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ON A PROBLEM OF LOWER LIMIT IN THE STUDY OF
NONRESONANCE WITH LERAY-LIONS OPERATOR

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

ABSTRACT. We prove the solvability of the Dirichlet problem
Au= f(u)+h in Q,
u=0 ondN

for a given h, under a condition involving only the asymptotic behaviour of
the potential F' of f, where A is a Leray-Lions operator.

1. INTRODUCTION AND STATEMENT OF RESULTS
This paper concerns the existence of solutions to the problem

Au= f(u)+h inQ,

=0 on 0N (1.1)

where  is a bounded domain of RY, N > 1, A is an operator of the form A(u) =
— vazl a%iAi(Vu), f is a continuous function from R to R and A is a given function
on 2. Also we consider the problem

—Apu=f(u)+h inQ

u=0 on oN (1.2)

where A, denotes the p-Laplacian A,u = div(|Vu[P~?Vu), 1 < p < cc.
A classical result, essentially due to Hammerstein [J] asserts that if f satisfies a
suitable polynomial growth restriction connected with the Sobolev imbeddings and

if
F
lim sup 7(28)
r—Foo |5|
then problem (1.2)) with p = 2 is solvable for any h. Here F' denotes the prim-

itive F(s) = [, f(t)dt and Xy is the first eigenvalue of —A on Hj(f). Several
improvements of this result have been considered in the recent years.

< A1, (13)
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In 1989, the case N = 1 and p = 2 was considered in [7]. It was shown there
that (1.2) with p = 2 is solvable for any h € L*>°(Q) if

.. 2F(s)

When N > 1 and p = 2, showed later in [8] that (1.2)) is solvable for any h € L>°(Q)

if
F(s) T 2
i e < Gramy)
where R(2) denotes the radius of the smallest open ball B(Q2) containing €. This
result was extended to the p-Laplacian case in [5] where solvability of was
derived under the condition

(1.5)

.. .pF(s) 1 / ! dt P
| f -1 . 1.
il g <@ ){R(Q) o (T—tp)i/p (1.6)
Note that this condition reduces to when p = 2.
The question now naturally arises whether { R fo = tP T /p} can be

replaced by A1 in (L.6), where A; denotes the ﬁI‘bt eigenvalue of —A, on WyP(Q)
(cf]).

Observe that for N > 1 and p = 2, (55757 R(Q)) < A1, and a similar strict inequality
holds when 1 < p < oo. In [2], it was showed that the constants in and ( .
can be improved a little bit.

Denote by () the length of the smallest edge of an arbitrary parallelepiped
containing 2. If

hminpr( ) < Cp() (1.7

s—+too |S|
where Cp(1) {Z(Q fo = tp)l/p} then for any h € L°°(Q) the problem

(L2) has a solutlon ue WP (Q)nCH(Q).
Observe that for N =1, Cp, = A; the first eigenvalue of —A on Q =]0,1(Q)[.

In particular, Co = (F ? and it recovers the result of [7]. Tt is clear that is a
weaker hypothesis than (1.6). The difference between and is particularly
important when € is a rectangle or a triangle. However C,(I) < A\; when N > 1,
and the question raised above remains open.

In this paper we investigate the question of replacing A, by the operator of the

form
N
0
— A
; 7 Vu

We assume the following hypotheses:
(A0) For alli € {1,2,...,N}, A; : RN — R is continuous.
(A1) there exists (c,k) € (]0,+o0[)? such that |4;(&)] < ¢|¢P~! + K for all
¢cRY andalli€ {1,2,...,N}.
(A2) (a) 2L (Ai(€) — Ai(€))(& — &) > 0 for all £ # & € RY;
(b) for alli € {1,2,..., N}, the function defined by
ri(s) = 4;(0,...,0,5,0,...,0) for s € R is odd;
(c) for each i € {1,2,..., N}, there exists a; €]0, +oo[ such that
limg_ oo 7i(s) /P71 = ay;

(d) for each i€ {1,2,...,N}, r; € C}(R*) and lim,_,q s7’(s) = 0;
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(e) for alli € {1,2,..., N}, A;(&) =0 for all ¢ € RY such that & = 0.
Remark 1.1. (1) The hypothesis (A2)(d) is in particular satisfied if we suppose
that for i € {1,...,N}, r; € CY(R*) and there exists q;, 1 < q; < oo, there exists
n; > 0, there exists (a,b) € R?, such that for all |s| < n;, |ri(s)] < als|%=2 +b.

(2) The assumption (A2)(d) is an hypothesis of homogenization at infinity for the
operator A.

Definition 1.2. For i € {1,2,..., N}, we define

li(s) = = [sri(s) — /OS ri(t)dt] Vs eR.

Proposition 1.3. Assume (A0), (A1) and (A2). Then: (1) The operator A :
Wy (Q) — W12 (Q) is defined, strictly monotone and

al’i

(2) For each i € {1,2,...,N}, the function r; : R — R is continuous, strictly
increasing and r;(0) = 0.
(8) For each i € {1,2,...,N}, the function l; satisfies

(i) I; is even, continuous and 1;(0) = 0;

IR I ;
(i) limg_ oo s(,f) =%

N
(Au,v) = Z /Q A;(Vu) Ov dr Yu,v € Wol’p(Q).
i=1

sri(s) .
(iii) I; € CY(R) and li(s) = »~1 ifs#0
0 if s =0.

(iv) 1; is strictly increasing in RT.

Proof. (1) By (A0), (A1), it is clear that the operator A is defined from Wy *(Q)
to WL (Q), we have

N
(Au,0) =3 /Q A,;(Vu)%dm Vu,v € WEP()
=1 v

and by (Al)(a), we verify easily that A is strictly monotone.
(2) Let i € {1,...,N}. By (A0) and (A2)-(b), r; is continuous and r;(0) =0 , in
the end 7; is strictly increasing. Indeed, let (s,s’) € R? such that s # s', we have
N
(ri(s) = ma(s))(s = ') = D_(Ail€) = Aul€))(& =€) > 0
i=1
where £ = (0,...,s,...0) and &' = (0,...,5,...0)
(3)(i) By the foregoing, the function [; is even, continuous and /;(0) = 0 for every
ie{l,...,N}
(3)(ii) We show first that
1 [ i
ml—/n@mzﬁ. (1.8)
s—+o0 sP [ p
Let € > 0, by (A2)(c), there exists 1. = n such that |r;(s) — a;sP~1| < esP~1 for all
s>m.
Integrating from 7 to s, we obtain

’/Os r;i(t)dt — /OVI ri(t)dt — %[sp — np]| < Z[sP =P

€
p
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Dividing by sP and letting n — 400, we obtain

yf/ it = | =0
9—>+oos

i.e (1.8) holds. Writing

L(s) 1 (mi(s) 1 Sr'
- —pil{sp,1 Sp/o J(t)dt}.

By (T.8) and (A2)(c), we have lim,_, o 2 = @

SP:p

(3)(iii) Since r; € C*(R*), we have [; € C'(R*) and I}(s)

EJDE/CONF/14

1
p—1 ST

i(s) for every

s # 0. On the other hand, for s # 0, since r; is increasing and odd, we have

|li(5)|:7 7|/ ri(t dt<
S p—

TZ(l ).

It results that I;(0) exists and I[(0) = 0. By (A2)-(d) we obtain lims_,¢lj(s) =

limgs_,q sr;(s). This proves that [; € C*(R).
(3)(iv) is a consequence of (3)(iii)

(]

Example 1.4. We give at first some examples for operators A satisfying the hy-

pothesis (A0), (A1) and (A2). (1) Let

Yo Ou
TERITEEDY %(WUVD_Q%)
i—1 7 7

Then we have A;(&) = |£|P72¢; for every € = (&;) € RN.

r(s) = ri(s) = |s|P72s for every s € R and every i € {1,...,N}.
I(s) =1li(s) = %|s|p for every s € R and every i € {1,...,N}.

(2) Let

Au= —Apu— Agu = — Za (|Vu |1”2 +|v |9=2 —

=1

ou
3@-

)

where 1 < ¢ < p < +oo. Then we have A;(£) = [£|P72¢& + |€|972¢; for every

€= (6) BV,
r(s) =ri(s) = [s[P72%s + \ \q 25 for every s € R and every i € {1 .., N}
I(s) =1;(s) = 1| P+ &= 1 |s|? for every s € R and every ¢ € {1,...,N}.
(3) Let
2 Ou
Au = Apeu— Za ) (9371]7
where & > 0. Then we have 4;(£) = (e + [¢[2)"2 & for every & = (&) € RV,
r(s) =ri(s) = (e + \3\2)%25 for every s € R and every i € {1,...,N}.
I(s) = li(s) = (e + |s|2)pT_2(‘;72 — ﬁ) + ﬁsg for every s € R and every

ie{l,...,N}.
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2. PROOF OF MAIN THEOREM

We consider the Dirichlet problem where Q is a bounded domain of RY,
N >1, f is a continuous function from R to R and h € L*(2).

Denote by [AB] the smallest edge of an arbitrary parallelepiped containing €.
Making an orthogonal change of variables, we can always suppose that AB is
parallel to one of the axis of RY. So Q@ ¢ P = Hévzl[aj,bj} with, for some 1,
|AB| = b; — a; = mini<j<n{b; — a;}, a quantity which we denote by b — a.

Denote by I = l;, » = r;, F the primitive F(s) = fos f(t)dt and

C :(p—l){bfa/o : dt l}p.

1_tp)z'

Theorem 2.1. Assume

lim inf y < Cp. (2.1)

s—+oo (S)

Then for any h € L(R), the problem (T.1) has a solution u € Wy () N L>®()
in the weak sense; i.e

N
(o ¥ .
;/S]Az(vu)axidx /Qf(U)swr/Qh@ Vo € WEP(Q).

Definition 2.2. An upper solution for is defined as a function 3 : @ — R
such that

e 3€CHN)

o A(B) € C(Q)

o A(B)(x) > f(B(z)) + h(x) ae xin Q.

A lower solution « is defined by reversing the inequalities above.

Lemma 2.3. Assume that (L.1) admits an upper solution 5 and a lower solution
o with a(x) < B(z) in Q. Then (L) admits a solution u € Wy P(Q)NCY(Q), with
a(z) <wu(z) < p(z) in Q.

Proof. Let
) FB(@) if s > Bla),
[z, s) = f(s) if a(z) < s < f(x),
fla(z)) if s < a(x)
for every (z,s) € Q x R such that ]?is bounded and continuous in  x R, then the
problem
Au = f(z,u) + h(z) inQ
u=0 on 0N

admits a solution u € T/VO1 P(2) in the weak sense, indeed the operator A is strictly
monotone, so we can use the result of Lions [I0] concerned the pseudomonotones
operators.

We claim that a(z) < u(z) < B(x) in Q, which clearly implies the conclusion.

To prove the first inequality, one multiplies by w = u — ug, where uy(x) =
max(u(z), a(z)), integrates by parts and uses the fact that « is a lower solution
we obtain (A(u) — A(u — w),w) < 0, which implies w = 0 (since A is strictly
monotone). O

(2.2)
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Lemma 2.4. Let a < b and M > 0, and assume

lim inf E(s)
s—+o0 I(s)

then there exists 1 € C*(I) such that (r(3;(t))) € C(I) and

—(r(B1)) = f(Bi(t)) + M Vtel,
Bi(t) >0 Vtel

< Cp. (2.3)

where I = [a,b].

Lemma 2.5. Assume

lim inf y < Cp. (2.4)

SN T0)
then there exists a1 € CY(I) such that (r(c/y(t))) € C(I) and

—(r(@ 1)) < flau(t) =M Vtel
ai1(t) <0 vtel

where I = [a, b)].

Accepting for a moment the conclusion of these two lemmas, let us turn to the
Proof of Theorem By Lemma it suffices to show the existence of an upper
solution and a lower solution for . Let us describe the construction of the upper
solution (that of the lower solution is similar).

Let M > ||h]| and i € {1,2,...,N} such that b = b;, a = a;. By Lemma [2.4]
there exists 81 : I — R such that 8, € CY(1), (r(B1(t)))" € C(I) and

—(r(B1(1) = f(Bu(t) + M Ve,
B(t)>0 Viel
Writing 3(z) = B1(z;) for all x = (z;) € Q, it is clear that 8 € C1(Q), A(B(x)) =

A(P1(z)) € C(Q), and we have by (A2)(e):

AB(@) = =3 5 A, (V)

a /
= _871_(7%([31(%’)))
= —(r(B1(x:)))
> f(Bi(zs) + M
= f(B(z)) + M
> f(B(z)) + h(z) aexz e

The proof of Theorem is thus complete.

Next, we present the proof of Lemma (2.4 The proof of Lemma follows
similarly.

First case. Suppose infs>( f(s) = —oo. Then there exists 8 € R*+ such that
f(B) < —M, and the constant function 3 provides a solution to the problem in
Lemma 2.4
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Second case. Suppose now infy>g f(s) > —oo. Let K > M such that infs>¢ f(s) >
—K + 1. Thus f(s)+ K > 1 for all s > 0. Define g : R — R by

[fe)+E ifs>0
g(s)_{f(0)+K ifs<0

and denote G(s) = [ g(t)dt for all s in R. It is easy to see that g(s) > 1 for all s

in R and that o P
0 < liminf (5) = liminf (5)
s——+00 l(S) s——+00 l(s)
Now it is clearly sufficient to prove the existence of a function 1 : I — R such that
B € CH(I), (r(B1(t)))' € C(I) and
—(r(B1(1)) = g(Bi(t)) Vtel
Gi(t) >0 Vitel

For this purpose we will need the following four Lemmas.

<G,

Lemma 2.6. Let 0 < ¢ < oo and t €]0, 1], then

1
lim @ =

a—+too 171 (c(i(a) — U(a1))) ~ o/p(1— tr)s

In particular by, Fatou Lemma,
b /1 7dt < lim inf /1 adt
A7 Jy W=w)7e =% ) T(e(i(a) — ()

Proof. Denote s(a) = e —iany @d 4 = d. By Proposition (3)(ii), we
have

1/p
lim 5

= d'/r.
s—-+00 l_l (S)

On the other hand,
lim [e(l(a) —l(at))] = +oo,

a——+00
and more generally,
() — l(at
im { =D gy s
a—+oo oP
Writing
1 [e(l(a) — U(at))]'/P

(o) = (U@t 175 11 (c(I(a) — L(at)))

Letting n — +o00 and by the three limits above, we have

I S
aJ»rJIrloo S(OZ) B cl/p(l — tp)l/l)

Lemma 2.7. For d > 0, define

d
ds

re(d) = / S —

(d) o 110G,

Then

1 dt 1 G(s)\1/»
. > im i Tl '
i@ 2 (| =) (1 it 5
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In particular (2.3) implies limsupy_, | o 7a(d) > (b—a)/2.

Proof. Let p be a positive number such that liminfs_, ?(f')) < p < C;. Then

limsup[pl(s) — G(s)] = +oo. Let w, be the smallest number in [0,n] such that
s— 400

maxo<s<n K (s) = K(w,) where K(s) = pl(s) — G(s); it is easily seen that (w,,) is
increasing with respect to n. Since pl(s) —G(s) < pl(wy)—G(wy,) for all s € [0, w,],

we have w < S5 (l(wn) = U(s)) for all s € [0,wy], since I : [0, +-00[—
[0, 400[ is an increasing homeomorphism, we have
1 - 1
PR U(wn) = 1)) 7 [ (Glwn) = G())]

Integrating from 0 to w, and changing variable s = ww,, in the first member of
inequality, we obtain

1 w,
/o P () — W] = 70

Letting n — +o00, we obtain
1
lim inf ds < limsup 7 (wy,).

n400 Jo T ((wn) — L(wes))] - e

Wn,

By Lemma |2.6] it results

1 =1
imswrad) > | [ =] 2]

Letting p — liminf,_, 4 %, the Lemma is proved. O

Lemma 2.8. Let d > 0 and consider the mapping T, defined by

Ti(u)=d— /at r_l([/l;g(u(s))ds} 1/(p_l)>d7'

in the Banach space C(I). Then Ty has a fized point.

Proof. Clearly by Ascoli’s theorem Ty is compact. The proof of Lemma [2.§] uses
an homotopy argument based on the Leray Schauder topological degree. So Ty will
have a fixed point if the following condition holds:

There exists p > 0 such that (I—ATy)(u) # 0 for all uw € dB(0, p) for all A € [0, 1],
where 0B(0, p) = {v € C(I); ||ulloo = p}-

To prove that this condition holds, suppose by contradiction that for all n =
1,2,... there exists u, € 0B(0,n), A, € [0,1] such that: u, = A\, T4(uy). The
latter relation implies

_1_

Up = And — Ay, t Pt ([/af g(u(s))ds} o )dT (2.5)

a

Therefore, u,, € C'(I) and we have successively

ul (t) = =Apr! ([/aT g(u(s))ds} ﬁ) <0 Vi€la,b, (2.6)
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(r[%}) € C(I) and

f(r<u3i§>))’ = g(un(t)) Viel (2.7)

Note that by (2.6), u,,(t) < 0 in ]a,b], so that w,, is decreasing. Hence, for n > d,
Up(b) = —n. Multlplymg the equation (2.7) by u/, (t), we obtain

/

“ (z(“’;iit))) _ ]%%G(un(t)). 2.8)
Indeed

By (2.8), we have

An p—1
and
uy, (1) _
Ty o1 (GO =Gun())]
Anl ! [ (p)fl))\n ]

Integrating from a to b and changing variable s = u,,(t) (up(a) = And and u,(b) =
—n), we obtain

And ds 0
/n A1 [C0ad -GG ~ 7T

a (P—DAn
ie. Ny
n ds -n ds
/ =b—a+ / >0
G(And)—G(s s -
o A7l ((71)%()] 0 Anl” 1[ (73) ()]
Since G(s) = sg(0) for s < 0 and changing variable s = —u, we obtain
" ds
Og(b—a)—/ Goud (2.9)
)=s (0)
0 Apl~ 1[ = 1) v
Denote by I(u) = % such that I’ (u)du = (p 1))\ ds and ds = ﬁr’( w)udu

for u # 0 and denote «,, = [~} [(25’\1)2] and B, =171 [(G(’?;d%] By (2.9),
we obtain

0<(b—a) —/ﬁn T/(u)du

. 9(0)
o) - L1 GPnd) —ng(0) 1 GOwd)
= =9 o Ll -1y I3+ {l [ )An]}'
Since
G(And) —ng(0) _ ng(0)  G(And) d
(P = DAn = r-1)" (-D\ = p—1 o??%%‘g(sﬂ
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and 7 o [~! is increasing, it results that

OS(b—a)—g(lo)r{lfl[( ng(0 ]}—i— {l 1[ max |g(s)”}

— 1 — lo<s<d

Letting n — 400, we get a contradiction. Let us denote by ug € C(I) a fixed point
of the mapping Ty of Lemma [2.§] O

Lemma 2.9. There exists d > 0 such that uq(t) > 0 for all t € [a, “E2].

Proof. We know that ug is decreasing and that ug(a) = d for all d > 0. Let us
distinguish two cases.

First if there exists d > 0 such that ugq(b) > 0, then the conclusion of Lemma
clearly follows. So we can assume that uq(b) < 0 for every d > 0. Since
ug(a) = d > 0, there exists d4 €|a,b] such that ug(dq) = 0. It is clear that
ug(t) > Oforallt € [a,dy[, and so it is sufficient to show that limsup,_, o, 64 > 5.
Processing as in the proof of Lemma we obtain

’ t){l*l(G(d) ;f(lud(t)))}*l -1

Integrating from a to §; and changing variable s = uy(t), one gets

d
ds
rald) = /0 -1 [CD=C)] =0a —a,
=

consequently
b— b
limsupdg > a + @_at
d—+o00 2 2

[
Proof of Lemma[2.]] continued. . Denoting u4(t) by u(t), we have u € C(I),
(r(u")) € C(I) and

—(r(@")) = g(u(s)) Vtel,

b
w(t) >0 Ve fa, 22,

u'(a) = 0.
Define a function (31 from [a, b] to R by

By(t) = {u(?”“z"'b —t) ifte]a %],

u(t—b52)  ift e [<Fh, ).

We will show that this function ( fulfills the conditions of Lemma [2.4] To see this
it is sufficient to show that

(a) (3 is nonnegative in [a, b],

(b) f1 € C([a, b]),

(c) (r(51(1)))" € C([a,b]) and —(r(B1(¢)))" = g(B1(t)) for all ¢ € [a, b].
Proof of (a). If a <t < “TH’, then a < 3aT+bft§ “7“’, andif‘%b <t < b, then
a<t— b_?“ < ‘%"b, so that the conclusion follows from the sign of w on [a, a+b].

Proof of (b). 81 € C*([a, %FL]), /1 € C1(1%FL, b)), and moreover &3 (%E2) =
w'(a) =0 and &y (%E) = v/(a) = 0.
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Proof of (¢). We know that —(r(u/(¢)))" = g(u(t)) for t € [a, b], therefore

—(r(u () = / o(u(s))ds.

Ifagtg%%thenag%—tg“TH’,Whichgives

Bi(t) = u(S“;b 1) and () = _u'(?’“;b ).
We obtain
(' (L2 1)) = (1),
The change of variable u = % — s yields
[ swteps= [ g s
hence .
)= [ gBionds v fo, )
and t
(B )Y = 9((D) Vi€ o, TE
The proof is similar for all t € [*£2, 3. O
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