\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amsfonts} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 163--172.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{163} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Existence of two nontrivial solutions] {Existence of two nontrivial solutions for semilinear elliptic problems} \author[A. R. El Amrouss, F. Moradi, M. Moussaoui \hfil EJDE/Conf/14 \hfilneg] {Abdel R. El Amrouss, Fouzia Moradi, Mimoun Moussaoui} \address{Abdel R. El Amrouss \newline University Mohamed 1er, Faculty of sciences\\ Department of Mathematics, Oujda, Morocco} \email{amrouss@sciences.univ-oujda.ac.ma} \address{Fouzia Moradi\newline University Mohamed 1er, Faculty of sciences\\ Department of Mathematics, Oujda, Morocco} \email{foumoradi@yahoo.fr} \address{Mimoun Moussaoui \newline University Mohamed 1er, Faculty of sciences\\ Department of Mathematics, Oujda, Morocco} \email{moussaoui@sciences.univ-oujda.ac.ma} \date{} \thanks{Published September 20, 2006.} \subjclass[2000]{58E05, 35J65, 56J20} \keywords{Variational elliptic problem; resonance; critical group; \hfill\break\indent Morse theory; minimax method} \begin{abstract} This paper concerns the existence of multiple nontrivial solutions for some nonlinear problems. The first nontrivial solution is found using a minimax method, and the second by computing the Leray-Schauder index and the critical group near 0. \end{abstract} \maketitle\numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} We consider the Dirichlet problem \begin{equation} \begin{gathered} -\Delta u = \lambda_k u + f(u) \quad\mbox{in }\Omega \\ u = 0 \quad \mbox{on }\partial\Omega, \end{gathered} \label{e1} \end{equation} where $\Omega $ is a bounded domain in $\mathbb{R}^{n}$, and $f:\Omega \times \mathbb{R}\to\mathbb{R}$ is a nonlinear function satisfying the Carath\'{e}odory conditions, and $0<\lambda _{1}<\lambda _{2}\leq \dots \lambda _{k}\leq \dots $ is the sequence of eigenvalues of the problem \begin{gather*} -\Delta u=\lambda u\quad \mbox{in }\Omega , \\ u=0\quad \mbox{on }\partial \Omega. \end{gather*} Let us denote by $E(\lambda _{j})$ the $\lambda _{j}$-eigenspace and by $% F(s) $ the primitive $\int_{0}^{s}f(t)\,dt$ . There are several works studying the problem \begin{equation} \begin{gathered} -\Delta u=\lambda _{k}u+f(x,u)+h\quad \mbox{in }\Omega , \\ u=0\quad \mbox{on }\partial \Omega \,. \end{gathered} \label{e2} \end{equation} where $h\in L^{2}(\Omega )$; see for example \cite{C-O,D-G,Do,El2,E-M}. We write \begin{gather*} l_{\pm }(x)=\liminf_{s\to\pm \infty }\frac{f(x,s)}{s},\quad k_{\pm }(x)=\limsup_{s\to\pm \infty }\frac{f(x,s)}{s}, \\ L_{\pm }(x)=\liminf_{s\to\pm \infty } \frac{2F(x,s)}{s^{2}},\quad K_{\pm }(x) =\limsup_{s\to\pm \infty }\frac{2F(x,s)}{s^{2}}\,. \end{gather*} In \cite{Do}, the solvability of (\ref{e2}) for every $h\in L^{2}(\Omega)$, is ensured when \begin{equation*} 0<\upsilon _{k}\leq l_{\pm }(x)\leq k_{\pm }(x)\leq \upsilon _{k+1}<\lambda _{k+1}-\lambda _{k}, \end{equation*} where $\upsilon _{k}$ and $\upsilon _{k+1}$ are constants. However, in the autonomous case $f(x,s)=f(s)$, De Figuerido and Gossez \cite {D-G} introduced a density condition that requires $\frac{f(s)}{s} $ to be between $0$ and $\alpha =\lambda _{k+1}-\lambda _{k}$ as $s\to\pm \infty $, and showed the existence of solution for any $h$. Next in \cite{C-O}, Costa and Oliveira proved an existence result for (\ref{e2}) under the following conditions: \begin{gather} 0\leq l_{\pm }(x)\leq k_{\pm }(x)\leq \lambda _{k+1}-\lambda _{k} \quad \text{uniformly for a.e } x\in \Omega, \label{e3} \\ 0\preceq L_{\pm }(x)\leq K_{\pm }(x)\preceq \lambda _{k+1}-\lambda _{k} \quad \text{uniformly for a.e } x\in \Omega . \label{e4} \end{gather} Here the relation $a(x)\preceq b(x)$ indicates that $a(x)\leq b(x)$ on $% \Omega $, with strict inequality holding on subset of positive measure. Later in \cite{E-M}, the authors proved an existence result in situation $% L_{\pm }(x)=0$ for a.e $x\in \Omega $ and $K_{\pm }(x)=\lambda _{k+1}-\lambda _{k}$ for a.e $x\in \Omega $. They replaced (\ref{e4}) by classical resonance conditions of Ahmad-Lazer-Paul on two sides of (\ref{e4}% ) and showed that (\ref{e2}) is solvable. More recently, in \cite{El2}, the author interested to study the existence of two nontrivial solutions in the case $k=1$ and under other weaker conditions cited above. The aim of this paper is to generalize the above result for $k\geq 1$. We assume the following assumptions: \begin{itemize} \item[(F0)] $|f'(s)|\leq c(|s|^{p}+1)$, $s\in \mathbb{R}$, $p<\frac{4}{n-2}$ if $n\geq 3$ and no restriction if $n=1,2$. \item[(F1)] $sf(s)\geq 0$ for $|s|\geq r>0$ and \begin{equation*} \limsup_{s\to \pm \infty }\frac{f(s)}{s}\leq \lambda _{k+1}-\lambda _{k}=\alpha . \end{equation*} \item[(F2)] $\lim_{\Vert v\Vert \rightarrow \infty ,v\in E(\lambda _{k})}\int F(v(x))dx=+\infty $. \item[(F3)] There exists $\eta \in \mathbb{R}$, $0<\eta <\alpha $, such that \begin{equation*} \liminf_{n\rightarrow +\infty }\frac{\mu (G_{n})}{n}>0 \end{equation*} where $G_{n}=\{s\in ]-n,n[,s\neq 0$, and $\frac{f(s)}{s}\leq \alpha -\eta \}$ and $\mu $ denotes the Lebesgue measure on $\mathbb{R}$. \item[(F4)] $f'(0)+\lambda _{k}<\lambda _{1}$ \end{itemize} \begin{theorem} \label{thm1.1} Let $f$ be $ C^{1}$ function, with $f(0)=0$, that satisfies the conditions (F0)-(F4). Then \eqref{e1} has at least two nontrivial solutions. \end{theorem} This paper is organized as follows: In section 2, we give some technical lemmas and some results of critical groups. The proof of our result is carried out in section 3. \section{Preliminaries Lemmas} Let us consider the functional defined on $H_{0}^{1}(\Omega )$ by \begin{equation*} \Phi (u)=\frac{1}{2}\int_{\Omega }|\nabla u|^{2}dx-\frac{1}{2}\lambda _{k}\int u^{2}dx-\int F(u)dx. \end{equation*} where $H_{0}^{1}(\Omega )$ is the usual Sobolev space obtained through the completion of $C_{c}^{\infty }(\Omega )$ with respect to the norm induced by the inner product \begin{equation*} \langle u,v\rangle =\int_{\Omega }\nabla u\nabla vdx,\quad u,v\in H_{0}^{1}(\Omega ). \end{equation*} It is well known that under a linear growth condition on $f$, the functional $\Phi $ is well defined on $H_{0}^{1}(\Omega )$, weakly lower semi-continuous and $\Phi \in C^{1}( H_{0}^{1},\mathbb{R})$, with \begin{equation*} \langle \Phi '(u),v\rangle =\int_{\Omega }\nabla u\nabla vdx-\lambda _{k}\int uvdx-\int f(u)vdx,\quad \mbox{for }u,v\in H_{0}^{1}(\Omega ). \end{equation*} Consequently, the weak solutions of the problem \eqref{e1} are the critical points of the functional $\Phi $. Moreover, under the condition(F0), $\Phi $ is a $C^{2}$ functional with the second derivative given by \begin{equation*} \Phi ^{\prime\prime}(u) v.w=\int \nabla v\nabla wdx-\lambda _{k}\int vwdx-\int f'(u)vwdx, \end{equation*} for $u,v,w\in H_{0}^{1}(\Omega )$. Since we are going to apply the variational characterization of the eigenvalues, we shall decompose the space $H_{0}^{1}(\Omega )$ as $% E=E_{-}\oplus E_{k}\oplus E_{k+1}\oplus E_{+}$, where $E_{-}$ is the subspace spanned by the $\lambda _{j}$- eigenfunctions with $j0$ such that \begin{equation*} \int F(\frac{u_{n}^{k}}{2})\,dx\leq M. \end{equation*} \end{proof} \subsection{Critical groups} Let $H$ be a Hilbert space and $\Phi \in C^{1}(H,\mathbb{R})$ satisfying the Palais-Smaile condition or the Cerami condition. Set $\Phi ^{c}=\{u\in H\mid \Phi (u)\leq c\}$ and denote by $H_{q}(X,Y)$ the q-th relative singular homology group with integer coefficient. The critical groups of $\Phi $ at an isolated critical point u with $\Phi (u)=c$ are defined by \begin{equation*} C_{q}(\Phi ,u)=H_{q}(\Phi ^{c}\cap U,\Phi ^{c}\cap U\setminus \{u\});\quad q\in Z. \end{equation*} where $U$ is a closed neighborhood of $u$. Let $K=\{u\in H\mid \Phi '(u)=0\}$ be the set of critical points of $\Phi $ and $a<\inf_{K}\Phi $. The critical groups of $\Phi $ at infinity are defined by \begin{equation*} C_{q}(\Phi ,\infty )=H_{q}(H,\Phi ^{a}); \quad q\in Z \end{equation*} We will use the notation $\deg (\Phi ',U,0)$ for the Leray-Schauder degree of $\Phi $ with respect to the set $U$ and the value $0$. Denote also by $\mathop{\rm index}(\Phi ',u)$ the Leray-Schauder index of $\Phi'$ at critical point $u$. Recall that this quantity is defined as $\lim_{r\to0}\deg (\Phi ',B_{r}(u),0)$, if this limit exists, where $B_{r}(u)$ is the ball of radius $r$ centered at $u$. \begin{proposition}[\cite{Ch}] \label{prop2.1} If $u$ is a mountain pass point of $\Phi $, then \begin{equation*} C_{q}(\Phi ,u)=\delta _{q,1}Z. \end{equation*} \end{proposition} \begin{proposition}[\cite{B-L}] \label{prop2.2} Assume that $ H=H^{+}\oplus H^{-}$, $\Phi $ is bounded from below on $H^{+}$ and $\Phi (u)\to-\infty $ as $\|u\| \to\infty $ with $u\in H^{-}$. Then \begin{equation*} C_{\mu }(\Phi ,\infty )\neq 0,\quad \text{with }\mu =\dim H^{-}<\infty . \end{equation*} \end{proposition} \section{Proof of Theorem \ref{thm1.1}} First, we prove that $\Phi $ satisfies the Cerami condition. \begin{lemma} \label{lm3.1} Under the assumptions (F0)--(F3), $\Phi$ satisfies the $(C)_c$ condition on $ H_0^1(\Omega)$, for all $c \in \mathbb{R}$. \end{lemma} \begin{proof} Let $(u_{n})_{n}\subset H_{0}^{1}$ be a $(C)_{c}$ sequence, i.e \begin{gather} \Phi (u_{n})\to c \label{e16} \\ \Vert u_{n}\Vert \langle \Phi '(u_{n}),v\rangle _{H_{0}^{1},H^{-1}}\leq {\epsilon _{n}}\Vert v\Vert \quad \forall v\in H_{0}^{1}, \label{e17} \end{gather} where $\epsilon _{n}\to0$. It clearly suffices to show that $(u_{n})_{n}$ remains bounded in $H_{0}^{1}$. Assume by contradiction. Defining $z_{n}=\frac{u_{n}}{\Vert u_{n}\Vert }$, we have $\Vert z_{n}\Vert=1$ and, passing if necessary to a subsequence, we may assume that $z_{n}\rightharpoonup z$ weakly in $H_{0}^{1}$, $z_{n}\to z$ strongly in $L^{2}(\Omega )$ and $z_{n}(x)\to z(x)$ a.e. in $\Omega $. By the linear growth of $f$ , the sequence $\big( \frac{f(u_{n}(x) )}{\|u_{n}\| }\big) _{n}$ remains bounded in $L^{2}$, then for a subsequence, we have \begin{equation*} \frac{f(u_{n}(x) )}{\|u_{n}\| }\rightharpoonup \zeta \quad \text{in }L^{2}. \end{equation*} and by standard arguments based on assumptions F0),F1), $\zeta $ can be written as $ \zeta (x)=m(x)z(x)$, where $ m$ satisfies (see \cite{C-O}). \begin{equation*} 0\leq m(x)\leq \lambda _{k+1}-\lambda _{k}\quad \text{a.e. in }\Omega . \end{equation*} However, divide (\ref{e17}) by $\|u_{n}\| ^{2}$ and goes to the limit we obtain \begin{equation*} \frac{\langle \Phi '(u_{n}),v\rangle }{\|u_{n}\| }=\int \nabla z_{n}\nabla v-\lambda _{k}\int z_{n}v-\int \frac{f(u_{n})}{\| u_{n}\| }vdx\to0 \end{equation*} for every $v\in H_{0}^{1}$. On the other hand, since $z_{n}$ converges to $z$ weakly in $ H_{0}^{1}$, strongly in $L^{2}$ and $\frac{f( u_{n}(x)) }{\|u_{n}\| }$ converges weakly in $L^{2}$ to $\zeta $, we deduce \begin{equation} \frac{\langle \Phi '(u_{n}),v\rangle }{\|u_{n}\| } \to\int \nabla z\nabla v-\lambda _{k}\int zv-\int \zeta vdx=0\quad \forall v\in H_{0}^{1}(\Omega ). \label{e18} \end{equation} \subsection*{Claim:} We will prove that $z_{n}\to z$ strongly in $H_{0}^{1}$. Indeed, taking $ v=z$ in (\ref{e18}) we have \begin{equation} \|z\| ^{2}=\lambda _{k}\int z^{2}+\int m(x)z^{2}. \label{e19} \end{equation} On the other hand, by (\ref{e17}) it results \begin{equation} \frac{\langle \Phi '(u_{n}),u_{n}\rangle }{\|u_{n}\| ^{2}}\to1-\lambda _{k}\int z^{2}-\int m(x)z^{2}=0. \label{e20} \end{equation} From (\ref{e19}) and (\ref{e20}), it follows $\|z\| =1$. Since $z_{n}\rightharpoonup z$, $\|z_{n}\| \to\|z\| $ and $H_{0}^{1}( \Omega ) $ is convex uniformly space the claim follows. So that, $z$ is a nontrivial solution of problem \begin{equation} \begin{gathered} -\Delta z= ( \lambda_k +m(x))z \quad\mbox{in }\Omega\\z = 0 \quad\mbox{on }\partial\Omega. \end{gathered} \label{e21} \end{equation} We now distinguish three cases: i) $ \lambda _{k}1$ , which gives a contradiction. \subsection*{Case ii:} By (F1), for $ \varepsilon >0$, there exists a constant $r_{\varepsilon }>r$ such that \begin{equation} 0\leq \frac{f(s)}{s}\leq \lambda _{k+1}-\lambda _{k}+\varepsilon \quad \forall |s|\geq r_{\varepsilon } \label{e22} \end{equation} Put $f_{n}(x)=\frac{f\big( u_{n}(x) \big) }{u_{n}(x)}\chi \{|u_{n}(x)|\geq r_{\varepsilon }\}$, which remains bounded in $L^{\infty }$, passing if necessary to a subsequence, $f_{n}\to l$ in the weak* topology of $L^{\infty }$. By (\ref{e22}), the $L^{\infty }$-function $l$ satisfies \begin{equation*} 0\leq l(x) \leq \lambda _{k+1}-\lambda _{k}+\varepsilon\quad \text{a.e.in }\Omega \end{equation*} Multiply $f_{n}$ by $z_{n}^{2}$, integrate on $\Omega $ and going to the limit, to have \begin{equation*} \int f_{n}z_{n}^{2}dx=\int \frac{f\left( u_{n}(x) \right) }{ \|u_{n}\| }z_{n}\to\int m(x)z^{2}dx=\int l(x)z^{2}dx=0. \end{equation*} By the unique continuation Property of $\Delta $ and $l\geq 0$, we deduce that $ l\equiv 0$ a.e.in $\Omega $. Then, by lemma \ref{lm2.2} and lemma \ref{lm2.3} there exists $ M>0$ such that \begin{equation*} \int F(\frac{u_{n}^{k}}{2})dx\leq M\text{.} \end{equation*} This is a contradiction with assumption (F2) and $\|u_{n}^{k}\| \to+\infty $. \subsection*{Case iii:} If $ m(x)\equiv \lambda _{k+1}-\lambda _{k}$. Dividing (\ref{e16}) by $ \|u_{n}\| ^{2}$, we obtain \begin{equation*} \frac{\Phi ( u_{n}) }{\|u_{n}\| ^{2}}=\frac{1}{2} \|z_{n}\| ^{2}-\frac{\lambda _{k}}{2}\int z_{n}^{2}-\int \frac{ F(u_{n}(x))}{\|u_{n}\| ^{2}}dx\to0,\quad \text{as } n\to\infty . \end{equation*} However, it results that \begin{equation*} \underset{n\to+\infty }{\lim }\int \frac{F(u_{n}(x))}{\| u_{n}\| ^{2}}dx=\frac{1}{2}\alpha \int z^{2}dx. \end{equation*} Applying Fatou's lemma, we have \begin{equation*} \int_{z>0}( \alpha -K_{+}) z^{2}dx+\int_{z<0}\left( \alpha -K_{-}\right) z^{2}dx\leq 0. \end{equation*} This is a contradiction with assumption (F3), since (F3) is equivalent to $K_{\pm }=\limsup_{s\to\pm \infty }\frac{2F(s)}{s^{2}}<\alpha $. (see \cite{G-O}). The proof of lemma is complete. \end{proof} \begin{lemma} \label{lm3.2} Under the hypothesis of Theorem \ref{thm1.1}, the functional $\Phi$ has the following properties: \begin{itemize} \item[(i)] $\Phi (w)\to+\infty $, as $\|w\| \to+\infty $, $w\in W^{+}=E_{k+1}\oplus E_{+}$. \item[(ii)]$\Phi (v)\to-\infty $, as $\|v\| \to +\infty $, $w\in W^{-}=E_{k}\oplus E_{-}$. \end{itemize} \end{lemma} \begin{proof} (i) $\Phi $ is coercive on $W^{+}$. Indeed, the assumption (F3) is equivalent to $K_{\pm }=\limsup_{s\to\pm \infty } \frac{2F(s)}{s^{2}}<\alpha $. Thus, there exists an $B_{\varepsilon }\geq 0$ such that \begin{equation*} F(s)\leq \frac{\alpha }{2}s^{2}-\varepsilon s^{2}+B_{\varepsilon } \quad \forall s\in \mathbb{R}. \end{equation*} Hence, for every $ w\in W^{+}$, we obtain \begin{align*} \Phi (w)& =\frac{1}{2}\Vert w\Vert ^{2}-\frac{\lambda _{k}}{2}\int w^{2}-\int F(w)\,dx \\ & \geq \frac{\lambda _{k+1}-\lambda _{k}}{2\lambda _{k+1}}\|w\| ^{2}-\frac{\alpha -2\varepsilon }{2}\int w^{2}-B_{\varepsilon }|\Omega |\\ & \geq \frac{\varepsilon }{\lambda _{k+1}}\Vert w\Vert ^{2}-B_{\varepsilon }|\Omega |. \end{align*} However, $\Phi (w)\to+\infty $, as $\|w\| \to +\infty $. \noindent (ii) Assume by contradiction that there exists a constant $B>0$ and a sequence $(v_{n})\subset V$ with $\Vert v_{n}\Vert \to\infty $ such that \begin{equation*} B\leq \Phi (v_{n})\leq -\delta \Vert v_{n}^{-}\Vert ^{2}. \end{equation*} Therefore, by lemma \ref{lm2.3}, since $\Vert v_{n}^{-}\Vert $ is bounded, there exists $M>0$ such that \begin{equation*} \int F(\frac{v_{n}^{k}}{2})\,dx\leq M \end{equation*} which contradicts (F2). \end{proof} \begin{lemma} \label{lm3.3} Under the condition (F4), the functional $\Phi$ has the following properties: \begin{itemize} \item[(i)] There is an $R > 0$ and $\beta >0$ such that $\Phi \geq \beta$ on $\partial B_R(0)$. \item[(ii)] $C_{q}(\Phi ,0)=\delta _{q,0}Z$ \end{itemize} \end{lemma} \begin{proof} (i) We start by proving the first assertion. On one hand, it is easy to see that if $\lambda _{k}+f'(0)\leq 0$ we have \begin{equation*} \Phi ''(0)u.u\geq \Vert u\Vert ^{2}. \end{equation*} On the other hand, where $\lambda _{k}+f'(0)>0$, the Poincar\'{e}'s inequality gives that \[ \Phi ''(0)u.u =\Vert u\Vert ^{2}-\lambda _{k}\int u^{2}-\int f'(0)u^{2}dx \geq \big( 1-\frac{\lambda _{k}+f'(0)}{\lambda _{1}}\big) \Vert u\Vert ^{2} \] Put $\gamma =1-\frac{\lambda _{k}+f'(0)}{\lambda _{1}}$ and by (F4), we have $\gamma >0$ and \begin{equation*} \Phi ''(0)u.u\geq \gamma \Vert u\Vert ^{2}. \end{equation*} Taylor's formula implies \[ \Phi (u) =\frac{1}{2}\Phi ''(0)u.u+o(\Vert u\Vert ^{2}) \geq \big( \frac{\gamma }{2}+\frac{o(\Vert u\Vert ^{2})}{\Vert u\Vert ^{2} }\big) \Vert u\Vert ^{2} \] with $\frac{o(\Vert u\Vert ^{2})}{\Vert u\Vert ^{2}}\to0$, as $\Vert u\Vert \to0$. Consequently, the assertion (i) follows. \noindent (ii) Since $u=0$ is a local mininum of $\Phi $, we have \begin{equation*} C_{q}(\Phi ,0)=\delta _{q,0}Z. \end{equation*} \end{proof} \begin{lemma} \label{lm3.4} The functional $\Phi $ has at least one critical point $u_{0}$, such that $$ C_{q}(\Phi ,u_{0})=\delta _{q,1}Z. $$ \end{lemma} \begin{proof} According to (ii) of Lemma \ref{lm3.2}, $ \Phi $ is anti-coercive on $W^{-}$ we can find an $e\in H_{0}^{1}$ such that $\|e\| \geq M>R$ and$ \Phi (e)\leq 0$. So by mountain pass theorem, there exists a critical point $ u_{0}$ of mountain pass type, such that \begin{equation*} C_{1}(\Phi ,u_{0})\neq 0. \end{equation*} By proposition \ref{prop2.1}, it results that $C_{q}(\Phi ,u_{0})=\delta _{q,1}Z$. The proof of lemma is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] For this proof we distinguish two cases. \subsection*{Case 1:} If $k=1$, we assume that $ \{0,u_{0}\}$ is the critical set of $\Phi $ and let $R>0$, such that $\{0,u_{0}\} \subset B_{R}(0)$. By the Riesz representation theorem we can write \begin{equation*} \langle \Phi '(u),v\rangle =\langle u,v\rangle -\langle Nu,v\rangle ,\quad \mbox{for all }u,v\in H_{0}^{1}(\Omega ) \end{equation*} where $ \langle u,v\rangle =\int_{\Omega }\nabla u\nabla v$ and $\langle Nu,v\rangle =\int [\lambda _{1}u+f(u)]v\,dx$. So that, $\Phi '=I-N $ and By the Sobolev embedding theorem, $N$ is compact. We see that $\Phi '$ has the form Identity-compact, so that Leary-Shauder techniques are applicable \begin{equation} \begin{aligned} \deg (\Phi ',B_{R}(0),0) &= \mathop{\rm index}(\Phi ',0)+index(\Phi ',u_{0}) \\ &=\sum_{q=0}^{\infty }( -1)^{q}\dim C_{q}\left( \Phi ,0\right) +\sum_{q=0}^{\infty }(-1)^{q}\dim C_{q}\left( \Phi ,u_{0}\right) \\ &=1-1=0 \end{aligned} \label{e23} \end{equation} In a similar way we can define a compact map $T:H_{0}^{1}(\Omega )\to H_{0}^{1}(\Omega )$ by \begin{equation*} \langle Tu,v\rangle =\int ( \lambda _{1}+\mu ) uv\,dx \end{equation*} where $0<\mu <\lambda _{2}-\lambda _{1}$. Now we claim that there is a priori bound in $H_{0}^{1}(\Omega )$ for all possible solutions of the family of equations (see \cite{Nk}) \begin{gather*} -\Delta u-\lambda _{1}u=(1-t)\mu u+tf(u)\quad \mbox{in }\Omega \\ u=0\quad \mbox{on }\partial \Omega. \end{gather*} The homotopy invariance of Leray-Schauder degree implies \begin{equation*} \deg (\Phi ',B_{R}(0),0)=\deg (I-T,B_{R}(0),0)=-1. \end{equation*} This contradicts (\ref{e23}). \subsection*{Case 2:} If $k\geq 2$, by Lemma \ref{lm3.1}, the functional $\Phi $ satisfies the condition (C). Since $\Phi $ is weakly lower semi continuous and coercive on $W^{+}$, $\Phi $ is bounded from below on $W^{+}$. Moreover, by (ii) of Lemma \ref{lm3.2}, $\Phi $ is anti-coercive on $W^{-}$, thus we can apply the proposition \ref{prop2.2} and we conclude that \begin{equation*} C_{\mu }(\Phi ,\infty )\neq 0 \end{equation*} where $\mu =\dim W^{-}\geq k\geq 2$. It follows from the Morse inequality that $\Phi $ has a critical point $u_{1}$ with \begin{equation*} C_{\mu }(\Phi ,u_{1})\neq 0. \end{equation*} Since $\mu \neq 1$ and $\mu \neq 0$, then the problem \eqref{e1} has at least two nontrivial solutions. The proof of theorem is complete. \end{proof} \begin{thebibliography}{99} \bibitem{B-L} T. Bartsh, S. J. Li, \emph{Critical point theory for asymptotically quadratic functionals and applications with resonance}, Nonlinear Analysis, T. M. A. 28, 419-441, 1997. \bibitem{Ce} G. Cerami, \emph{Un criterio de esistenza per i punti critici su variet\'{a} ilimitate}, Rc. Ist. Lomb. Sci. Lett. 121, 332-336, 1978. \bibitem{Ch} K. C. Chang, \emph{Infinite dimensional Morse theory and Multiple solutions problems}, Birkh\"{a}user, Boston, 1993. \bibitem{C-O} D. G. Costa \& A. S. Oliveira, \emph{Existence of solution for a class of semilinear elliptic problems at double resonance}, Bol. Soc. Bras. Mat. 19. 21-37, 1988. \bibitem{D-G} D. G. DeFigueiredo \& J. P. Gossez, \emph{Conditions de non r\'{e}sonance pour certains probl\'{e}mes elliptiques semi-lin\'{e}aires}, C. R. Acad. Sc. Paris, 302, pp. 543-545, (1986). \bibitem{Do} C. L. Dolph, \emph{Nonlinear integral equations of the Hammertein type}, Trans. Amer. Math. SOC. 66, pp. 289-307, (1949). \bibitem{El} A. R. El Amrouss, \emph{Critical point theorems and applications to differential equations}, Acta Mathematica Sinica, English Series, 21 no 1, 129-142, 2005. \bibitem{El2} A. R. El Amrouss, \emph{Multiple solutions of a resonant semilinear elliptic problems}, to appear. \bibitem{E-M} A. R. El Amrouss \& M. Moussaoui, \emph{Resonance at two consecutive eigenvalues for semilinear elliptic problem: A variational approach}, Ann. Sci. Math. Qubec, 23 no 2, 157-171, 1999. \bibitem{G-O} J.P. Gossez \& P. Omari, \emph{Periodic solutions of a second order ordinary differential equation; a necessary and sufficient condition for nonresonance}, J. Diff. Equations 94 No. 1, 67-82, 1991. \bibitem{M-W} J. Mawhin, \& M. Willem, \emph{Critical point theory and Hamiltonien systems}, Springer-Verlag, New York, 1989. \bibitem{Nk} M. N. Nkashama, \emph{Density condition at infinity and resonance in nonlinear elliptic partial differential equations}, Nonlinear Analysis, Theory, Methods \& Applications, Vol, 22, No 3, pp. 251-265, 1994. \end{thebibliography} \end{document}