\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 149--153.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{149} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Multiplicity results] {Multiplicity results for nonlinear elliptic equations} \author[S. Benmouloud, M. Khiddi, M. Sbai \hfil EJDE/Conf/14 \hfilneg] {Samira Benmouloud, Mostafa Khiddi, Simohammed Sbai} \address{Samira Benmouloud \newline E.G.A.L, D\'ept. Maths, Fac. Sciences, Universit\'e Ibn Tofail, BP. 133, K\'enitra, Maroc} \email{ben.sam@netcourrier.com} \address{Mostafa Khiddi \newline E.G.A.L, D\'ept. Maths, Fac. Sciences, Universit\'e Ibn Tofail, BP. 133, K\'enitra, Maroc} \address{Simohammed Sbai \newline E.G.A.L, D\'ept. Maths, Fac. Sciences, Universit\'e Ibn Tofail, BP. 133, K\'enitra, Maroc} \email{sbaisimo@netcourrier.com} \date{} \thanks{Published September 20, 2006.} \subjclass[2000]{35J20, 35J65} \keywords{Semilinear elliptic equations; critical Sobolev exponent} \begin{abstract} Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$, $N\geq 3$, and $p=\frac{2N}{N-2}$ the limiting Sobolev exponent. We show that for $f\in H^1_0(\Omega)^\ast$, satisfying suitable conditions, the nonlinear elliptic problem \begin{gather*} -\Delta u =|u |^{ p-2 }u +f \quad \mbox{in } \Omega \\ u=0 \quad \mbox{on } \partial\Omega \end{gather*} has at least three solutions in $H_{0}^{1}(\Omega)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} It is well known \cite[Theorems 1 and 2]{t1} that for $f\neq0$ and $\|f\|$ sufficiently small, the problem \begin{equation} \label{e1} \begin{gathered} -\Delta u =|u |^{ p-2 }u +f \quad \mbox{on } \Omega \\ u=0 \quad \mbox{on } \partial\Omega \end{gathered} \end{equation} has at least two distinct solutions $\textbf{u}_0$ and $\textbf{u}_1$ which are critical points of the functional $$ I (u) = \frac{1}{2}\int_{\Omega } |\nabla u|^{2} -\frac{1}{p}\int_{\Omega }|u |^{p} -\int_{\Omega }fu, $$ such that $I(\textbf{u}_1)>I(\textbf{u}_0)$. In this note we suppose $f\geq0$ and satisfies \begin{equation} \|f\|<\frac{\alpha}{N}S^{\frac{N}{4}}, \label{e*} \end{equation} where $$ \frac{1}{2}<\alpha <(\frac{N-2}{N+2})^{\frac{N+2}{4}}, \quad\text{and}\quad S=\inf_{u\in H^1_0(\Omega)\|u\|_p=1}\|\nabla u\|^2_2, $$ which corresponds to the best constant for the Sobolev embedding $ H^1_0(\Omega)\hookrightarrow L^p(\Omega)$. We determine a special $\omega_\varepsilon$, from the extremal functions for the Sobolev inequality in $\mathbb{R}^N$, and consider $\Gamma$ the class of continuous paths joining $0$ to $\omega_\varepsilon$. \begin{proposition} \label{prop1} Let $$ c=\inf_{\gamma\in\Gamma} \sup_{t\in[0,1]} I(\gamma(t)) . $$ Then there is a sequence $(u_j) \subset H^1_0(\Omega)$ such that \begin{gather*} I(u_{j})\to c ,\\ I'(u_{j}) \to 0 \quad \text{in } (H_{0}^{1}(\Omega))^\ast,\\ I(\textbf{u}_0)0$ such that \begin{enumerate} \item[(H1)] $I(u)\geq \rho$, for all $u\in \partial U$. \item[(H2)] $I(0)<\rho$ and, $I(v)<\rho$ for some $ v\in E\setminus U$. \end{enumerate} Let $$ c=\inf_{\gamma\in\Gamma} \max_{t\in[0,1]} I(\gamma(t)), $$ where $$ \Gamma=\{ \gamma :[0,1]\to E,\text{ is continuous, }\gamma(0)=0,\; \gamma(1)=v\}. $$ Then there is a sequence $(u_n)$ in $E$ such that \begin{gather*} I(u_{n}) \to c ,\\ I'(u_{n}) \to 0 \quad\text{in }E^*. \end{gather*} \end{theorem} On $H^1_0(\Omega)$ we define a variational functional $I:H^1_0(\Omega)\to \mathbb{R}$ for problem \eqref{e1}, by $$ I (u) = \frac{1}{2}\|\nabla u\|^{2}_{2} -\frac{1}{p}\|\ u \|^{p}_{p} -\int_{\Omega }fu. $$ Clearly $I$ is $C^1$ on $E$ and $I(0)=0$. We shall verify the assumptions of Theorem \ref{thm2} \subsection*{Verification of (H1)} Let $r\in ]0,\alpha S^{N/4}[ $ and $u\in H^1_0(\Omega))$ be such that $\|\nabla u\|_2=r $. We have $$ I (u) \geq \frac{1}{2}r^{2} -\frac{1}{p}r^{p}S^{-p/2}-\|f\|r. $$ Letting $r\to \alpha S^{N/4}$, we obtain $$ I(u)\geq \frac{1}{2}\alpha^{2}S^{N/2} -\frac{1}{p}\alpha^{p}S^{N/2}-\frac{1}{4N}\alpha^{2}S^{N/2}. $$ Set $$ \rho=\frac{\alpha^{p}S^{N/2}}{2N}, $$ hence $I(u)>\rho$ for all $u \in\partial B(0,r)$. \subsection*{Verification of (H2)} Assume $0\in\Omega$ and let $\phi\in \mathcal{C}^\infty_0(\Omega)$ be a fixed function such that $\phi\equiv1$ for $x$ in some neighborhood of $0$. For $\varepsilon>0$, define $$ u_{\epsilon}(x)=\frac{\phi(x)}{(\epsilon+|x|^{2})^{\frac{N-2}{2}}},\quad v_{\epsilon}(x)=\frac{u_{\epsilon(x)}}{\|u_{\epsilon}\|_{p}}. $$ Hence, from \cite{b3}, \begin{equation} \|\nabla v_{\epsilon}\|_{2}^{2}=S + O(\epsilon^{\frac{N-2}{2}}). \label{e2.1} \end{equation} For every $\mu\neq0$, \cite[Lemma 2.1]{t1}, gives a real $t^+>0$ such that \begin{equation} t^{+}>(\frac{\|\nabla\mu v_{\epsilon}\|_{2}^{2}}{(p-1)\|\mu v_{\epsilon}\|_{p}^{p}})^{\frac{1}{p-2}}= \frac{1}{\mu}(\frac{N-2}{N+2})^{\frac{N-2}{4}}\|\nabla v_{\epsilon}\|_{2}^{\frac{N-2}{2}}\label{e2.2} \end{equation} and \begin{equation} t^{+}<\frac{1}{\mu}\|\nabla v_{\epsilon}\|_{2}^{\frac{N-2}{2}}. \label{e2.3} \end{equation} Set $\omega_{\epsilon}= t^{+}\mu v_{\epsilon} $. We have $$ \|\nabla\omega_{\epsilon}\|_{2}=t^{+}\mu \|\nabla v_{\epsilon}\|_{2}>(\frac{N-2}{N+2})^{\frac{N-2}{4}}\|\nabla v_{\epsilon}\|_{2}^{\frac{N}{2}}>(\frac{N-2}{N+2})^{\frac{N-2}{4}} S^{\frac{N}{4}}>\alpha S^{\frac{N}{4}}>r. $$ On the other hand, from \eqref{e2.2} and \eqref{e2.3}, we get \begin{align*} I(\omega_{\epsilon}) &< \frac{1}{2}(t^{+})^{2}\|\nabla \omega_{\epsilon} \|^{2}_{2} -\frac{1}{p}(t^{+})^{p}\\ &< \frac{1}{2\mu^{2}}\|\nabla v_{\epsilon} \|^{N}_{2}-\frac{1}{\mu^{p}}\frac{1}{p}(\frac{N-2}{N+2})^{\frac{p(N-2)}{4}} \|\nabla v_{\epsilon} \|^{N}_{2}\,. \end{align*} Using \eqref{e2.1}, we deduce $$ I(\omega_{\epsilon}) < (\frac{1}{2\mu^{2}}-\frac{1}{\mu^{p}} \frac{N-2}{N+2}(\frac{N-2}{N+2})^{\frac{N}{2}})(S + O(\epsilon^{\frac{N-2}{2}}))^{N/2} < \frac{\epsilon_{0}^{p}S^{N/2}}{2N}, $$ for $\mu $ large enough. Then $c\geq\rho > I(\omega_\epsilon)$. Recall that $\omega_\epsilon\in \Lambda^-$ (\cite[Lemma 2.1]{t1} with $$ \Lambda^-=\{ u\in H^1_0(\Omega) / =0, \| \nabla u\|^2_2-(p-1)\|u\|^p_p<0\}, $$ and that $\inf_{\Lambda^-}I$ is attained by $\textbf{u}_1$ \cite[Theorem 2]{t1}. We conclude that $$ c\geq\rho > I(\omega_\epsilon)\geq I(\textbf{u}_1) >I(\textbf{u}_0). $$ \section{Proof of the Theorem \ref{thm1}} Applying Proposition \ref{prop1} we obtain a sequence $(u_j)\subset H^1_0(\Omega)$ such that \begin{gather} I(u_j) \to c, \label{e3.1} \\ I'(u_j) \to 0 \quad\text{in }H^1_0(\Omega)^\ast. \label{e3.2} \end{gather} This implies that $\|\nabla u_j \|_2$ is uniformly bounded. Hence for a subsequence of $u_j$, still denoted by $u_j$, we can find $\textbf{u}\in H^1_0(\Omega)$ such that \begin{gather*} u_j \to \textbf{u}\quad\text{weakly in }H^1_0(\Omega),\\ u_j \to \textbf{u} \quad\text{strongly in } L^q, \; q
I(\textbf{u}_1)>I(\textbf{u}_0), $$ $\textbf{u}$ is a solution of Problem \eqref{e1} distinct from $\textbf{u}_o$ and $\textbf{u}_1$, or $$ I(\textbf{u})\leq c-\frac{1}{N}S^{\frac{N}{2}}. $$ \begin{remark} \label{rmk1} \rm One can show that $c<\frac{1}{N}S^{\frac{N}{2}}$, consequently $I(\textbf{u})<0$ in the second case \end{remark} \section{Semilinear biharmonic equation} In \cite{b1}, Benmouloud considered the problem \begin{gather*} \Delta^2 u =|u |^{ p-2 }u +f \quad \mbox{in } \Omega \\ \Delta u=u=0 \quad \mbox{on } \partial\Omega \end{gather*} where $\Omega$ is a bonded domain in $\mathbb{R}^N$, $N\geq5$ $p=\frac{2N}{N-4}$ and $\Delta^2$ denotes the biharmonic operator. She proved that for $f\in H^{-1}$ subject to a suitable condition, this problem has at least two distinct solutions in $H^2(\Omega)\cap H^1_0(\Omega)$. The existence of on solution follows from the mountain-pass theorem, with Palais-Smale condition, and a second is obtained by a constrained minimization (see also \cite{b2}). It follows from this study that an analog result of Theorem \ref{thm1} may be established by a similar argument with suitable smallness condition on $f$. \begin{thebibliography}{0} \bibitem{a1} A. Ambrosetti, P. Rabinowitz; \emph{Dual Variational Methods in Critical Point Theory and Applications}, J. Funct. Anal, Vol. 11, 1973, pp. 349-381. \bibitem{b1} S. Benmouloud, \emph{Existence de solutions pour un problème biharmonuque non homogène avec exposant critique de Sobolev.} Bull. Belg. Math. Soc. 8 (2001), 555-565 \bibitem{b2} S. Benmouloud, M. Sbai; \emph{A perturbed biharmonic minimization problem with critical exponent} \`a paraitre dans le volume 7 de Math-Recherche et applications. \bibitem{b3} H. Brezis, L. Niremberg; \emph{Positive Solutions of NonLinear Elliptic Equations Involving Critical Sobolev Exponents}, comm. Pure. Appl. Math 36(1983), 437-477. \bibitem{b4} H. Brezis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functionals}, Proc. Amer. Math. Sco. 88 pp. 486-490 (1983). \bibitem{t1} G. Tarantello, \emph{On nonhomogeneous elliptic equations involving} critical Sobolev exponent, Ann. Inst. Henri Poincar\'e, Vol. 9, no. 3, 1992, p. 281-304. \end{thebibliography} \end{document}