\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 135--147.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{135} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Optimal controls of nonlinear evolution systems]{Optimal controls for a class of nonlinear evolution systems} \author[A. Benbrik, M. Berrajaa, S. Lahrech \hfil EJDE/Conf/14 \hfilneg] {Abdelhaq Benbrik, Mohammed Berrajaa, Samir Lahrech} % in alphabetical order \address{Abdelhaq Benbrik \newline D\'epartement de Math\'ematiques et Informatique \\ Facult\'e des Sciences \\ Universit\'e Mohammed 1er, Oujda, Maroc} \email{benbrik@sciences.univ-oujda.ac.ma} \address{Mohammed Berrajaa \newline D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences\\ Universit\'e Mohammed 1er, Oujda, Maroc} \email{berrajaa@sciences.univ-oujda.ac.ma} \address{Samir Lahrech \newline D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences\\ Universit\'e Mohammed 1er, Oujda, Maroc} \email{lahrech@sciences.univ-oujda.ac.ma} \date{} \thanks{Published September 20, 2006.} \subjclass[2000]{49J20, 49K20} \keywords{Optimal control; monotone operator; compact embedding; \hfill\break\indent $p$-Laplacian; bilinear system} \begin{abstract} We consider the abstract nonlinear evolution equation $\dot{z}+ Az =uBz +f$. Viewing $u$ as control, we seek to minimize $J(u)=\int_{0}^{T}L(z(t),u(t))\,dt$. Under suitable hypotheses, it is shown that there exists an optimal control $\overline{u}$ and that it satisfies the appropriate optimality system. An example involving the $p$-Laplacian operator demonstrates the applicability of our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} In this paper, we investigate the optimal control problem governed by the abstract non linear evolution equation \begin{equation} \dot{z}+Az =uBz+f \label{eq1} \end{equation} These systems with linear operators $A$ and $B$ are called bilinear systems (see. \cite{b2,b3,m3}). They appear in many mathematical models from physical processes, for example, models involving the $p$ Laplacian operator (see \cite{c1}). Our aim is to investigate the case where $A$ is not linear. We organize this work as follows: After formulating the problem, we address the question of existence and uniqueness of solutions to these systems. In section 3, we prove the existence theorem of optimal control and we give the necessary conditions of optimality. Finally, we present an example involving the $p$-Laplacian operator which illustrates the applications of the abstract framework and the results of the theory developed in the previous sections. \section{Setting of the problem} Throughout the paper, $H$ denotes a separable Hilbert space and $V$ a subspace of $H$ having the structure of a reflexive Banach space which is continuously and densely embedded in $H$. Identifying $H$ with its dual $H'$, we have the Gelfand triplet $V\hookrightarrow H \hookrightarrow V'$ where $V'$ is the dual of $V$. We suppose that these embeddings are compact. Let $\langle .,.\rangle$ be the duality pairing between $V$ and $V'$ as well as the inner product on $H$. Let $\|\cdot \|$, $|\cdot |$ and $\|\cdot \|_{V'}$ denote the norms on $V$, $H$ and $V'$ respectively. Given a fixed real number $T>0$ and $2< p <+\infty$ we introduce the spaces: $$ L^{p}(V)=L^{p}(0,T;V),\quad L^{p}(H)=L^{p}(0,T;H),\quad L^{p'}(V')=L^{p'}(0,T;V'), $$ where $(\frac{1}{p}+ \frac{1}{p'}=1)$ and $W=\big\{w\in L^{p}(V): \dot{w}\in L^{p'}(V') \big\}$. Here the derivative is understood in the sense of vector valued distributions. It is well known that every $w\in W$ is after eventual modification on a set of measure zero, continuous from $[0,T]$ in $H$ and the embedding $W\hookrightarrow \mathcal{C}([0,T];H)$ is continuous \cite{l1,l2}. Furthermore, if $V\hookrightarrow H$ compactly, then also $W \hookrightarrow L^p(H)$ compactly. We study the control problem \begin{equation} \label{P} \inf_{u} J(u) \end{equation} subject to the state equation \begin{gather*} \dot{z}+ Az(t)= u(t) Bz(t)+f(t) \\ z(0)= z_{0}, \end{gather*} where the cost functional is $$ J(u)=\int_{0}^{T}L(z(t),u(t))\,dt. $$ Our aim is to provide conditions under which the optimal solutions \eqref{P} exist. By an optimal solution we mean a control $\overline{u}$ on which the infimum is attained. For problem \eqref{P} we need the following hypotheses: \begin{itemize} \item[(H1)] $A\colon V\to V'$ is such that: \begin{itemize} \item[(i)] $\Vert A\varphi \Vert_{V'}\leq \alpha_{1} \Vert \varphi\Vert^{p-1}$ with $\alpha_{1}>0$. \item[(ii)] $\langle A\varphi,\varphi \rangle \geq \alpha_{2} \Vert \varphi\Vert^{p}$ with $\alpha_{2}>0$. \item[(iii)] $\langle A\varphi_1 -A\varphi_2,\varphi_1 -\varphi_2 \rangle \geq \alpha_{3} \Vert \varphi\Vert^{2}$ with $\beta >0$. \item[(iv)] $\varphi \to A(\varphi)$ is continuously Frechet differentiable. \end{itemize} \item[(H2)] $B\colon H\to H$ is linear and continuous with $| B\varphi | \leq b|\varphi|$, $b>0$. \item[(H3)] $u\in L^{r}(0,T)$ with $r=p/(p-2)$. \item[(H4)] $f\in L^{p'}(V')$. \item[(H5)] $z_{0}\in H$. \item[(H6)] $L\colon H\times \mathbb{R}\to \mathbb{R}$ is a integrand convex such that: \begin{itemize} \item[(i)] $L$ is coercive: $\lim_{\Vert u\Vert_{ L^{r}(0,T)} \to \infty} \int_{0}^{T} L(z(t),u(t))\,dt=+\infty$ \item[(ii)] $(x,u) \to L(x,u)$ is continuously Frechet differentiable. \item[(iii)] for every $x \in\mathcal{C}([0,T],H)$ and every $u \in L^{r}(0,T)$, $J(u)$ is finite. \end{itemize} \end{itemize} \begin{remark} \label{rmk1} \rm $A(\varphi)\in L^{p'}(V')$ if $\varphi\in L^{p}(V)$ and then $$ \Vert A\varphi\Vert_{L^{p'}(V')} \leq \alpha_{1} \Vert \varphi \Vert^{p-1}_{L^{p}(V)}. $$ For $u\in L^{r}(0,T)$ and $\varphi\in L^{p}(V)$ we have $uB\varphi\in L^{p'}(V')$ and $$ \Vert uB\varphi\Vert_{L^{p'}(V')} \leq \beta_{1} \Vert u \Vert_{L^{r}(0,T)} \Vert \varphi \Vert_{L^{p}(V)}, $$ where $\beta_{1} >0$. Therefore, the choice of control space is compatible with the equation. \end{remark} \section{Results on the evolution problem} We consider the evolution problem \begin{equation} \begin{gathered} \label{ezuf} \dot{z}(t)+ Az(t)= u(t) Bz(t) +f \\ z(0)= z_{0} \end{gathered} \end{equation} We recall that by a solution to the above problem, we mean a function $z\in W$ that satisfies \eqref{ezuf}. \begin{theorem} \label{thm2.1} Under hypothesis (H1)(i), (H1)(ii), (H1)(iii), (H2), (H3), (H4) and (H5), equation \eqref{ezuf} admits a unique solution $z$ such that $ z\in L^{\infty}(H)$ and $z\in W$. \end{theorem} \begin{proof} \textbf{Uniqueness:} if $z_{1}$ and $z_{2}$ are solutions of \eqref{ezuf}, then $z=z_{1}-z_{2}$ satisfies \begin{equation}\label{eE0} \begin{gathered} \dot{z}+Az_{1} -Az_{2} =uBz \\ z(0)= 0 \end{gathered} \end{equation} and for $t\in [0,T]$, $$ \frac{1}{2}| z(t) |^{2} \leq b\int_{0}^{t} | u(\tau)| | z(\tau)|^{2}\,d\tau\,. $$ Using the Gronwall lemma, we obtain $z_{1}=z_{2}$. The existence follows from a standard application of the Galerkin method \cite{l1} and the a priori estimates given in Lemma \ref{lem2.1}. We remark that by Theorem \ref{thm2.1}, $z\in \mathcal{C}([0,T];H)$. \end{proof} \begin{lemma} \label{lem2.1} Under the hypothesis of Theorem \ref{thm2.1}, if $z$ is a solution of \eqref{ezuf} then \begin{gather} \Vert z\Vert_{L^{p}(V)} \leq K_{1} \big[| z_{0}|^{2} + \Vert u\Vert^{r}_{L^{r}(0,T)} + \Vert f\Vert^{p'}_{L^{p'}(V')} \big]^{1/p} \label{eE1} \\ \Vert z\Vert_{L^{\infty}(H)} \leq K_{2} \big[| z_{0}|^{2} + \Vert u\Vert^{r}_{L^{r}(0,T)} + \Vert f\Vert^{p'}_{L^{p'}(V')} \big]^{1/2} \label{eE2} \\ \Vert \dot{z}\Vert_{L^{p'}(V')} \leq K_{3} \big[\Vert z\Vert^{p-1}_{L^{p}(V)} + \Vert u\Vert^{p-1/p-2}_{L^{r}(0,T)} + \Vert f\Vert_{L^{p'}(V')} \big] \label{eE3} \end{gather} \end{lemma} \begin{proof} Let $z$ be a solution of \eqref{ezuf}, then $$ \int_{0}^{T}\langle \dot{z}(t), z(t) \rangle \, dt + \int_{0}^{T}\langle A {z}(t), z(t) \rangle \, dt = \int_{0}^{T}\langle u(t)B{z}(t), z(t) \rangle \, dt + \int_{0}^{T}\langle f(t), z(t) \rangle \, dt. $$ Using (H1)(ii), (H2) and the continuity of the embedding $V\hookrightarrow H$, we have \begin{align*} &\frac{1}{2}| z(T) |^{2} - \frac{1}{2}| z_{0} |^{2} + \alpha_{2}\int_{0}^{T} \Vert z(\tau)\Vert^{p}_{V}\,d\tau \\ &\leq K'_{1}\int_{0}^{T}| u(\tau)| \Vert z(\tau)\Vert^{2}\,d\tau + \int_{0}^{T}\Vert f(\tau)\Vert_{V'} \Vert z(\tau)\Vert\,d\tau\,. \end{align*} By the Young inequality \cite{m2}, for $\frac{1}{r}+\frac{2}{p}=1$, we have \begin{gather*} K'_{1}\int_{0}^{T}| u(\tau)| \Vert z(\tau)\Vert^{2}\,d\tau \leq \frac{\alpha_{2}}{4} \Vert z\Vert^{p}_{L^{p}(V)} + K_{2}'\Vert u \Vert^{r}_{L^{r}(0,T)}, \\ \int_{0}^{T}\Vert f(\tau)\Vert_{V} \Vert z(\tau)\Vert\,d\tau \leq \frac{\alpha_{2}}{4} \Vert z\Vert^{p}_{L^{p}(V)} + K_{3}'\Vert f \Vert^{p'}_{L^{p'}(V')}. \end{gather*} Hence $$ \frac{\alpha_{2}}{2} \Vert z\Vert^{p}_{L^{p}(V)} \leq \frac{1}{2}| z_{0}|^{2} + K_{2}'\Vert u \Vert^{r}_{L^{r}(0,T)} + K_{3}'\Vert f \Vert^{p'}_{L^{p'}(V')}, $$ from which, we deduce then \eqref{eE1}. Multiplying \eqref{ezuf} by $z$ and integrating on $[0,t]$ we obtain $$ \frac{1}{2}| z(t)|^{2} -\frac{1}{2}| z_{0}|^{2} +\frac{\alpha_{2}}{2} \int_{0}^{t}\Vert z(\tau)\Vert^{p}\,d\tau \leq K_{2}''\Vert u \Vert^{r}_{L^{r}(0,T)} + K''\Vert f \Vert^{p'}_{L^{p'}(V')} $$ and then $$ | z(t) |_{H} \leq K_{2} \big[ | z_{0}|^{2} + \Vert u \Vert^{r}_{L^{r}(0,T)} + \Vert f \Vert^{p'}_{L^{p'}(V' )} \big]^{1/2} $$ which implies \ref{eE2}. Multiplying \ref{eE0} by $\xi\in L^{p}(V)$, we have \begin{align*} & |\int_{0}^{T}\langle \dot{z}(t), \xi(t)\rangle\,dt |\\ &\leq |\int_{0}^{T}\langle A{z}(t), \xi(t)\rangle\,dt | + |\int_{0}^{T}\langle u(t)B{z}(t), \xi(t)\rangle | + |\int_{0}^{T}\langle f(t), \xi(t)\rangle |. \end{align*} Hence $$ \big|\int_{0}^{T}\langle \dot{z}(t), \xi(t)\rangle\,dt \big| \leq \big[\alpha_{1} \Vert z \Vert^{p-1}_{L^{p}(V)} + \beta_{1} \Vert u\Vert_{L^{r}(0,T)} \Vert z \Vert_{L^{p}(V)} + \Vert f\Vert_{L^{p'}(V')} \big] \Vert \xi\Vert_{L^{p}(V)}, $$ which by Young inequality implies \eqref{eE3}. \end{proof} \section{Optimal controls} The aim of this section is to prove the existence of optimal controls for problem \eqref{P}. The differentiability of the mapping $u\mapsto z$ permits the characterization of the optimal control $\overline{u}$ by necessary conditions corresponding to $J'(\overline{u})=0$. \subsection*{Existence theorem for the control problem} \begin{theorem} \label{thm3.1} If (H1), (H2), (H3), (H4), (H5) and (H6) hold, then \eqref{P} admits an optimal solution. \end{theorem} \begin{proof} Let $(u_{n})_{n}$ be a minimizing sequence for \eqref{P}, i.e. the pairs $(z_{n},u_{n})$ are admissible for \eqref{P} and $$ \lim_{n} J(u_{n})= \overline{J}. $$ From (H6) we have $\Vert u_{n}\Vert_{L^{r}(0,T)}\leq M$. And from Lemma \ref{lem2.1}, we know that $(z_{n})_{n}$ belongs to a bounded subset of ${L^{\infty}(H)}\cap W$. By passing to a subsequence if necessary, we may assume that \begin{gather*} u_{n}\rightharpoonup \overline{u} \quad w-L^{r}(0,T) \\ z_{n} \rightharpoonup \overline{z}\quad w*-L^{\infty}(H) \\ z_{n}\rightharpoonup \overline{z} \quad w-L^{p}(V) \\ Az_{n}\rightharpoonup \chi \quad w-L^{p'}(V') \\ u_{n}Bz_{n} \rightharpoonup \Psi \quad w-L^{p'}(V') \\ \dot{z}_{n}\rightharpoonup \Lambda \quad w-L^{p'}(V') \end{gather*} \noindent \textbf{1.} Using the convergence $\sigma(\mathcal{D}(0,T;V);\mathcal{D}'(0,T;V'))$ we obtain $\Lambda=\dot{\overline{z}}$.\\ \textbf{2.} $V\hookrightarrow H$ compactly implies that \begin{gather*} z_{n} \to \overline{z} \quad s-L^{p}(H) \\ z_{n}(t) \to \overline{z}(t)\quad s-H \quad\text{ for all } t\in [0,T]. \end{gather*} For $\varphi \in L^{p}(V)$, we have \begin{align*} &\int_{0}^{T} \langle u_{n}(t)Bz_{n}(t), \varphi(t) \rangle\,dt \\ &= \int_{0}^{T} \langle u_{n}(t) B(z_{n}(t)-\overline{z}(t); \varphi(t)\rangle\,dt + \int_{0}^{T} \langle u_{n}(t) B\overline{z}(t), \varphi(t) \rangle\,dt. \end{align*} Note that $$ \int_{0}^{T} \langle u_{n}(t) B(z_{n}(t)-\overline{z}(t); \varphi(t)\rangle\,dt \leq K_{1} \Vert u_{n}\Vert_{L^{r}(0,T)} \Vert z_{n} -\overline{z} \Vert_{L^{p}(H)} \Vert \varphi\Vert_{L^{p}(H)} $$ and $$ \int_{0}^{T} u_{n}(t) \langle B\overline{z}(t), \varphi(t) \rangle\,dt \to \int_{0}^{T} \overline{u}(t) \langle B\overline{z}(t), \varphi(t) \rangle\,dt $$ because $\langle B\overline{z},\varphi\rangle \in L^{r'}(0,T)$. We deduce that $\Psi=\overline{u}B\overline{z}$. \noindent\textbf{3.} For $y\in L^{p}(V)$, we set $$ X_{m}=\int_{0}^{T} \langle Az_{m}(t)-Ay(t); z_{m}(t)-y(t) \rangle\,dt\,. $$ We have $$ X_{m}=\int_{0}^{T} \langle Az_{m}(t); z_{m}(t) \rangle\,dt - \int_{0}^{T} \langle Az_{m}(t);y(t) \rangle\,dt - \int_{0}^{T}\langle Ay(t);z_{m}(t)-y(t) \rangle\,dt $$ and \begin{align*} &\int_{0}^{T}\langle Az_{m}(t),z_{m}(t)\rangle\,dt \\ &=\frac{1}{2} | z_{m,0}|^{2} - \frac{1}{2} | z_{m}(T)|^{2} + \int_{0}^{T} \langle u_{m}Bz_{m}(t), z_{m}(t) \rangle\,dt + \int_{0}^{T} \langle f(t), z_{m}(t) \rangle\,dt. \end{align*} But \begin{align*} &\int_{0}^{T}\big(\langle u_{m}(t)Bz_{m}(t),z_{m}(t)\rangle - \langle \overline{u}(t)B\overline{z}(t),\overline{z}(t)\rangle \big)\,dt\\ &= \int_{0}^{T}\langle u_{m}(t)Bz_{m}(t),z_{m}(t)-\overline{z}(t) \rangle\,dt + \int_{0}^{T}\langle u_{m}(t)Bz_{m}(t)- \overline{u}(t)B\overline{z}(t) ,\overline{z}(t) \rangle\,dt \end{align*} The first integral in the right-hand side approaches zero because $z_{m}\to \overline{z}$ ($s-L^{p}(H)$). The second integral approaches zero because $u_{m}Bz_{m}\rightharpoonup \overline{u}B\overline{z}$ ($w-L^{p'}(V')$). We deduce that \begin{align*} &\limsup_{m}\int_{0}^{T}\langle Az_{m}(t), z_{m}(t) \rangle\,dt \\ &\leq \frac{1}{2} | z_{0}|^{2} - \frac{1}{2} | \overline{z}(T)|^{2} + \int_{0}^{T} \langle \overline{u}(t) B\overline{z}(t), \overline{z}(t) \rangle\,dt +\int_{0}^{T}\langle f(t), \overline{z}(t) \rangle\,dt\,. \end{align*} Since $\overline{z}$ satisfies \begin{gather*} \dot{\overline{z}}+ \chi= \overline{u}B\overline{z}+f \\ \overline{z}(0)= z_{0} \end{gather*} it follows that \begin{equation*} \frac{1}{2} | z_{0}|^{2} - \frac{1}{2} | \overline{z}(T)|^{2} + \int_{0}^{T} \langle \overline{u}(t) B\overline{z}(t), \overline{z}(t) \rangle\,dt +\int_{0}^{T}\langle f(t), \overline{z}(t) \rangle\,dt = \int_{0}^{T} \langle \chi(t),\overline{z}(t) \rangle\,dt. \end{equation*} Hence $$ 0\leq \limsup_{m} X_{m} \leq \int_{0}^{T}\langle \chi(t)-Ay(t),\overline{z}(t)-y(t)\rangle\,dt \text{ for all }y\in L^{p}(V) $$ Using the continuity of the operator $A$ we obtain $\chi=A\overline{z}$. We deduce that $(\overline{z},\overline{u})$ is admissible for \eqref{P}. From (H6) we have $$ \int_{0}^{T}L(\overline{z}(t),\overline{u}(t))\,dt \leq \liminf_{m} \int_{0}^{T} L(z_{m}(t),u_{m}(t))\,dt=\overline{J} $$ Hence $\overline{u}$ is an optimal control. \end{proof} \subsection*{Optimality conditions} Before proceeding with investigation of the mapping $\Theta\colon u\mapsto z$, where $z$ is defined by \eqref{ezuf}, we introduce a technical lemma generalizing the Gronwall inequality. \begin{lemma} \label{lem3.1} Let $T>0$ and $c\geq 0$. Assume that $\lambda$ and $m$ are integrable in $[0,T]$ with positive values. Let $\varphi\colon [0,T] \to\mathbb{R}^{+}$ be such that: \begin{itemize} \item[(a)] $\lambda\varphi$ and $\lambda\varphi^{2}$ are integrable on $[0,T]$. \item[(b)] $\frac{1}{2}\varphi^{2}(t) \leq \frac{1}{2}c^{2}+ \int_{0}^{t}\lambda(s)\varphi(s)\,ds + \int_{0}^{t}m(s)\varphi^{2}(s)\,ds$ for $t\geq 0$. \end{itemize} Then $$ \varphi(t)\leq \Big[c+ \int_{0}^{t}\lambda(s)\,ds \Big] \exp\Big(\int_{0}^{t}m(s)\,ds \Big). $$ \end{lemma} \begin{proof} Set $$ \Psi(t) = \Big[c^{2}+ 2 \int_{0}^{t}\lambda(s)\varphi(s)\,ds + 2 \int_{0}^{t}m(s)\varphi^{2}(s)\,ds\Big]^{1/2}. $$ We have that $\varphi(t)\leq \Psi(t)$ and $\dot{\Psi}\leq \lambda(t) + m(t)\Psi(t)$. Then $$ \frac{d}{dt}\Big[\Psi(t)\exp\Big(-\int_{0}^{t}m(s)\,ds \Big) -\int_{0}^{t}\lambda(s)\exp\Big(-\int_{0}^{s}m(\tau)\,d\tau \Big) \Big] \leq 0. $$ Hence $$ \Psi(t)\leq \exp\Big(\int_{0}^{t}m(\tau)\,d\tau \Big) \Big[c+\int_{0}^{t}\lambda(\tau)\exp\Big(-\int_{0}^{\tau}m(s)\,ds \Big) d\tau\Big], $$ which completes the proof. \end{proof} \begin{lemma} \label{lem3.2} Suppose the hypothesis (H1), (H2), (H3), (H4) and (H5) hold, then the mapping $\Theta\colon L^{r}(0,T) \to L^{\infty}(H)\cap L^{2}(V)$, $u\mapsto z$ is locally Lipschitz. \end{lemma} \begin{proof} Let $\overline{u}$ and $h$ be in $L^{r}(0,T)$ with $\Vert h\Vert_{L^{r}(0,T)}\leq 1$. Set $\overline{z}=\Theta(\overline{u})$, $z_{h}=\Theta(\overline{u}+h)$ and $z=z_{h}-\overline{z}$. Then $z$ satisfies \begin{gather*} \dot{z}+Az_{h}-A\overline{z} = \overline{u}Bz +hBz_{h}\\ z(0)= 0 \end{gather*} Multiplying by $z$ and integrating on $[0,t]$ we have $$ \frac{1}{2} | z(t)|^{2} + \beta\int_{0}^{t} \Vert z(\tau)\Vert^{2}_{V}\,d\tau \leq b\int_{0}^{t} | \overline{u}(\tau)| | z(\tau)|^{2}\,d\tau + b\int_{0}^{t} | h(\tau)| | z_{h}(\tau)| | z(\tau)|\,d\tau\,. $$ Invoking the Lemma \ref{lem3.1}, we have $$ | z(t)|_{H} \leq \exp \Big(b \int_{0}^{t}| \overline{u}(\tau)| \,d\tau\Big)\Big[ b\int_{0}^{t} | h(\tau)| | z_{h}(\tau)| \,d\tau\Big] $$ but $$ \int_{0}^{t} | h(\tau)| | z_{h}(\tau)|\,d\tau \leq K \Vert h\Vert_{L^{r}(0,T)} \Vert z_{h}\Vert_{L^{\infty}(H)} $$ and $$ \Vert z_{h}\Vert_{L^{\infty}(H)}\Vert \leq K_{1}\left[| z_{0}|^{2} + \Vert \overline{u}+h\Vert^{r}_{L^{r}(0,T)} + \Vert f\Vert^{p'}_{L^{p'(V')}} \right]^{1/2} \leq K' $$ where $K'$ is a positive constant depending on $z_{0}$, $\overline{u}$ and $f$ (because $\Vert h\Vert \leq 1$). We obtain \begin{gather*} \Vert z\Vert_{L^{\infty}(H)} \leq K'_{1}\Vert h\Vert_{L^{r}(0,T)}, \\ \Vert z\Vert_{L^{2}(V)} \leq K'_{2}\Vert h\Vert_{L^{r}(0,T)} \end{gather*} \end{proof} \begin{theorem} \label{thm3.2} Suppose that: \begin{itemize} \item[(i)] The hypothesis of Lemma \ref{lem3.2} are satisfied with $f=0$. \item[(ii)] For $\varphi$ and $\Psi$ in $\mathcal{C}([0,T);H)$ with $\Vert \Psi\Vert_{\mathcal{C}([0,T];H)}\leq 1$ we have $$ \Vert A'(\varphi(t)+\Psi(t)) - A'(\varphi(t))\Vert_{\mathcal{L}(H)} \leq \gamma(t) | \Psi(t)|_{H} $$ where $\gamma\in L^{1}(0,T)$. \end{itemize} Then the mapping $\Theta\colon L^{r}(0,T)\to L^{\infty}(H) \cap L^{2}(V)$ is Fr\'echet differentiable and the derivative $\Theta'_{\overline{u}}.h$ is a solution of \begin{equation} \label{eS} \begin{gathered} \dot{y}(t) + A'_{\overline{z}(t)}y(t)= \overline{u}(t)By(t) + h(t)B\overline{z}(t) \\ y(0)= 0 \end{gathered} \end{equation} where $\overline{z}=\Theta(\overline{u})$. \end{theorem} \begin{proof} \textbf{1.} Since $A$ is strongly monotone. For $\lambda>0$, $\varphi$ and $\Psi$ in $V$, we have $$ \big\langle \frac{1}{\lambda}(A(\varphi+\lambda\Psi)-A(\varphi)), \Psi \big\rangle \geq \beta\Vert \Psi\Vert^{2}_{V}. $$ Hence $ \langle A'_{\varphi}\Psi, \Psi \rangle \geq \beta\Vert \Psi\Vert^{2}_{V} $ \noindent \textbf{2.} For $\overline{u}\in L^{r}(0,T)$, the mapping $h\mapsto y$ defined by \eqref{eS} is linear. Multiplying \eqref{eS} by $y$ and integrating on $[0,t]$ we obtain $$ \frac{1}{2}| y(t)|^{2} + \beta\int_{0}^{t}\Vert y(\tau)\Vert^{2}_{V}\,d\tau \leq b\int_{0}^{t} | \overline{u}(\tau)| | y(\tau)|^{2}\,d\tau + | h(\tau)| | \overline{z}(\tau)|| y(\tau)|\,d\tau $$ By Lemma \ref{lem3.2}, $$ | y(t)| \leq b\int_{0}^{t} | h(\tau)| | \overline{z}(\tau)|\,d\tau \exp\Big[b\int_{0}^{t}| \overline{u}(\tau)| \Big], $$ but $$ \Vert \overline{z}\Vert_{L^{\infty}(H)}\leq K_{1} \big[| z_{0}|^{2} + \Vert \overline{u}\Vert^{r}_{L^{r}(0,T)} \big]^{1/2}. $$ Then \begin{gather*} \Vert y\Vert_{L^{\infty}(H)} \leq K'_{1} \Vert h\Vert_{L^{r}(0,T)}, \\ \Vert y\Vert_{L^{2}(V)} \leq K'_{2} \Vert h\Vert_{L^{r}(0,T)}, \end{gather*} where $K'_{i}$ are positive constants depending on $z_{0}$ and $\overline{u}$. Hence the mapping $h\mapsto y$ is continuous. \noindent \textbf{3.} Set $\overline{z}=\Theta(\overline{u})$, $z_{h}=\Theta(\overline{u}+h)$, $z=z_{h}-\overline{z}$ and $w=z-y$ where $y$ is a solution of \eqref{eS}. We have \begin{equation} \label{eS'} \begin{gathered} \dot{w}(t) + A'_{\overline{z}(t)}w(t)= \overline{u}(t) Bw(t) + h(t) Bz(t) + g(t) \\ w(0)= 0 \end{gathered} \end{equation} where \begin{align*} g(t) &= A'_{\overline{z}(t)}z(t) - \big(Az_{h}(t) -A\overline{z}(t) \big)\\ &= \int_{0}^{1}[A'\overline{z}(t) - A'(\overline{z}(t)+sz(t))]z(t)\,ds. \end{align*} Then $$ | g(t) |_{H} \leq \int_{0}^{1} \gamma(t) | sz(t)| | z(t)|\,ds =\frac{\gamma(t)}{2} | z(t)|^{2} $$ On the other hand, multiplying \eqref{eS'} by $w$ and integrating on $[0,t]$ we obtain \begin{align*} &\frac{1}{2} | w(t) |^{2} + \beta\int_{0}^{t} \Vert w(\tau) \Vert^{2}_{V}\,d\tau \\ & \leq b\int_{0}^{t} | \overline{u}(\tau)| | w(\tau)|^{2}\,d\tau + b\int_{0}^{t} | h(\tau)| | z(\tau)| | w(\tau)|\,d\tau +\frac{1}{2}\int_{0}^{t}\gamma(\tau) | z(\tau) |^{2} | w(\tau) |\,d\tau \end{align*} Then Lemma \ref{lem3.2} gives $$ | w(t)| \leq \exp \Big(b\int_{0}^{t} |\overline{u}(\tau) |\,d\tau \Big)\Big[b\int_{0}^{t} | h(\tau) | | z(\tau)|\,d\tau + \frac{1}{2}\int_{0}^{t}\gamma(\tau) | z(\tau)|^{2}\,d\tau \Big], $$ but $\Vert z\Vert_{L^{\infty}(H)} \leq K \Vert h\Vert_{L^{r}(0,T)}$ then \begin{gather*} \Vert w\Vert_{L^{\infty}(H)} \leq K_{1} \Vert h\Vert^{2}_{L^{r}(0,T)}, \\ \Vert w\Vert_{L^{2}(V)} \leq K_{2} \Vert h\Vert^{2}_{L^{r}(0,T)}. \end{gather*} It follows that $\Theta$ is fr\'echet differentiable from $L^{r}(0,T)$ on $L^{\infty}(H) \cap L^{2}(V)$ and $\Theta'_{\overline{u}}.h$ is a solution of \eqref{eS}. \end{proof} \begin{theorem} \label{thm3.3} Assume the hypotheses of Theorem \ref{thm3.2} and (H6) hold. Then an optimal control $\overline{u}$, its corresponding state $\overline{z}$, and its adjoint state $p$ are necessarily tied by the optimality system: \begin{itemize} \item[(1)] $ \dot{\overline{z}}+A\overline{z}=\overline{u}B\overline{z}$ $\overline{z}(0)=z_{0}$ \item[(2)] $ -\dot{p}+{A'}^{*}_{\overline{z}}p= \overline{u}B^{*}p+ \partial_{1}L(\overline{z}(t),\overline{u}(t))$ $p(T)=0$ \item[(3)] $\langle B\overline{z}(t),p(t)\rangle +\partial_{2} L(\overline{z}(t),\overline{u}(t))=0$ a.e. in $[0,T]$ \end{itemize} \end{theorem} \begin{proof} Since $L$ is Fr\'echet differentiable, we deduce that the functional $$ J(u)=\int_{0}^{T} L(z(t),u(t))\,dt $$ is Fr\'echet differentiable on $L^{r}(0,T)$. Since $\overline{u}$ is a minimum point for $J$, $$ J'_{\overline{u}}.h=0,\quad \forall h\in L^{r}(0,T) $$ but $$ J'_{\overline{u}}.h= \int_{0}^{T} \langle \partial_{1} L(\overline{z}(t),\overline{u}(t),y(t)\rangle\,dt + \int_{0}^{T} \langle \partial_{2} L(\overline{z}(t),\overline{u}(t),h(t)\rangle\,dt $$ where $y=\Theta'_{\overline{u}}.h$. We define $p$ by (2), then \begin{align*} J'(u).h &= \int_{0}^{T} \langle -\dot{p}(t) + {A'}^{*}_{\overline{z}(t)}p(t) -\overline{u}(t)B^{*}p(t), y(t)\rangle\,dt + \int_{0}^{T} h(t) \partial_{2}L(\overline{z}(t),\overline{u}(t))\,dt \\ & =\int_{0}^{T}\langle p(t),\dot{y}(t)+A'_{\overline{z}(t)}y(t) - \overline{u}(t)By(t)\rangle\,dt + \int_{0}^{T} h(t) \partial_{2}L(\overline{z}(t),\overline{u}(t))\,dt \\ & =\int_{0}^{T}\big[\langle p(t),B\overline{z}(t)\rangle + \partial_{2}L(\overline{z}(t),\overline{u}(t)) \big]h(t)\,dt \end{align*} Hence part (3) of the theorem is consequence of the above equality. \end{proof} \section{Example} In this section, we present an example which illustrates the application of the results of the theory developed in the previous sections. Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\Gamma=\partial \Omega$. We consider the control problem \eqref{P} with $$ J(u)=\int_{Q} | z(x,t)|^{4}\,dx\,dt + \int_{0}^{T} | u(t)|^{2}_{\mathbb{R}^{N}}\,dt $$ Where $z$ satisfies the nonlinear evolution equation \begin{equation} \label{eE} \begin{gathered} \frac{\partial z}{\partial t}-\mathop{\rm div} (| \nabla z|^{2} \nabla z) =\sum_{i=1}^{N}u_{i}(t)\frac{\partial z}{\partial x_{i}} \quad \text{in } Q=\Omega\times ]0,T[ \\ z =0 \quad \text{in } \Sigma=\Gamma\times ]0,T[ \\ z(x,0) = z_{0}(x) \end{gathered} \end{equation} Setting $V=W^{1,4}_{0}(\Omega)$, $H=L^{2}(\Omega)$ and $V'=W^{-{1},4/3}(\Omega)$ we have $V\hookrightarrow H\hookrightarrow V'$ continuously and densely. Furthermore $V \hookrightarrow H$ compactly. The equation \eqref{eE} can be written in the form \begin{gather*} \dot{z}(t)+Az(t) = u(t) Bz(t) \\ z(0) =z_{0} \end{gather*} where \begin{enumerate} \item $A\colon V\to V'$, $\varphi\mapsto -\mathop{\rm div} (| \nabla \varphi|^{2}\nabla \varphi)$ which satisfies (H1) (see \cite{l1}). \item $B=(B_{1},\ldots,B_{N})$ with $B_{i}\colon V\to H$, $\varphi\mapsto B_{i}\varphi=\varphi_{x_i}$. Hence $\Vert B_{i}\varphi\Vert_{H}\leq b_{i} \Vert\varphi\Vert_{V}$, $b_{i}>0$ and $\Vert B\varphi\Vert_{H^{N}} \leq b \Vert\varphi\Vert_{V}$. \item $u=(u_{1},\ldots,u_{N})\in \mathcal{U}=L^{2}(0,T;\mathbb{R}^{N})$ . Here $$ u(t)Bz(t)= \sum_{i=1}^{N} u_{i}(t) B_{i}z(t)= \sum_{i=1}^{N} u_{i}(t) \frac{\partial z(t)}{\partial x_{i}}. $$ \end{enumerate} The cost function becomes $$ J(u)= \Vert u\Vert^{2}_{L^{2}(0,T;\mathbb{R}^{N})} + \Vert z\Vert^{4}_{L^{4}(0,T;Q)} $$ Since $\int_{\Omega} u(t)Bz(x,t)z(x,t)\,dx=0$, the a priori estimates given by Lemma \ref{lem2.1} become \begin{gather*} \Vert z\Vert_{L^{4}(V)} \leq K_{1} | z_{0}|^{1/2}, \\ %\label{E1} \Vert z\Vert_{L^{\infty}(H)} \leq K_{2} | z_{0}| , \\ %\label{E2} \Vert \dot{z}\Vert_{L^{4/3}(V')} \leq K_{3} \big[\Vert z\Vert^{3/2}_{L^{4}(V)} + \Vert u\Vert^{3/2}_{L^{2}(0,T;\mathbb{R}^{N})} \big] \\ %\label{E3} \end{gather*} \begin{corollary} \label{coro4.1} For $z_{0}$ in $L^{2}(\Omega)$ and $u$ in $L^{2}(0,T;\mathbb{R}^{N})$, the equation \eqref{ezuf} with $f=0$ admits a unique solution which satisfies \begin{gather*} z\in L^{\infty}(0,T;L^{2}(\Omega)) \cap L^{4}(0,T;W^{1,4}_{0}(\Omega)), \\ \dot{z}\in L^{4/3}(0,T;W^{-1,4/3}(\Omega)) \end{gather*} \end{corollary} \begin{proposition} \label{prop4.1} The mapping $\Theta\colon \mathcal{U}\to \mathcal{C}([0,T];H)$, $u\mapsto z$, with $z$ the solution of \eqref{ezuf} with $f=0$. is differentiable in the sense of Fr\'echet, and $\Theta'_{\overline{u}}.h$ satisfies \begin{equation} \begin{gathered} \label{eS2} \dot{y}+ A'_{\overline{z}(t)}y(t) = \overline{u}(t)By(t) + h(t)B\overline{z}(t) \\ y(0) =0, \end{gathered} \end{equation} where $z=(\Theta(u) )(t)$ and $$ A'_{\varphi}.h= -\sum_{i=1}^{N}\big[ | \nabla \varphi|^{2}h_{x_{i}} + 2 \langle \nabla \varphi,\nabla h\rangle_{1}\varphi_{x_{i}} \big]_{x_{i}} $$ with $\langle \nabla \varphi,\nabla h\rangle_{1}= \sum_{i=1}^{N} \varphi_{x_{i}} h_{x_{i}}$ ($\varphi$ and $h\in V$). \end{proposition} \begin{proof} \textbf{1.} For $\varphi\in V$, the mapping, $A'_{\varphi}\colon V\to V'$, $$ h\mapsto A'_{\varphi}h=-\sum_{i=1}^{N}\left[| \nabla \varphi|^{2}h_{x_{i}} + 2 \langle \nabla \varphi,\nabla h\rangle_{1} \varphi_{x_{i}}\right]_{x_{i}} $$ is linear and for $v\in V$ we have $$ \langle A'_{\varphi}h,v\rangle_{V',V} = \sum_{i=1}^{N}\int_{\Omega} f_{i}v_{x_{i}}\,dx $$ with $f_{i}=| \nabla \varphi|^{2}h_{x_{i}} + 2 \langle \nabla \varphi,\nabla h\rangle_{1} \varphi_{x_{i}}$. Furthermore, \begin{align*} \Vert f_{i}\Vert^{4/3}_{L^{4/3}(\Omega)} &\leq K_{1}\Big[\int_{\Omega}| \nabla \varphi|^{8/3}| h_{x_{i}}|^{4/3}\,dx + \int_{\Omega}| \langle \nabla \varphi,\nabla h\rangle_{1}|^{4/3} | \varphi_{x_{i}}|^{4/3}\,dx\Big]\\ &\leq 2K_{1} \Big[ \Big(\int_{\Omega}| \nabla \varphi|^{4} \Big)^{1/4}\Big(\int_{\Omega}| \nabla h|^{4} \Big)^{1/3}\Big]. \end{align*} Then $$ \Vert f_{i}\Vert_{L^{4/3}(\Omega)} \leq K \Vert \varphi\Vert^{2}_{W^{1,4}_{0}(\Omega)} \Vert h\Vert_{W^{1,4}_{0}(\Omega)}. $$ Using the norm in $V'$ it follows that $A'_{\varphi}\in \mathcal{L}(V,V')$. For $\varphi$ and $h$ in $V$, we have $$ A(\varphi+h)-A(\varphi)-A'_{\varphi}(h)= F(\varphi,h) $$ where $$ F(\varphi,h)= -\sum_{i=1}^{N}[| \nabla h|^{2}h_{x_{i}} + | \nabla h|^{2}\varphi_{x_{i}} + 2 \langle \nabla \varphi,\nabla h\rangle_{1} h_{x_{i}}]_{x_{i}}\,. $$ For $v\in V$, $$ \langle F,v\rangle_{V',V} = \sum_{i=1}^{N}\int_{\Omega} f_{i}v_{x_{i}}\,dx, $$ where $$ f_{i} = | \nabla h|^{2}\varphi_{x_{i}} + | \nabla h|^{2}h_{x_{i}} + 2 \langle \nabla \varphi,\nabla h\rangle_{1} h_{x_{i}}. $$ Then \begin{align*} \Vert f_{i}\Vert^{4/3}_{L^{4/3}(\Omega)} & \leq K' \Big[ \int_{\Omega}| \nabla \varphi|^{4/3} | \nabla h|^{8/3}\,dx + \int_{\Omega}| \nabla \varphi|^{4/3} | \nabla h|^{8/3}\,dx + \int_{\Omega} | \nabla h|^{4}\,dx \Big]\\ & \leq K'' \Big[\Vert \varphi\Vert^{4/3}_{W^{1,4}_{0}(\Omega)} \Vert h\Vert^{8/3}_{W^{1,4}_{0}(\Omega)} + \Vert h\Vert^{4}_{W^{1,4}_{0}(\Omega)}\Big]. \end{align*} We deduce that $$ \Vert A(\varphi+h)-A(\varphi)-A'_{\varphi}(h)\Vert_{V'} \leq K [\Vert \varphi\Vert_{V} \Vert h\Vert^{2}_{V} + \Vert h\Vert^{3}_{V} \Vert] $$ Hence $A$ is differentiable in the sense of Frechet. \noindent \textbf{2.} The equation \eqref{eS2} admits a unique solution satisfying $$ y\in L^{2}(V)\cap L^{\infty}(H), \quad \dot{y}\in L^{2}(V'). $$ The existence follows from a standard application of the Galerkin method and the a priori estimates obtained for \eqref{eS}. We remark that $y\in \mathcal{C}([0,T];H)$. \noindent \textbf{3.} The mapping $A'\colon V\to \mathcal{L}(V,V')$, $\varphi\mapsto A'_{\varphi}$ is locally Lipschitz. Let $\varphi$ and $\psi$ be in $V$ with $\psi$ in neighbourhood of 0. For $h$ in $V$, we have \[ A'_{\varphi+\psi}h=-\sum_{i=1}^{N}\big[ | \nabla(\varphi+\psi)|^{2}h_{x_{i}} +2 \langle \nabla(\varphi+\psi),\nabla h\rangle_{1} ((\varphi+\psi))_{x_{i}}\big]_{x_{i}} \] and $(A'_{\varphi+\psi}-A'_{\varphi})h=F$, where \begin{align*} F&=-\sum_{i=1}^{N}\Big[ | \nabla \psi|^{2}h_{x_{i}} +2 \langle \nabla\varphi,\nabla \psi\rangle_{1}h_{x_{i}} + 2\langle \nabla\varphi,\nabla h\rangle_{1}\psi_{x_{i}}\\ &\quad + 2\langle \nabla\psi,\nabla h\rangle_{1}\varphi_{x_{i}} + 2\langle \nabla\psi,\nabla h\rangle_{1}\psi_{x_{i}}\Big]_{x_{i}}. \end{align*} Then for $v\in V$, $$ \langle F,v\rangle_{V',V}=\sum_{i=1}^{N}\int_{\Omega} f_{i}v_{x_{i}}\,dx, $$ where $$ f_{i}= | \nabla \psi|^{2}h_{x_{i}} + 2 \langle \nabla\varphi,\nabla \psi\rangle_{1}h_{x_{i}} + 2\langle \nabla\psi,\nabla h\rangle_{1}\varphi_{x_{i}} + 2\langle \nabla\psi,\nabla h\rangle_{1}\psi_{x_{i}}+ 2\langle \nabla\varphi,\nabla h\rangle_{1}\psi_{x_{i}}. $$ Hence $$ \Vert f_{i}\Vert_{L^{p'}(\Omega)} \leq K\bigg[\Vert \psi\Vert^{2}_{V} + \Vert \psi\Vert_{V} \Vert \varphi\Vert_{V} \bigg]\Vert h\Vert_{V}. $$ Since $\psi$ is in neighbourhood of 0, $$ \Vert (A'_{\varphi+\psi}-A'_{\varphi})h\Vert_{V'} \leq K'\Vert \varphi\Vert_{V} \Vert \psi\Vert_{V} \Vert h\Vert_{V}. $$ Hence $$ \Vert A'_{\varphi+\psi}-A'_{\varphi}\Vert_{\mathcal{L}(V,V')} \leq K'' \Vert \psi\Vert_{V}. $$ It follows by theorem \ref{thm3.2}. that $\Theta$ is Frechet differentiable and its derivative $\Theta'_{u}.h$ satisfies \eqref{eS2} \end{proof} Now the functional $J$ can be written as $J(u)=\int_{0}^{T}L(z(t),u(t))\,dt$ with $L$ satisfying (H6). The differentiability of $\Theta$ and the norm ensures the differentiability of $J$ and the expression of derivative is $$ dJ(u).h = 4\int_{Q} | z(x,t)|^{2} z(x,t)y(x,t)\,dx\,dt + 2\int_{0}^{T}\langle u(t),h(t)\rangle_{\mathbb{R}^{N}}\,dt $$ where $y=\Theta'_{u}h$. From Theorems \ref{thm2.1}, \ref{thm3.2} and \ref{thm3.3}, we get the following result. \begin{corollary} \label{coro4.2} An optimal control $\overline{u}$, its corresponding state $\overline{z}$, and its adjoint state $p$ are necessarily tied by the optimality system: For $1\leq i \leq N$ and $t\in [0,T]$, \begin{gather*} \overline{u}_{i}(t) = -2\int_{\Omega}p(x,t)\frac{\partial z}{\partial x_{i}} (x,t)\,dx \\ \frac{\partial \overline{z}}{\partial t} - \mathop{\rm div} (|\nabla\overline{z}|^{2}\nabla \overline{z} =\sum_{i=1}^{N}\overline{u}_{i}(t)\frac{\partial\overline{z}}{\partial x_{i}} \quad \text{ in }Q\\ \overline{z}(x,t) =0 \quad \text{in }\Sigma \\ \overline{z}(x,0) =z_{0}(x) \quad \text{in }\Omega \\ -\frac{\partial \overline{p}}{\partial t} + A'_{\overline{z}(t)} \overline{p} = -\sum_{i=1}^{N}\overline{u}_{i}(t)\frac{\partial\overline{p}}{\partial x_{i}} +| \overline{z}(x,t)|^{2}\overline{z}(x,t) \quad \text{ in }Q\\ \overline{p}(x,t) =0 \quad \text{in }\Sigma \\ \overline{p}(x,T) =0 \quad \text{in }\Omega \end{gather*} \end{corollary} \begin{thebibliography}{99} \bibitem{b1} V. Barbu and Th. Precupanu, \emph{Convexity and Optimization in Banach spaces}. Mathematics and its applications, Reidel publishing Company, 19xx. \bibitem{b2} A. Benbrik, A. Addou \emph{Existence and uniqueness of optimal contr\^ol for distributed-parameter bilinear system}. Journal of dynamical and control system, vol 8, number 2, pp1 41-152, April 2002. \bibitem{b3} C. Bruni, G. Dipillo and G. Koch, Bilinear systems. An application class of ``nearly linear'' systems in theory and applications. \emph{IEEE, transactions on automatic control}, vol. \textbf{AC 19}, no. 4, August 1974. \bibitem{c1} J. Colinge and J. Rappaz, \emph{A strongly non linear problem arising in glaciology}. R.A.I.R.O., \textbf{33}, 396--406, 1999. \bibitem{d1} D. Dan Tiba, \emph{Optimal control of nonsmooth distributed parameter systems}. Lecture notes in Mathematics, vol \textbf{1459}, Springer-Verlag. \bibitem{l1} J. L. Lions, \emph{Quelques m\'ethodes de r\'esolution des probl\`emes aux limites non lin\'eaires}. Dunod, 1969. \bibitem{l2} J. L. Lions and E. Mag\'enes, \emph{Probl\`emes aux limites non homg\`enes et applications}. Volumes \textbf{1}, \textbf{2} and \textbf{3}, Dunod, 1968. \bibitem{l3} J. L. Lions, \emph{Contr\^ole optimal des syst\`emes gouvern\'es par des \'equations aux d\'eriv\'ees partielles}. Dunod, 1968. \bibitem{m1} S. Migorski, \emph{Variational stability analysis of optimal control problems for systems governed by nonlinear second order evolution equations}. J. Math. systems, estimation and control, \textbf{6}, no. 4, 1--24, (1996). \bibitem{m2} D.S. Mitrinovi\'c, \emph{Analytic Inequalities.} Springer-Verlag, Berlin,1970. \bibitem{m3} R.R. Mohler, \emph{Bilinear control processes}. Academic Press, 1975. \end{thebibliography} \end{document}