continuously differentiable, $u(t)\in D$ for all $0 \leq s \leq t \leq T$ and $u $ satisfies \eqref{e1.1}. We now introduce the Banach spaces $ Z=X\times Y$, $Z_{0}=X\times\{0\}\subset Z $ and we consider the projection of $Z $ onto $X$: $p_1(x,y)= x$. Let $M(t)$ be the matrix-valued operator defined on $Z$ by $$ M(t)=\begin{pmatrix} A(t) & 0 \\ -L(t)+\Phi(t)& 0 \end{pmatrix} =l(t)+\phi(t), $$ where $$ l(t)=\begin{pmatrix} A(t) & 0 \\ -L(t)& 0 \end{pmatrix}, \quad \phi(t) = \begin{pmatrix} 0 & 0 \\ \Phi(t) & 0 \end{pmatrix}, $$ and $D(M(t))=D\times \{0\}$. Now, we consider the Cauchy problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=M(t)u(t) , \quad 0\leq s\leq t\leq T, \\ u(s)=(x,0). \end{gathered}\label{e3.1} \end{equation} We start by proving the following lemma. \begin{lemma} \label{lem3.2} Assume that hypothesis (H1)--(H5) hold. Then, the family of operators $(M(t))_{ 0\leq t\leq T }$ is stable. \end{lemma} \begin{remark} \label{rmk3.3} \rm Since $ L_{\lambda,t}L(t)$ is the projection from $D$ onto $\ker (\lambda I-A(t))$ and $ x-L_{\lambda,t}L(t)x\in D(A_{0}(t))$, we have \begin{align*} &R(\lambda,A_{0}(t))((\lambda I-A(t))x)+L_{\lambda,t}L(t)x \\ &= R(\lambda,A_{0}(t))((\lambda I-A(t))(x-L_{\lambda,t}L(t)x)+ L_{\lambda,t}L(t)x \end{align*} and \begin{equation} R(\lambda,A_{0}(t))((\lambda I-A(t))x)+L_{\lambda,t}L(t)x=x. \label{e3.2} \end{equation} \end{remark} \begin{proof}[Proof of Lemma \ref{lem3.2}] Since $M(t)$ is a perturbation of $l(t)$ by a linear bounded operator on $E$, hence, in view of the perturbation result \cite[Theorem 5.2.3]{p1}, it is sufficient to show the stability of $l(t)$. For $\lambda >\omega_{0}$ and $\lambda \neq 0$, let $$ R(\lambda)=\begin{pmatrix} R(\lambda,A_{0}(t)) & L_{\lambda,t} \\ 0 & 0 \end{pmatrix}\,. $$ We have $D(l(t))=D\times \{0\}$ and $$ (\lambda I-l(t))\begin{pmatrix} x \\ 0 \end{pmatrix} =\begin{pmatrix} (\lambda I-A(t))x \\ L(t)x \end{pmatrix} $$ for $(x \\ 0) \in D\times \{0\}$. By Remark \ref{rmk3.3}, we obtain $$ R(\lambda)(\lambda I-l(t))\begin{pmatrix} x \\ 0 \end{pmatrix} =\begin{pmatrix} R(\lambda,A_{0}(t))((\lambda I-A(t))x)+L_{\lambda,t}L(t)x \\ 0 \end{pmatrix}. $$ So that \begin{equation} R(\lambda)(\lambda I-l(t))\begin{pmatrix} x \\ 0 \end{pmatrix} =\begin{pmatrix} x \\ 0 \end{pmatrix}.\label{e3.3} \end{equation} On the other hand, for $( x , y) \in X\times Y$, we have \begin{equation} \begin{aligned} (\lambda I-l(t)) R(\lambda)\begin{pmatrix} x \\ y\end{pmatrix} =\begin{pmatrix} \lambda I-A(t) & 0 \\ L(t) & \lambda \end{pmatrix} \begin{pmatrix} R(\lambda,A_{0}(t))x+L_{\lambda,t}y \\ 0 \end{pmatrix} =\begin{pmatrix} x \\ y \end{pmatrix} \end{aligned} \label{e3.4} \end{equation} from \eqref{e3.3} and \eqref{e3.4}, we obtain that the resolvent of $l(t)$ is given by \begin{equation} R(\lambda,l(t))=\begin{pmatrix} R(\lambda,A_{0}(t)) & L_{\lambda,t} \\ 0 & 0 \end{pmatrix}. \label{e3.5} \end{equation} By a direct computation, we obtain $$ \prod_{i=1}^m R(\lambda,l(t_{i}))=\begin{pmatrix} \prod_{i=1}^m R(\lambda,A_{0}(t_{i})) & \prod_{i=1}^{m-1} R(\lambda,A_{0}(t_{i})L_{\lambda,t_{m}} \\ 0 & 0 \end{pmatrix} $$ for a finite sequence $0\leq t_{1} \leq t_{2}\leq\dots \leq t_{m}\leq T$ and we have $$ \prod_{i=1}^m R(\lambda,l(t_{i}))\begin{pmatrix} x \\ y \end{pmatrix} =\begin{pmatrix} \prod_{i=1}^m R(\lambda,A_{0}(t))x+\prod_{i=1}^{m-1} R(\lambda,A_{0}(t))L_{\lambda,t_{m}}y \\ 0 \end{pmatrix}. $$ From hypothesis (H5), we conclude that $\|L_{\lambda,t}\|\leq \frac{\gamma}{(\lambda-\omega)}$ for all $t\in [0,T]$ and $\lambda>\omega$ and by using (H2), we obtain \begin{equation} \begin{aligned} \|\prod_{i=1}^m R(\lambda,l(t_{i}))\begin{pmatrix} x \\ y \end{pmatrix}\| & \leq \|\prod_{i=1}^m R(\lambda,A_{0}(t))x\| +\|\prod_{i=1}^{m-1} R(\lambda,A_{0}(t))L_{\lambda,t_{m}}y\| \\ & \leq \frac{M}{(\lambda-\omega_{0})^{m}}\|x\| +\frac{\gamma M}{(\lambda-\omega_{0})^{m-1}}\frac{1} {\lambda-\omega_{1}}\|y\|. \end{aligned} \label{e3.6} \end{equation} For $ \omega_{2}=\max(\omega_{0},\omega_{1})$, we have $$ \|\prod_{i=1}^m R(\lambda,l(t_{i})\begin{pmatrix} x \\ y \end{pmatrix}\| \leq \frac{M'}{(\lambda-\omega_{2})^{m}}(\|x\|+\|y\|), $$ where $M'=\max(M,M \gamma)$. On $ E = X\times Y $ equipped with the norm $\|(x,y)\|_{1}=\|x\|+\|y\|$, we have: $$ \|\prod_{i=1}^m R(\lambda,l(t_{i})\begin{pmatrix} x \\ y\end{pmatrix}\| \leq \frac{M'}{(\lambda-\omega_{2})^{m}}(\|(x,y)\|_{1}). $$ \end{proof} In the following proposition we give the equivalence between the boundary problem \eqref{e1.1} and the Cauchy problem \eqref{e3.1}. \begin{proposition} \label{prop3.4} Let $( x , 0 )\in D\times \{0\}$. \begin{enumerate} \item If the function $ t\to U(t)=( u_{1}(t), 0 )$ is a classical solution of \eqref{e3.1} with an initial value $(x,0)$ then $ t\to u_{1}(t)$ is a classical solution of \eqref{e1.1} with the initial value $x$. \item Let $ u $ be a classical solution of \eqref{e1.1} with the initial value $x$. Then the function $ t \to U(t)=(u(t), 0 )$ is a classical solution of \eqref{e3.1} with the initial value $(x, 0)$. \end{enumerate} \end{proposition} \begin{proof} (1) Since $ U(t)=( u_{1}(t), 0 )$ is a classical solution of \eqref{e3.1}, $ u_{1} $ is continuously differentiable on $ [s,T] $ and $u_{1}(t)\in D $. Moreover, \begin{equation} \frac{d}{dt}U(t)=\begin{pmatrix} \frac{d}{dt}u_{1}(t) \\ 0 \end{pmatrix} =M(t)U(t) \quad\text{and}\quad U(s) =\begin{pmatrix} x \\ 0 \end{pmatrix}. \label{e3.7} \end{equation} Therefore, \begin{equation} \begin{gathered} \frac{d}{dt}u_{1}(t)=A(t)u_{1}(t), \quad 0\leq s\leq t\leq T,\\ L(t)u_{1}(t)=\Phi(t)u_{1}(t),\quad 0\leq s\leq t\leq T, \\ u_{1}(s)=x. \end{gathered} \label{e3.8} \end{equation} This implies that $ u_{1} $ is a classical solution of \eqref{e1.1}. \noindent(2) Let $ u $ is a classical solution of \eqref{e1.1}, then $ u $ is continuously differentiable, $ u(t)\in D $ for $ t\geq s $ and \begin{gather*} \frac{d}{dt}u(t)=A(t)u(t),\quad 0\leq s\leq t\leq T,\\ L(t)u(t)= \Phi(t)u(t),\quad 0\leq s\leq t\leq T,\\ u(s)=x. \end{gather*} Hence $$ \begin{pmatrix} \frac{d}{dt}u(t) \\ 0 \end{pmatrix} =\begin{pmatrix} A(t) & 0\\ -L(t)+\Phi(t) & 0 \end{pmatrix} \begin{pmatrix} u(t) \\ 0 \end{pmatrix}, $$ with $( u(s), 0)=( x, 0 )$. This implies that $ U(t)=( u(t), 0 )$ is a classical solution of \eqref{e3.2} with the initial value $( x, 0)$. \end{proof} The above proposition allows us to get the aim of this section by showing the well-posedness of the Cauchy problem \eqref{e1.1}. \begin{theorem} \label{thm3.5} Assume that the hypotheses (H1)--(H5) hold. Then for every $ x\in D $, such that $ -L(s)x+\Phi(s)x=0 $, the problem \eqref{e1.1} has a unique classical solution. Moreover, $u$ is given by $ t\to p_{1}(U(t,s)\begin{pmatrix} x \\ 0\end{pmatrix}$, where $ U(t,s)$ is the evolution family generated by $(M(t)_{ 0\leq t\leq T})$. \end{theorem} \begin{proof} For the Cauchy problem \eqref{e3.1}, we have the following: \begin{enumerate} \item $D(M(t))=D\times \{0\} $ is independent of $t$. \item $t \to M(t)\begin{pmatrix} x\\ 0 \end{pmatrix}$ is continuously differentiable for $( x, 0 ) \in D\times \{0\}$. \item The family $ (M(t))_{0\leq t\leq T } $ is stable. \end{enumerate} Then the family $M(t)$ satisfies all conditions of Theorem \ref{thm2.3}. Thus, there exist an evolution family $(U(t,s))_{0\leq s\leq t}$ generated by the family $(M(t))_{0\leq t\leq T }$ such that \begin{itemize} \item[(a)] $U(t,t)=Id_{X\times \{0\}}$, \item[(b)] $U(t,r)U(r,s)=U(t,s)$, $0\leq s\leq r\leq t\leq T$, \item[(c)] $(t,s)\to U(t,s)$ is strongly continuous, \item[(d)] the function $t\to U(t,s)\begin{pmatrix} x \\ 0 \end{pmatrix}$ is continuously differentiable in $ X\times \{0\}$ on $[s,T]$, and satisfies $$ \frac{d}{dt}U(t,s)\begin{pmatrix} x \\ 0 \end{pmatrix} =M(t)U(t,s) \begin{pmatrix} x \\ 0 \end{pmatrix} \quad\text{for}\quad \begin{pmatrix} x \\ 0 \end{pmatrix} \in D(s), $$ and \begin{equation} U(t,s)D(s)\subset D(t), \quad\text{for all } 0\leq s\leq t\leq T ,\label{e3.9} \end{equation} where \begin{equation} \begin{aligned} D(s)&=\{\begin{pmatrix} x \\ 0 \end{pmatrix} \in D\times\{0\}: M(s)\begin{pmatrix} x \\ 0 \end{pmatrix} \in X\times \{0\}\} \\ &=\ker \big(L(s)-\Phi(s)\big)\times \{0\}. \label{e3.10} \end{aligned} \end{equation} \end{itemize} Let $U(t,s)( x , 0 ) =( u_{1}(t), 0 )$. We have $$ \begin{pmatrix} \frac{d}{dt}u_{1}(t) \\ 0 \\ \end{pmatrix} = M(t) \begin{pmatrix} u_{1}(t) \\ 0 \\ \end{pmatrix}, $$ and for $u(t)=( u_{1}(t), 0 )$, we have $\frac{d}{dt}u(t)=M(t)u(t)$, with $u(s)=( x, 0 )$, thus $ u(t)=( u_{1}(t), 0 )$ is a classical solution of \eqref{e3.1} and from Proposition \ref{prop3.4}, we have $ u_{1}$ is a classical solution of \eqref{e1.1} and \begin{equation} u_{1}(t)= p_{1}\big(U(t,s)\begin{pmatrix} x \\ 0\end{pmatrix} \big).\label{e3.11} \end{equation} \end{proof} \section{First Inhomogeneous Problem} In this section, we consider the inhomogeneous Cauchy problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=A(t)u(t)+f(t) , \quad 0\leq s\leq t\leq T,\\ L(t)u(t)=\Phi(t)u(t) , \quad 0\leq s\leq t\leq T,\\ u(s)=x. \end{gathered}\label{e4.1} \end{equation} A function $u:[s,T]\to X$ is called classical solution if it is continuously differentiable, $u(t)\in D$, $t\geq s$ and $u$ satisfies \eqref{e4.1}. Consider the Banach space $E=X \times Y \times C^{1}([0,T],X), T>0$, where $C^{1}([0,T],X)$ is the space of continuously differentiable functions from $[0,T]$ into $ X $ equipped with the norm $\|f\|=\|f\|_{\infty}+\|f'\|_{\infty} $, for $ f\in C^{1}([0,T],X)$. Let $B(t)$ be the operator matrices defined on $E$ by \begin{equation} B(t)=\begin{pmatrix} A(t) & 0 & \delta_{t} \\ -L(t)+\Phi(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\label{e4.2} \end{equation} with $D(B(t))=D\times \{0\}\times C^{1}([0,T],X)$. Where $\delta_{t}:C^{1}([0,T],X)\to X$ is the Dirac function concentrated at the point $t$ with $\delta_{t}(f)=f(t)$. To the family $B(t)$ we associate the homogeneous Cauchy problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=B(t)u(t) , \quad 0\leq s\leq t\leq T , \\ u(s)=( x, 0, f ). \end{gathered} \label{e4.3} \end{equation} with $( x, 0, f) \in D\times \{0\}\times C^{1}([0,T]$. \begin{lemma} \label{lem4.2} Assume that hypothesis (H1)--(H5) hold. Then the family operators $(B(t))_{0 \leq t \leq T}$ is stable. \end{lemma} \begin{proof} For $t\in[0,T]$, we write the operator $B(t)$ as $B(t)=l(t)+\phi(t)$, with $$ l(t)=\begin{pmatrix} A(t) & 0 & 0 \\ -L(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad\text{and}\quad \phi(t)=\begin{pmatrix} 0 & 0 & \delta_{t} \\ \Phi(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. $$ We must show that $l(t)$ is stable and that \begin{equation} R(\lambda,l(t))=\begin{pmatrix} R(\lambda,A_{0}(t)) & L_{\lambda,t} & 0 \\ 0 & 0& 0 \\ 0 & 0 & 1/\lambda \end{pmatrix}.\label{e4.4} \end{equation} For $ \lambda >\omega_{0}$, $\lambda\neq 0$, and $t\in[0,T]$, let $$ R(\lambda)=\begin{pmatrix} R(\lambda,A_{0}(t)) & L_{\lambda,t} & 0 \\ 0 & 0& 0 \\ 0 & 0 & 1/\lambda \end{pmatrix}. $$ For $( x, y, f ) \in X\times Y\times C^{1}([0,T],X)$, we have $$ \begin{pmatrix} R(\lambda,A_{0}(t) & L_{\lambda,t} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1/\lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ f \end{pmatrix} =\begin{pmatrix} R(\lambda,A_{0}(t))x+L_{\lambda,t}y \\ 0 \\ \frac{f}{\lambda} \\ \end{pmatrix}, $$ by the Remark \ref{rmk3.3}, we obtain \begin{equation} (\lambda I-l(t))R(\lambda) \begin{pmatrix} x \\ y \\ f \end{pmatrix} =\begin{pmatrix} (\lambda I-A(t))[R(\lambda,A_{0}(t))x+L_{\lambda,t}y] \\ L(t)[R(\lambda,A_{0}(t))x+L_{\lambda,t}y] \\ f \end{pmatrix} =\begin{pmatrix} x \\ y \\ f \end{pmatrix}.\label{e4.5} \end{equation} On the other hand, for $( x, 0, f )\in D\times \{0\}\times C^{1}([0,T],X)$, we have $$ (\lambda I-l(t))\begin{pmatrix} x \\ 0 \\ f \end{pmatrix} =\begin{pmatrix} (\lambda I-A(t))x \\ L(t)x \\ \lambda f \end{pmatrix}, $$ and $$ R(\lambda)(\lambda I-l(t))\begin{pmatrix} x \\ 0 \\ f \end{pmatrix} =\begin{pmatrix} R(\lambda,A_{0}(t))((\lambda I-A(t))x)+L_{\lambda,t}L(t)x \\ 0 \\ f \end{pmatrix}. $$ From Remark \ref{rmk3.3}, we have \begin{equation} R(\lambda)(\lambda I-l(t))\begin{pmatrix} x \\ 0 \\ f \end{pmatrix} =\begin{pmatrix} x \\ 0 \\ f \end{pmatrix}.\label{e4.6} \end{equation} From \eqref{e4.5} and \eqref{e4.6}, we obtain that the resolvent of $l(t)$ is given by $$ R(\lambda,l(t))=\begin{pmatrix} R(\lambda,A_{0}(t)) & L_{\lambda,t} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1/\lambda \end{pmatrix}. $$ By recurrence we can obtain $$ \prod_{i=1}^m R(\lambda,l(t_{i}))= \begin{pmatrix} \prod_{i=1}^m R(\lambda,A_{0}(t_{i})) & \prod_{i=1}^{m-1} R(\lambda,A_{0}(t_{i}))L_{\lambda,t_{m}} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1/\lambda^m \end{pmatrix}. $$ For a finite sequence $0\leq t_{1}\leq t_{2}\dots \leq t_{m}\leq T$ and for $( x , y , f ) \in E$, we have $$ \prod_{i=1}^m R(\lambda,l(t_{i})) \begin{pmatrix} x \\ y \\ f \end{pmatrix} =\begin{pmatrix} \prod_{i=1}^m R(\lambda,A_{0}(t_{i}))x+\prod_{i=1}^{m-1} R(\lambda,A_{0}(t_{i}))L_{\lambda,t_{m}}y \\ 0 \\ f/\lambda^m \end{pmatrix}. $$ Using (H5), we obtain \begin{align*} \|\prod_{i=1}^m R(\lambda,l(t_{i})) \begin{pmatrix} x \\ y \\ f \end{pmatrix}\| &\leq \|\prod_{i=1}^m R(\lambda,A_{0}(t_{i}))x+\prod_{i=1}^{m-1} R(\lambda,A_{0}(t_{i})) L_{\lambda,t_{m}}y\| +\frac{\|f\|}{\lambda^{m}}\\ &\leq \frac{M}{(\lambda-\omega_{0})^{m}}\|x\| +\frac{M}{(\lambda-\omega_{0})^{m-1}}\frac{\gamma }{\lambda-\omega_{1}}\|y\|+\frac{\|f\|}{\lambda^{m}}. \end{align*} Define $\omega_{2}=\max(0,\omega_{0},\omega_{1})$. Then $$ \|\prod_{i=1}^m R(\lambda,l(t_{i})) \begin{pmatrix} x \\ y \\ f \end{pmatrix}\| \leq \frac{M'}{(\lambda-\omega_{2})^{m}}(\|x\|+\|y\|+\|f\|), $$ where $M'=\max(M,M \gamma)$ and \begin{equation} \|\prod_{i=1}^m R(\lambda,l(t_{i}))\|\leq \frac{M'}{(\lambda-\omega_{2})^{m}}.\label{e4.7} \end{equation} This inequality shows that the family $l(t)$ is stable and by using \cite[Theorem 5.2.3]{p1}, the family $B(t)$ is stable. \end{proof} \begin{proposition} \label{prop4.3} Let $( x, 0, f) \in D\times \{0\}\times C^{1}([0,T],X)$. \noindent(1) If the function $ t\to u(t)=( u_{1}(t), 0, u_{2}(t))$ is a classical solution of \eqref{e4.3} with an initial value $( x, 0, f )$ then $t\to u_{1}(t) $ is a classical solution of \eqref{e4.1} with the initial value $x$. \noindent(2) Let $u$ is a classical solution of \eqref{e4.1} with the initial value $x$ .Then, the function $t\to U(t)=( u(t), 0, f)$ is a classical solution of \eqref{e4.3} with the initial value $( x, 0, f )$. \end{proposition} \begin{proof} (1) If $u(t)=( u_{1}(t), 0, u_{2}(t))$ is a classical solution of \eqref{e4.3}, then $u_{1}$ is continuously differentiable on $[s,T]$, $u_{1} \in D$ and we have $$ \frac{d}{dt} u(t)=\begin{pmatrix} \frac{d}{dt}u_{1}(t) \\ 0 \\ \frac{d}{dt}u_{2}(t) \end{pmatrix} =B(t)u(t), $$ which implies $$ \begin{pmatrix} \frac{d}{dt}u_{1}(t) \\ 0 \\ \frac{d}{dt}u_{2}(t) \end{pmatrix} = \begin{pmatrix} A(t) & 0 & \delta_{t} \\ -L(t)+\Phi(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_{1}(t) \\ 0 \\ u_{2}(t) \end{pmatrix}, $$ and $$ \begin{pmatrix} \frac{d}{dt}u_{1}(t) \\ 0 \\ \frac{d}{dt}u_{2}(t) \end{pmatrix} =\begin{pmatrix} A(t)u_{1}(t)+\delta_{t}u_{2}(t) \\ -L(t)u_{1}(t)+\Phi(t)u_{1}(t) \\ 0 \end{pmatrix}, $$ with $$ u(s)=\begin{pmatrix} u_{1}(s) \\ 0 \\ u_{2}(s) \end{pmatrix} =\begin{pmatrix} x \\ 0 \\ f \end{pmatrix}. $$ One has $\frac{d}{dt}u_{2}(t)=0 $. This implies $u_{2}(t)=u_{2}(s)=f$; therefore, $\delta_{t}u_{2}(t)=\delta_{t}f=f(t) $ and we have \begin{gather*} \frac{d}{dt}u_{1}(t)=A(t)u_{1}(t)+f(t), \quad 0\leq s\leq t\leq T , \\ L(t)u_{1}(t)=\Phi(t)u_{1}(t), \quad 0\leq s\leq t\leq T , \\ u_{1}(s)=x. \end{gather*} Therefore, $u_{1} $ is a classical solution of \eqref{e4.1} with the initial value $ x $. \noindent(2) If $u$ is a classical solution of \eqref{e4.1}, then $ u $ is continuously differentiable, $ u(t)\in D $ and \begin{gather*} \frac{d}{dt}u(t)=A(t)u(t)+f(t), \quad 0\leq s\leq t\leq T , \\ L(t)u(t)=\Phi(t)u(t), \quad 0\leq s\leq t\leq T , \\ u(s)=x. \end{gather*} Moreover, $$ \begin{pmatrix} \frac{d}{dt}u(t) \\ 0 \\ 0 \end{pmatrix} =\begin{pmatrix} A(t) & 0 & \delta_{t} \\ -L(t)+\Phi(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u(t) \\ 0 \\ f \end{pmatrix}. $$ With $u(s)=x$, $ U(t)=( u(t), 0, f)$ is continuously differentiable, $U(t) \in D(B(t))=D\times \{0\}\times C^{1}([0,T],X) $ then it is a classical solution of \eqref{e4.3} with the initial value $( x, 0, f )$. \end{proof} \begin{theorem} \label{thm4.4} Let $ f\in C^{1}([0,T],X)$. Assume that the hypothesis (H1)--(H5) hold. Then for all $x\in D$, such that $-L(s)x+\Phi(s)x=0 $, problem \eqref{e4.1} has a unique classical solution solution $u$. Moreover, $u$ is given by \begin{equation} u(t)=U_{\Phi}(t,s)x+\int_{s}^{t}U_{\Phi}(t,s)f(r)dr,\label{e4.8} \end{equation} where $U_{\Phi}(t,s)$ is an evolution family solution of the problem \eqref{e3.1} \end{theorem} \begin{proof} Consider the problem \begin{gather*} \frac{d}{dt}u(t)=B(t)u(t), \quad 0\leq s\leq t\leq T , \\ u(s)=( x, 0, f ). \end{gather*} We have showed that $(B(t))_{0\leq t\leq T} $ is a stable family and the function $ t\to B(t)y $ is continuously differentiable, for all $ y\in D(B(t))=D\times \{0\}\times C^{1}([0,T],X)$ and that $D(B(t))$ is independent of $t$. Then there exist an evolution system $U(t,s)$ on $ X\times \{0\}\times C^{1}([0,T],X) $ such that $$ U(t,s)\begin{pmatrix} x \\ 0 \\ f \end{pmatrix} =\begin{pmatrix} u_{1}(t) \\ 0 \\ u_{2}(t) \end{pmatrix} = u(t) $$ is a classical solution of \eqref{e4.3} and from the Proposition \ref{prop4.3}, $ u_{1}$ is a classical solution of \eqref{e4.1}, for $( x, 0, f) \in \ker (L(s)-\Phi(s))\times\{0\}\times C^{1}([0,T],X)$. Let $v(r)= U_{\Phi}(t,r)u_{1}(r)$. Then $v$ is differentiable and $$ \frac{d}{dr}v(r)= -U_{\Phi}(t,r)A_{\Phi}(r)u_{1}(r)+U_{\Phi}(t,r) [A_{\Phi}(r)u_{1}(r)+f(r)], $$ where $A_{\Phi}(t)=A(t)/\ker (L(t)-\Phi(t))$; therefore, \begin{equation} \frac{d}{dr}v(r)=U_{\Phi}(t,r)f(r). \label{e4.9} \end{equation} Integrating \eqref{e4.9} from $s$ to $ t$, we obtain $$ u_{1}(t)=U_{\Phi}(t,s)x+\int_{s}^{t}U_{\Phi}(t,r)f(r)dr, $$ which completes the proof. \end{proof} \section{Second Inhomogeneous Problem} In this section, we consider the Inhomogeneous Cauchy problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=A(t)u(t)+f(t) , \quad 0\leq s\leq t\leq T, \\ L(t)u(t)=\Phi(t)u(t)+g(t) , \quad 0\leq s\leq t\leq T, \\ u(s)=x. \end{gathered} \label{e5.1} \end{equation} A function $u:[s,T]\to X $ is a classical solution if it is continuously differentiable, $ u(t)\in D, $ for all $ t\geq s $ and $u$ satisfies \eqref{e5.1}. Consider the Banach space $ E=X\times Y\times C^{1}([0,T],X)\times C^{1}([0,T],Y) $, where $ C^{1}([0,T],X)$ and $ C^{1}([0,T],Y)$ are equipped with the norm $\|f\|=\|f\|_{\infty}+\|f'\|_{\infty}$ for $f$ in $C^{1}([0,T],X)$ or in $C^{1}([0,T],Y)$. Consider the operator matrices \begin{equation} B(t)=\begin{pmatrix} A(t) & 0 & \delta_{t} & 0 \\ -L(t)+\Phi(t) & 0 & 0 & \overline{\delta_{t}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},\label{e5.2} \end{equation} with $$ D(B(t))=D\times\{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y) $$ where $\delta_{t}: C^{1}([0,T],X)\to X $ such that $\delta_{t}(f)=f(t)$ and $\overline{\delta_{t}}:C^{1}([0,T],Y)\to Y $ such that $\overline{\delta_{t}}(g)=g(t)$. To the family $B(t)$ ,we associate the homogeneous Cauchy problem \begin{equation} \begin{gathered} \frac{d}{dt}u(t)=B(t)u(t), \quad 0\leq s\leq t\leq T, \\ u(s)=( x, 0, f, g) \end{gathered} \label{e5.3} \end{equation} for $ ( x , 0 , f, g) \in D\times \{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y)=D_{1}$. \begin{lemma} \label{lem5.2} Assume that the hypothesis (H1)--(H5) hold. Then the family operators $B(t)$ is stable. \end{lemma} \begin{proof} For $t \in [0,T]$, we write the $B(t)$ defined in \eqref{e5.2} as $B(t)=l(t)+\phi(t)$, where $$ l(t)= \begin{pmatrix} A(t) & 0 & 0 & 0 \\ -L(t) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and}\quad \phi(t)=\begin{pmatrix} 0 & 0 & \delta_{t} & 0 \\ \Phi(t) & 0 & 0 & \overline{\delta_{t}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, $$ we must show that the family $l(t)$ is stable. Let $$ R(\lambda)=\begin{pmatrix} R(\lambda,A_{0}(t)) & L_{\lambda,t} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1/\lambda & 0 \\ 0 & 0 & 0 & 1/\lambda \end{pmatrix}. $$ For $\lambda >\omega_{0}$, $\lambda \neq 0$ and $ t\in[0,T] $ we show that $R(\lambda,l(t))=R(\lambda)$. For $( x, y, f, g )\in X\times Y\times C^{1}([0,T],X)\times C^{1}([0,T],Y)$, we have \begin{equation} R(\lambda)\begin{pmatrix} x \\ y \\ f \\ g \end{pmatrix} =\begin{pmatrix} R(\lambda,A_{0}(t))x+L_{\lambda,t}y \\ 0 \\ f/\lambda \\ g/\lambda \\ \end{pmatrix},\label{e5.4} \end{equation} by the Remark \ref{rmk3.3} and with the same proof as Lemma \ref{lem4.2} we obtain \begin{equation} (\lambda I-l(t))R(\lambda) \begin{pmatrix} x \\ y \\ f \\ g \end{pmatrix} =\begin{pmatrix} x \\ y \\ f \\ g \end{pmatrix}.\label{e5.5} \end{equation} On the other hand, for $( x, 0, f, g) \in D\times \{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y)$, we have $$ (\lambda I-l(t))\begin{pmatrix} x \\ 0 \\ f \\ g \end{pmatrix} =\begin{pmatrix} (\lambda I-A(t))x \\ L(t)x \\ \lambda f \\ \lambda g \end{pmatrix}, $$ and \begin{equation} R(\lambda)(\lambda I-l(t)) \begin{pmatrix} x \\ 0 \\ f \\ g \end{pmatrix} =\begin{pmatrix} R(\lambda,A_{0}(t))((\lambda I-A(t))x)+L_{\lambda,t}L(t)x \\ 0 \\ f \\ g \end{pmatrix} =\begin{pmatrix} x \\ 0 \\ f \\ g \end{pmatrix},\label{e5.6} \end{equation} then from \eqref{e5.5}, \eqref{e5.6} and Remark \ref{rmk3.3}, we have $R(\lambda)=R(\lambda I,l(t))$. By recurrence we obtain $$ \prod_{i=1}^m R(\lambda,l(t_{i}))= \begin{pmatrix} \prod_{i=1}^m R(\lambda,A_{0}(t_{i})) & \prod_{i=1}^{m-1} R(\lambda,A_{0}(t_{i}))L_{\lambda,t_{m}} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1/\lambda^m & 0 \\ 0 & 0 & 0 & 1/\lambda^m \end{pmatrix}, $$ for a finite sequence $0\leq t_{1} \leq t_{2} \leq \dots \leq t_{m}\leq T$. Now on the space $X\times Y\times C^{1}([0,T],X)\times C^{1}([0,T],Y)$,we consider the norm \begin{equation} \|( x, y, f, g )\|=(\|x\|+\|y\|+\|f\|+\|g\|). \label{e5.7} \end{equation} For $( x, y, f, g )\in X\times Y\times C^{1}([0,T],X)\times C^{1}([0,T],Y)$, we have \begin{align*} \|\prod_{i=1}^m R(\lambda,l(t_{i})) \begin{pmatrix} x \\ y \\ f \\ g \end{pmatrix}\| &\leq \frac{M}{(\lambda-\omega_{0})^{m}}\|x\| +\frac{M\gamma}{(\lambda-\omega_{0})^{m-1}}\frac{1}{\lambda-\omega_{1}}\|y\| +\frac{\|f\|}{\lambda^{m}}+\frac{\|g\|}{\lambda^{m}}\\ &\leq \frac{M'}{(\lambda-\omega_{2})^{m}}(\|x\|+\|y\|+\|f\|+\|g\|), \end{align*} where $\omega_{2}=\max(0,\omega_{0},\omega_{1})$ and $M'=\max(M,M\gamma )$. Since $B(t)$ is a perturbation of $l(t)$, by a linear operator $\phi(t)$ on $E$; hence, in view of perturbation result \cite[Theorem 5.2.3]{p1}, $B(t)$ is stable. \end{proof} \begin {proposition} \label{prop5.3} Let $(x, 0, f, g) \in D\times \{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y)$ \noindent(1) If the function $t\to u(t)=\big( u_{1}(t), 0, u_{2}(t), u_{3}(t) \big)$ is a classical solution of \eqref{e5.3} with an initial value $( x, 0, f, g )$ then $ t\to u_{1}(t)$ is a classical solution of \eqref{e5.1} with the initial value $x$. \noindent(2) Let $u$ is a classical solution of \eqref{e5.1} with the initial value $x$. Then, the function $t\to U(t)= \big( u(t), 0, f, g\big)$ is a classical solution of \eqref{e5.3} with the initial value $( x, 0, f, g )$. \end {proposition} \begin{proof} (1) If $u(t)=\big( u_{1}(t), 0, u_{2}(t), u_{3}(t)\big)$ is a classical solution of \eqref{e5.3}, then $u_{1}$ is continuously differentiable on $[s,T]$ and we have $$ \begin{pmatrix} \frac{d}{dt}u_{1}(t) \\ 0 \\ \frac{d}{dt}u_{2}(t) \\ \frac{d}{dt}u_{3}(t) \\ \end{pmatrix} =\begin{pmatrix} A(t) & 0 & \delta_{t} & 0 \\ -L(t)+\Phi(t) & 0 & 0 & \overline{\delta_{t}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_{1}(t) \\ 0 \\ u_{2}(t) \\ u_{3}(t) \end{pmatrix}. $$ This implies \begin{gather*} \frac{d}{dt}u_{1}(t)=A(t)u_{1}(t)+\delta_{t}u_{2}(t), \quad 0\leq s\leq t\leq T, \\ L(t)u_{1}(t)=\Phi(t)u_{1}(t)+\overline{\delta_{t}}u_{3}(t),\quad 0\leq s\leq t\leq T, \\ \frac{d}{dt}u_{2}(t)=0, \\ \frac{d}{dt}u_{3}(t)=0. \end{gather*} One has $\frac{d}{dt}u_{3}(t)=0$ which implies $u_{3}(t)=u_{3}(s)=g$ and $L(t)u_{1}(t)=\Phi(t)u_{1}(t)+g(t)$. Also $\frac{d}{dt}u_{2}(t)=0$ implies $u_{2}(t)=u_{2}(s)=f$ and $\frac{d}{dt}u_{1}(t)=A(t)u_{1}(t)+f(t)$. Then \begin{gather*} \frac{d}{dt}u_{1}(t)=A(t)u_{1}(t)+f(t),\quad 0\leq s\leq t\leq T, \\ L(t)u_{1}(t)=\Phi(t)u_{1}(t)+g(t),\quad 0\leq s\leq t\leq T, \\ u_{1}(s)=x. \end{gather*} Thus $u_{1}$ is a classical solution of \eqref{e5.1} with the initial value $x$. \noindent(2) Let $u$ is a classical solution of \eqref{e5.1}. This implies that $u $ is continuously differentiable and $u(t)\in D\times \{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y) $. Moreover, \begin{gather*} \frac{d}{dt}u(t)=A(t)u(t)+f(t),\quad 0\leq s\leq t\leq T \\ L(t)u(t)=\Phi(t)u(t)+g(t),\quad 0\leq s\leq t\leq T \\ u(s)=x. \end{gather*} This implies $$ \begin{pmatrix} \frac{d}{dt}u(t) \\ 0 \\ 0 \\ 0 \end{pmatrix} =\begin{pmatrix} A(t) & 0 & \delta_{t} & 0 \\ -L(t)+\Phi(t) & 0 & 0 & \overline{\delta_{t}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u(t) \\ 0 \\ f \\ g \end{pmatrix}, $$ with $u(s)=x$. Then $U(t)=(u(t), 0, f, g)$ is continuously differentiable, $U(t)\in D\times \{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y) $, for all $t \in [s,T]$ and $U(t)$ is a classical solution of \eqref{e5.1} with the initial value $( x, 0, f, g )$. \end{proof} \begin{theorem} Let $ f\in C^{1}([0,T],X)$ and $g\in C^{1}([0,T],Y)$. Assume that the hypothesis (H1)--(H5) hold. Then for every $x\in D$ such that $-L(s)x+\Phi(s)x+g(s)=0$, problem \eqref{e5.1} has a unique classical solution. \end{theorem} \begin{proof} Consider the homogenous Cauchy problem \begin{gather*} \frac{d}{dt}u(t)=B(t)u(t), \quad 0\leq s\leq t\leq T, \\ u(s)=( x , 0 , f , g ). \end{gather*} By Lemma \ref{lem5.2}, $ B(t)$ is a stable family and the function $t\to B(t)y $ is continuously differentiable for all $y\in D_{1}=D(B(t))$ independent of $t$. Then there exist an evolution family $U(t,s)$ on $X\times\{0\}\times C^{1}([0,T],X)\times C^{1}([0,T],Y)$ such that $$ U(t,s) \begin{pmatrix} x \\ 0 \\ f \\ g \end{pmatrix} =\begin{pmatrix} u_{1}(t) \\ 0 \\ u_{2}(t) \\ u_{3}(t) \end{pmatrix}= u(t) $$ is a classical solution of \eqref{e5.3} and from the Proposition \ref{prop5.3}, $u_{1}$ is a classical solution of \eqref{e5.1}. The uniqueness of $u_{1}$ comes from the uniqueness of the solution of \eqref{e5.3} and Proposition \ref{prop5.3}. \end{proof} \begin{theorem} \label{thm5.5} Let $ f\in C^{1}([0,T],X)$ and $ g\in C^{1}([0,T],Y)$. If $ u $ is a classical solution of \eqref{e5.1} then $u$ is given by the variation of constants formula \begin{equation} u(t)=U(t,s)(I-L_{\lambda,s}L(s))x+g(t,u(t))+\int^{t}_{s}U(t,r)[\lambda g(r,u(r))-g(r,u(r))'+f(r)]dr, \label{e5.8} \end{equation} where $ U(t,s)$ is the evolution family generated by $A_{0}(t)$ and $$ g(t,u(t))=L_{\lambda,t}(\Phi (t)u(t)+g(t)). $$ \end{theorem} \begin{proof} Let now $u$ be a classical solution of \eqref{e5.1}. Take $$ u_{2}(t)=L_{\lambda,t}L(t)u(t)\quad\text{and}\quad u_{1}(t)=(I-L_{\lambda,t}L(t))u(t). $$ Then the functions $$ u_{2}(t)=g(t,u(t))=L_{\lambda,t}(\Phi(t)u(t)+g(t)) \quad\text{and}\quad u_{1}(t) $$ are differentiable. Since $u_{2}(t)\in \ker (\lambda I-A(t))$, we have $A(t)u_{2}(t)=\lambda u_{2}(t) $ and \begin{align*} \frac{d}{dt}u_{1}(t)&=\frac{d}{dt}u(t)-\frac{d}{dt}u_{2}(t)\\ &=A(t)u(t)-(g(t,u(t)))'+f(t)\\ &=A(t)(u_{1}(t)+u_{2}(t))+f(t)-(g(t,u(t)))' \\ &=A(t)u_{1}(t)+\lambda (g(t,u(t))+f(t)-(g(t,u(t)))'. \end{align*} When we define $h(t):=\lambda g(t,u(t))+f(t)-(g(t,u(t)))'$, we get \begin{equation} u_{1}(t)=U(t,s)u_{1}(s)+\int_{s}^{t}U(t,r)h(r)dr.\label{e5.9} \end{equation} By replacing $u_{1}(s)$ by $(I-L_{\lambda,s}L(s))x$, we obtain \begin{equation} u_{1}(t)=U(t,s)(I-L_{\lambda,s}L(s))x+\int_{s}^{t}U(t,r)h(r)dr,\label{e5.10} \end{equation} it follows that \begin{align*} u(t)&=u(t,s)(I-L_{\lambda,s}L(s))x+g(t,u(t))\\ &\quad +\int^{t}_{s}u(t,r)[\lambda g(r,u(r))-(g(r,u(r)))'+f(r)]dr, \end{align*} which completes the proof. \end{proof} \begin{thebibliography}{99} \bibitem{e1} {K. J. Engel and R. Nagel}, \emph{One-Parameter Semigroups for Linear Evolution Equations}, Graduate Texts in mathematics,Springer-verlag, 194(2000). \bibitem{f1} {M. Filali and M. Moussi}, \emph{Non-autonomous Inhomogeneous Boundary Cauchy Problems and Retarded Equations}. Kyungpook Math. J. 44(2004), 125-136. \bibitem{g1} {G. Greiner}, \emph{Perturbing the boundary conditions of a generator}, Houston J. math., 13(1987), 213-229. \bibitem{k1} {T. Kato}, \emph{Linear evolution equations, of hyperbolic type}, J. Fac. Sci. Tokyo, 17(1970), 241-258. \bibitem{k2} {H. Kellerman}, \emph{Linear evolution equations with time-dependent domain, semesterbericht Funktionalanalysis}, T\"ubingen, Wintersemester, (1985-1986). \bibitem{l1} {N. T. Lan}, \emph{On nonautonomous Functional Differential Equations}, J. Math. Anal. App., 239 (1999), 158-174. \bibitem{p1} {A. Pazy}, \emph{Semigroups of linear operators and applications to partial differential equations}, New York Springer, 1983. \bibitem{r1} {A. Rhandi}, \emph{Extrapolation methods to solve nonautonomous retarded differential equations}, Studia Math, 126 (1997), 219-233. \bibitem{t1} {N. Tanaka}, \emph{Quasilinear Evolution Equations with non-densely defined operators}, Diff. Int. Equat., 9 (1996), 1067-1106. \end{thebibliography} \end{document}