
2005-Oujda International Conference on Nonlinear Analysis.

Electronic Journal of Differential Equations, Conference 14, 2006, pp. 83–94.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ON A PROBLEM OF LOWER LIMIT IN THE STUDY OF
NONRESONANCE WITH LERAY-LIONS OPERATOR

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

Abstract. We prove the solvability of the Dirichlet problem

Au = f(u) + h in Ω,

u = 0 on ∂Ω

for a given h, under a condition involving only the asymptotic behaviour of

the potential F of f , where A is a Leray-Lions operator.

1. Introduction and statement of results

This paper concerns the existence of solutions to the problem

Au = f(u) + h in Ω,

u = 0 on ∂Ω
(1.1)

where Ω is a bounded domain of RN , N ≥ 1, A is an operator of the form A(u) =
−

∑N
i=1

∂
∂xi

Ai(∇u), f is a continuous function from R to R and h is a given function
on Ω. Also we consider the problem

−∆pu = f(u) + h in Ω
u = 0 on ∂Ω

(1.2)

where ∆p denotes the p-Laplacian ∆pu = div(|∇u|p−2∇u), 1 < p < ∞.
A classical result, essentially due to Hammerstein [9] asserts that if f satisfies a

suitable polynomial growth restriction connected with the Sobolev imbeddings and
if

lim sup
x→±∞

2F (s)
|s|2

< λ1, (1.3)

then problem (1.2) with p = 2 is solvable for any h. Here F denotes the prim-
itive F (s) =

∫ s

0
f(t)dt and λ1 is the first eigenvalue of −∆ on H1

0 (Ω). Several
improvements of this result have been considered in the recent years.
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In 1989, the case N = 1 and p = 2 was considered in [7]. It was shown there
that (1.2) with p = 2 is solvable for any h ∈ L∞(Ω) if

lim inf
x→±∞

2F (s)
|s|2

< λ1. (1.4)

When N ≥ 1 and p = 2, showed later in [8] that (1.2) is solvable for any h ∈ L∞(Ω)
if

lim inf
s→±∞

2F (s)
|s|2

<
( π

2R(Ω)
)2

, (1.5)

where R(Ω) denotes the radius of the smallest open ball B(Ω) containing Ω. This
result was extended to the p-Laplacian case in [5] where solvability of (1.2) was
derived under the condition

lim inf
s→±∞

pF (s)
|s|p

< (p− 1)
{

1
R(Ω)

∫ 1

0

dt

(1− tp)1/p

}p

. (1.6)

Note that this condition reduces to (1.5) when p = 2.
The question now naturally arises whether (p − 1)

{
1

R(Ω)

∫ 1

0
dt

(1−tp)1/p

}p can be

replaced by λ1 in (1.6), where λ1 denotes the first eigenvalue of −∆p on W 1,p
0 (Ω)

(cf[1]).
Observe that for N > 1 and p = 2, ( π

2R(Ω) )
2 < λ1, and a similar strict inequality

holds when 1 < p < ∞. In [2], it was showed that the constants in (1.5) and (1.6)
can be improved a little bit.

Denote by l(Ω) the length of the smallest edge of an arbitrary parallelepiped
containing Ω. If

lim inf
s→±∞

pF (s)
|s|p

< Cp(l) (1.7)

where Cp(l) = (p − 1)
{

2
l(Ω)

∫ 1

0
dt

(1−tp)1/p

}p then for any h ∈ L∞(Ω) the problem

(1.2) has a solution u ∈ W 1,p
0 (Ω) ∩ C1(Ω).

Observe that for N = 1, Cp = λ1 the first eigenvalue of −∆ on Ω =]0, l(Ω)[.
In particular, C2 =

(
π
l

)2, and it recovers the result of [7]. It is clear that (1.7) is a
weaker hypothesis than (1.6). The difference between (1.7) and (1.6) is particularly
important when Ω is a rectangle or a triangle. However Cp(l) < λ1 when N > 1,
and the question raised above remains open.

In this paper we investigate the question of replacing ∆p by the operator of the
form

A(u) = −
N∑

i=1

∂

∂xi
Ai(∇u).

We assume the following hypotheses:
(A0) For all i ∈ {1, 2, . . . , N}, Ai : RN → R is continuous.
(A1) there exists (c, k) ∈ (]0,+∞[)2 such that |Ai(ξ)| ≤ c|ξ|p−1 + K for all

ξ ∈ RN, and all i ∈ {1, 2, . . . , N}.
(A2) (a)

∑N
i=1(Ai(ξ)−Ai(ξ′))(ξi − ξ′i) > 0 for all ξ 6= ξ′ ∈ RN ;

(b) for all i ∈ {1, 2, . . . , N}, the function defined by
ri(s) = Ai(0, . . . , 0, s, 0, . . . , 0) for s ∈ R is odd;

(c) for each i ∈ {1, 2, . . . , N}, there exists ai ∈]0,+∞[ such that
lims→+∞ ri(s)/sp−1 = ai;

(d) for each i ∈ {1, 2, . . . , N}, ri ∈ C1(R∗) and lims→0 sr′i(s) = 0;
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(e) for all i ∈ {1, 2, . . . , N}, Ai(ξ) = 0 for all ξ ∈ RN such that ξi = 0.

Remark 1.1. (1) The hypothesis (A2)(d) is in particular satisfied if we suppose
that for i ∈ {1, . . . , N}, ri ∈ C1(R∗) and there exists qi, 1 < qi < ∞, there exists
ηi > 0, there exists (a, b) ∈ R2, such that for all |s| < ηi, |r′i(s)| ≤ a|s|qi−2 + b.
(2) The assumption (A2)(d) is an hypothesis of homogenization at infinity for the
operator A.

Definition 1.2. For i ∈ {1, 2, . . . , N}, we define

li(s) =
1

p− 1
[sri(s)−

∫ s

0

ri(t)dt] ∀s ∈ R.

Proposition 1.3. Assume (A0), (A1) and (A2). Then: (1) The operator A :
W 1,p

0 (Ω) → W−1,p′(Ω) is defined, strictly monotone and

〈Au, v〉 =
N∑

i=1

∫
Ω

Ai(∇u)
∂v

∂xi
dx ∀u, v ∈ W 1,p

0 (Ω).

(2) For each i ∈ {1, 2, . . . , N}, the function ri : R → R is continuous, strictly
increasing and ri(0) = 0.
(3) For each i ∈ {1, 2, . . . , N}, the function li satisfies

(i) li is even, continuous and li(0) = 0;
(ii) lims→+∞

li(s)
sp = ai

p

(iii) li ∈ C1(R) and l′i(s) =

{
sr′i(s)
p−1 if s 6= 0

0 if s = 0.

(iv) li is strictly increasing in R+.

Proof. (1) By (A0), (A1), it is clear that the operator A is defined from W 1,p
0 (Ω)

to W−1,p′(Ω), we have

〈Au, v〉 =
N∑

i=1

∫
Ω

Ai(∇u)
∂v

∂xi
dx ∀u, v ∈ W 1,p

0 (Ω)

and by (A1)(a), we verify easily that A is strictly monotone.
(2) Let i ∈ {1, . . . , N}. By (A0) and (A2)-(b), ri is continuous and ri(0) = 0 , in

the end ri is strictly increasing. Indeed, let (s, s′) ∈ R2 such that s 6= s′, we have

(ri(s)− ri(s′))(s− s′) =
N∑

i=1

(Ai(ξ)−Ai(ξ′))(ξi − ξ′i) > 0

where ξ = (0, . . . , s, . . . 0) and ξ′ = (0, . . . , s′, . . . 0)
(3)(i) By the foregoing, the function li is even, continuous and li(0) = 0 for every

i ∈ {1, . . . , N}
(3)(ii) We show first that

lim
s→+∞

1
sp

∫ s

0

ri(t)dt =
ai

p
. (1.8)

Let ε > 0, by (A2)(c), there exists ηε = η such that |ri(s)− ais
p−1| ≤ εsp−1 for all

s ≥ η.
Integrating from η to s, we obtain∣∣ ∫ s

0

ri(t)dt−
∫ η

0

ri(t)dt− ai

p
[sp − ηp]

∣∣ ≤ ε

p
[sp − ηp].
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Dividing by sp and letting n → +∞, we obtain

lim
s→+∞

∣∣ 1
sp

∫ s

0

ri(t)dt− ai

p

∣∣ = 0

i.e (1.8) holds. Writing

li(s)
sp

=
1

p− 1
{ri(s)

sp−1
− 1

sp

∫ s

0

ri(t)dt
}
.

By (1.8) and (A2)(c), we have lims→+∞
li(s)
sp = ai

p

(3)(iii) Since ri ∈ C1(R∗), we have li ∈ C1(R∗) and l′i(s) = 1
p−1sr′i(s) for every

s 6= 0. On the other hand, for s 6= 0, since ri is increasing and odd, we have

| li(s)
s

| = 1
p− 1

∣∣ri(s)−
1
s

∣∣ ∫ s

0

ri(t)dt ≤ 2
p− 1

ri(|s|).

It results that l′i(0) exists and l′i(0) = 0. By (A2)-(d) we obtain lims→0 l′i(s) =
lims→0 sr′i(s). This proves that li ∈ C1(R).

(3)(iv) is a consequence of (3)(iii) �

Example 1.4. We give at first some examples for operators A satisfying the hy-
pothesis (A0), (A1) and (A2). (1) Let

Au = −∆pu = −
N∑

i=1

∂

∂xi
(|∇u|p−2 ∂u

∂xi
)

Then we have Ai(ξ) = |ξ|p−2ξi for every ξ = (ξi) ∈ RN .
r(s) = ri(s) = |s|p−2s for every s ∈ R and every i ∈ {1, . . . , N}.
l(s) = li(s) = 1

p |s|
p for every s ∈ R and every i ∈ {1, . . . , N}.

(2) Let

Au = −∆pu−∆qu = −
N∑

i=1

∂

∂xi
(|∇u|p−2 ∂u

∂xi
+ |∇u|q−2 ∂u

∂xi
)

where 1 < q < p < +∞. Then we have Ai(ξ) = |ξ|p−2ξi + |ξ|q−2ξi for every
ξ = (ξi) ∈ RN .
r(s) = ri(s) = |s|p−2s + |s|q−2s for every s ∈ R and every i ∈ {1, . . . , N}.
l(s) = li(s) = 1

p |s|
p + q−1

q(p−1) |s|
q for every s ∈ R and every i ∈ {1, . . . , N}.

(3) Let

Au = −∆p,εu = −
N∑

i=1

∂

∂xi

[
ε + |∇u|2)

p−2
2

∂u

∂xi

]
,

where ε > 0. Then we have Ai(ξ) = (ε + |ξ|2)
p−2
2 ξi for every ξ = (ξi) ∈ RN .

r(s) = ri(s) = (ε + |s|2)
p−2
2 s for every s ∈ R and every i ∈ {1, . . . , N}.

l(s) = li(s) = (ε + |s|2)
p−2
2

(
s2

p − ε
p(p−1)

)
+ 1

p(p−1)ε
p
2 for every s ∈ R and every

i ∈ {1, . . . , N}.
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2. Proof of Main Theorem

We consider the Dirichlet problem (1.1) where Ω is a bounded domain of RN ,
N ≥ 1, f is a continuous function from R to R and h ∈ L∞(Ω).

Denote by [AB] the smallest edge of an arbitrary parallelepiped containing Ω.
Making an orthogonal change of variables, we can always suppose that AB is
parallel to one of the axis of RN . So Ω ⊂ P =

∏N
j=1[aj , bj] with, for some i,

|AB| = bi − ai = min1≤j≤N{bj − aj}, a quantity which we denote by b− a.
Denote by l = li, r = ri, F the primitive F (s) =

∫ s

0
f(t)dt and

Cp = (p− 1)
{ 2

b− a

∫ 1

0

dt

(1− tp)
1
p

}p
.

Theorem 2.1. Assume

lim inf
s→±∞

F (s)
l(s)

< Cp. (2.1)

Then for any h ∈ L∞(Ω), the problem (1.1) has a solution u ∈ W 1,p
0 (Ω) ∩ L∞(Ω)

in the weak sense; i.e
N∑

i=1

∫
Ω

Ai(∇u)
∂ϕ

∂xi
dx =

∫
Ω

f(u)ϕ +
∫

Ω

hϕ ∀ϕ ∈ W 1,p
0 (Ω).

Definition 2.2. An upper solution for (1.1) is defined as a function β : Ω → R
such that

• β ∈ C1(Ω)
• A(β) ∈ C(Ω)
• A(β)(x) ≥ f(β(x)) + h(x) a e x in Ω.

A lower solution α is defined by reversing the inequalities above.

Lemma 2.3. Assume that (1.1) admits an upper solution β and a lower solution
α with α(x) ≤ β(x) in Ω. Then (1.1) admits a solution u ∈ W 1,p

0 (Ω)∩C1(Ω), with
α(x) ≤ u(x) ≤ β(x) in Ω.

Proof. Let

f̃(x, s) =


f(β(x)) if s ≥ β(x),
f(s) if α(x) ≤ s ≤ β(x),
f(α(x)) if s ≤ α(x)

for every (x, s) ∈ Ω×R such that f̃ is bounded and continuous in Ω×R, then the
problem

Au = f̃(x, u) + h(x) in Ω
u = 0 on ∂Ω

(2.2)

admits a solution u ∈ W 1,p
0 (Ω) in the weak sense, indeed the operator A is strictly

monotone, so we can use the result of Lions [10] concerned the pseudomonotones
operators.

We claim that α(x) ≤ u(x) ≤ β(x) in Ω, which clearly implies the conclusion.
To prove the first inequality, one multiplies (2.2) by w = u− uα, where uα(x) =

max(u(x), α(x)), integrates by parts and uses the fact that α is a lower solution
we obtain 〈A(u) − A(u − w), w〉 ≤ 0, which implies w = 0 (since A is strictly
monotone). �



88 A. ANANE, O. CHAKRONE, M. CHEHABI EJDE/CONF/14

Lemma 2.4. Let a < b and M > 0, and assume

lim inf
s→+∞

F (s)
l(s)

< Cp. (2.3)

then there exists β1 ∈ C1(I) such that (r(β′1(t)))
′ ∈ C(I) and

−(r(β′1(t)))
′ ≥ f(β1(t)) + M ∀t ∈ I,

β1(t) ≥ 0 ∀t ∈ I

where I = [a, b].

Lemma 2.5. Assume

lim inf
s→−∞

F (s)
l(s)

< Cp. (2.4)

then there exists α1 ∈ C1(I) such that (r(α′1(t)))
′ ∈ C(I) and

−(r(α′1(t)))
′ ≤ f(α1(t))−M ∀t ∈ I

α1(t) ≤ 0 ∀t ∈ I

where I = [a, b].

Accepting for a moment the conclusion of these two lemmas, let us turn to the
Proof of Theorem 2.1. By Lemma 2.3 it suffices to show the existence of an upper
solution and a lower solution for (1.1). Let us describe the construction of the upper
solution (that of the lower solution is similar).

Let M > ‖h‖∞ and i ∈ {1, 2, . . . , N} such that b = bi, a = ai. By Lemma 2.4
there exists β1 : I → R such that β1 ∈ C1(I), (r(β′1(t)))

′ ∈ C(I) and

−(r(β′1(t)))
′ ≥ f(β1(t)) + M ∀t ∈ I,

β1(t) ≥ 0 ∀t ∈ I.

Writing β(x) = β1(xi) for all x = (xi) ∈ Ω, it is clear that β ∈ C1(Ω), A(β(x)) =
A(β1(xi)) ∈ C(Ω), and we have by (A2)(e):

A(β(x)) = −
n∑

j=1

∂

∂xj
Aj(∇β(x))

= − ∂

∂xi
(ri(β′1(xi)))

= −(r(β′1(xi)))′

≥ f(β1(xi)) + M

= f(β(x)) + M

≥ f(β(x)) + h(x) a.e.x ∈ Ω

The proof of Theorem 2.1 is thus complete.
Next, we present the proof of Lemma 2.4. The proof of Lemma 2.5 follows

similarly.
First case. Suppose infs≥0 f(s) = −∞. Then there exists β ∈ R∗+ such that

f(β) < −M , and the constant function β provides a solution to the problem in
Lemma 2.4.
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Second case. Suppose now infs≥0 f(s) > −∞. Let K > M such that infs≥0 f(s) >
−K + 1. Thus f(s) + K ≥ 1 for all s ≥ 0. Define g : R → R by

g(s) =

{
f(s) + K if s ≥ 0
f(0) + K if s < 0

and denote G(s) =
∫ s

0
g(t)dt for all s in R. It is easy to see that g(s) ≥ 1 for all s

in R and that

0 ≤ lim inf
s→+∞

G(s)
l(s)

= lim inf
s→+∞

F (s)
l(s)

< Cp.

Now it is clearly sufficient to prove the existence of a function β1 : I → R such that
β1 ∈ C1(I), (r(β′1(t)))

′ ∈ C(I) and

−(r(β′1(t)))
′ = g(β1(t)) ∀t ∈ I

β1(t) ≥ 0 ∀t ∈ I

For this purpose we will need the following four Lemmas.

Lemma 2.6. Let 0 < c < ∞ and t ∈]0, 1[, then

lim
α→+∞

α

l−1(c(l(α)− l(αt)))
=

1

c1/p(1− tp)
1
p

In particular by, Fatou Lemma,

1
c1/p

∫ 1

0

dt

(1− tp)1/p
≤ lim inf

α→+∞

∫ 1

0

αdt

l−1(c(l(α)− l(αt)))

Proof. Denote s(α) = α
l−1(c(l(α)−l(αt))) and ai

p = d. By Proposition 1.3 (3)(ii), we
have

lim
s→+∞

s1/p

l−1(s)
= d1/p.

On the other hand,
lim

α→+∞
[c(l(α)− l(αt))] = +∞,

and more generally,

lim
α→+∞

l(α)− l(αt)
αp

= d(1− tp) > 0 .

Writing

s(α) =
1

[ c(l(α)−l(αt))
αp ]1/p

[c(l(α)− l(αt))]1/p

l−1(c(l(α)− l(αt)))

Letting n → +∞ and by the three limits above, we have

lim
α→+∞

s(α) =
1

c1/p(1− tp)1/p

�

Lemma 2.7. For d > 0, define

τG(d) =
∫ d

0

ds

l−1[G(d)−G(s)
p−1 ]

.

Then

lim sup
d→+∞

τG(d) ≥
( ∫ 1

0

dt

(1− tp)1/p

)( 1
p− 1

lim inf
s→+∞

G(s)
l(s)

)1/p

.
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In particular (2.3) implies lim supd→+∞ τG(d) > (b− a)/2.

Proof. Let ρ be a positive number such that lim infs→+∞
G(s)
l(s) < ρ < Cl. Then

lim sup
s→+∞

[ρl(s) − G(s)] = +∞. Let wn be the smallest number in [0, n] such that

max0≤s≤n K(s) = K(wn) where K(s) = ρl(s)−G(s); it is easily seen that (wn) is
increasing with respect to n. Since ρl(s)−G(s) < ρl(wn)−G(wn) for all s ∈ [0, wn[,
we have G(wn)−G(s)

p−1 < ρ
p−1 (l(wn) − l(s)) for all s ∈ [0, wn[, since l : [0,+∞[→

[0,+∞[ is an increasing homeomorphism, we have

1
l−1

[
ρ

p−1 (l(wn)− l(s))
] <

1
l−1

[
1

p−1 (G(wn)−G(s))
] .

Integrating from 0 to wn and changing variable s = uwn in the first member of
inequality, we obtain∫ 1

0

wn

l−1[ ρ
p−1 (l(wn)− l(wns))]

ds ≤ τG(wn).

Letting n → +∞, we obtain

lim inf
n→+∞

∫ 1

0

wn

l−1
[

ρ
p−1 (l(wn)− l(wns))

]ds ≤ lim sup
n→+∞

τG(wn).

By Lemma 2.6, it results

lim sup
d→+∞

τG(d) ≥
[ ∫ 1

0

dt

(1− tp)1/p

][ ρ

p− 1

]−1
p

.

Letting ρ → lim infs→+∞
G(s)
l(s) , the Lemma is proved. �

Lemma 2.8. Let d > 0 and consider the mapping Td defined by

Td(u) = d−
∫ t

a

r−1
([ ∫ τ

a

g(u(s))ds
]1/(p−1))

dτ

in the Banach space C(I). Then Td has a fixed point.

Proof. Clearly by Ascoli’s theorem Td is compact. The proof of Lemma 2.8 uses
an homotopy argument based on the Leray Schauder topological degree. So Td will
have a fixed point if the following condition holds:

There exists ρ > 0 such that (I−λTd)(u) 6= 0 for all u ∈ ∂B(0, ρ) for all λ ∈ [0, 1],
where ∂B(0, ρ) = {u ∈ C(I); ‖u‖∞ = ρ}.

To prove that this condition holds, suppose by contradiction that for all n =
1, 2, . . . there exists un ∈ ∂B(0, n), λn ∈ [0, 1] such that: un = λnTd(un). The
latter relation implies

un = λnd− λn

∫ t

a

r−1
([ ∫ τ

a

g(u(s))ds
] 1

p−1
)
dτ (2.5)

Therefore, un ∈ C1(I) and we have successively

u′n(t) = −λnr−1
([ ∫ τ

a

g(u(s))ds
] 1

p−1
)

< 0 ∀t ∈]a, b],

u′n(a) = 0,

(2.6)
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r[u′n(t)

λn
]
)′ ∈ C(I) and

−
(
r
(u′n(t)

λn

))′
= g(un(t)) ∀t ∈ I. (2.7)

Note that by (2.6), u′n(t) < 0 in ]a, b], so that un is decreasing. Hence, for n > d,
un(b) = −n. Multiplying the equation (2.7) by u′n(t), we obtain

−λn

(
l
(u′n(t)

λn

))′
=

1
p− 1

d

dt
G(un(t)). (2.8)

Indeed (
l
(u′n(t)

λn

))′
=

[
l
(
r−1

(
r
(u′n(t)

λn

)))]′
=

(
l ◦ r−1

)′(
r
(u′n(t)

λn

))(
r
(u′n(t)

λn

))′
=

1
p− 1

u′n(t)
λn

(
r
(u′n(t)

λn

))′
By (2.8), we have

λn

(
l
(u′n(t)

λn

))
=

1
p− 1

(G(λnd)−G(un(t))

and

− u′n(t)

λnl−1
[G(λnd)−G(un(t))

(p−1)λn

] = 1.

Integrating from a to b and changing variable s = un(t) (un(a) = λnd and un(b) =
−n), we obtain ∫ λnd

−n

ds

λnl−1
[G(λnd)−G(s)

(p−1)λn

] = b− a

i.e. ∫ λnd

0

ds

λnl−1
[G(λnd)−G(s)

(p−1)λn

] = b− a +
∫ −n

0

ds

λnl−1
[G(λnd)−G(s)

(p−1)λn

] ≥ 0

Since G(s) = sg(0) for s ≤ 0 and changing variable s = −u, we obtain

0 ≤ (b− a)−
∫ n

0

ds

λnl−1
[G(λnd)−sg(0)

(p−1)λn

] (2.9)

Denote by l(u) = G(λnd)−G(s)
(p−1)λn

such that l′(u)du = g(0)
(p−1)λn

ds and ds = λn

g(0)r
′(u)udu

for u 6= 0 and denote αn = l−1
[ G(λnd)
(p−1)λn

]
and βn = l−1

[ (G(λnd)+ng(0))
(p−1)λn

]
. By (2.9),

we obtain

0 ≤ (b− a)−
∫ βn

αn

r′(u)
g(0)

du

= (b− a)− 1
g(0)

r
{
l−1

[G(λnd)− ng(0)
(p− 1)λn

]}
+

1
g(0)

r
{
l−1

[ G(λnd)
(p− 1)λn

]}
.

Since
G(λnd)− ng(0)

(p− 1)λn
≥ ng(0)

(p− 1)
,

G(λnd)
(p− 1)λn

≤ d

p− 1
max

0≤s≤d
|g(s)|
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and r ◦ l−1 is increasing, it results that

0 ≤ (b− a)− 1
g(0)

r
{
l−1

[ ng(0)
(p− 1)λn

]}
+

1
g(0)

r
{
l−1

[ d

p− 1
max

0≤s≤d
|g(s)|

]}
.

Letting n → +∞, we get a contradiction. Let us denote by ud ∈ C(I) a fixed point
of the mapping Td of Lemma 2.8 �

Lemma 2.9. There exists d > 0 such that ud(t) ≥ 0 for all t ∈ [a, a+b
2 [.

Proof. We know that ud is decreasing and that ud(a) = d for all d > 0. Let us
distinguish two cases.

First if there exists d > 0 such that ud(b) ≥ 0, then the conclusion of Lemma
2.9 clearly follows. So we can assume that ud(b) < 0 for every d > 0. Since
ud(a) = d > 0, there exists δd ∈]a, b[ such that ud(δd) = 0. It is clear that
ud(t) ≥ 0 for all t ∈ [a, δd[, and so it is sufficient to show that lim supd→+∞ δd > a+b

2 .
Processing as in the proof of Lemma 2.8, we obtain

−u′d(t)
{
l−1

(G(d)−G(ud(t))
p− 1

)}−1 = 1.

Integrating from a to δd and changing variable s = ud(t), one gets

τG(d) =
∫ d

0

ds

l−1
[G(d)−G(s)

p−1

] = δd − a,

consequently

lim sup
d→+∞

δd > a +
b− a

2
=

a + b

2
�

Proof of Lemma 2.4 continued. . Denoting ud(t) by u(t), we have u ∈ C1(I),
(r(u′))′ ∈ C(I) and

−(r(u′))′ = g(u(s)) ∀t ∈ I,

u(t) ≥ 0 ∀t ∈ [a,
a + b

2
[,

u′(a) = 0.

Define a function β1 from [a, b] to R by

β1(t) =

{
u( 3a+b

2 − t) if t ∈ [a, a+b
2 ],

u(t− b−a
2 ) if t ∈ [a+b

2 , b].

We will show that this function β fulfills the conditions of Lemma 2.4. To see this
it is sufficient to show that

(a) β1 is nonnegative in [a, b],
(b) β1 ∈ C1([a, b]),
(c) (r(β′1(t)))

′ ∈ C([a, b]) and −(r(β′1(t)))
′ = g(β1(t)) for all t ∈ [a, b].

Proof of (a). If a ≤ t ≤ a+b
2 , then a ≤ 3a+b

2 − t ≤ a+b
2 , and if a+b

2 ≤ t ≤ b, then
a ≤ t− b−a

2 ≤ a+b
2 , so that the conclusion follows from the sign of u on [a, a+b

2 ].
Proof of (b). β1 ∈ C1([a, a+b

2 [), β1 ∈ C1(]a+b
2 , b]), and moreover d

dt+ β1(a+b
2 ) =

u′(a) = 0 and d
dt− β1(a+b

2 ) = u′(a) = 0.
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Proof of (c). We know that −(r(u′(t)))′ = g(u(t)) for t ∈ [a, b], therefore

−(r(u′(t)) =
∫ t

a

g(u(s))ds.

If a ≤ t ≤ a+b
2 then a ≤ 3a+b

2 − t ≤ a+b
2 , which gives

β1(t) = u
(3a + b

2
− t

)
and β′1(t) = −u′

(3a + b

2
− t

)
.

We obtain

−(r(u′(
a + b

2
− t)) = r(β′1(t)).

The change of variable u = 3a+b
2 − s yields∫ 3a+b

2 −t

a

g(u(s))ds =
∫ a+b

2

t

g(u(
3a + b

2
− s))ds,

hence

r(β′1(t)) =
∫ a+b

2

t

g(β1(s))ds ∀t ∈ [a,
a + b

2
]

and

−(r(β′1(t)))
′ = g(β1(t)) ∀t ∈ [a,

a + b

2
]

The proof is similar for all t ∈ [a+b
2 , b]. �
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hammed 1er, Oujda, Maroc

E-mail address: chehb md@yahoo.fr


	1. Introduction and statement of results
	2. Proof of Main Theorem
	References

