\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 83--94.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{83} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Nonresonance problem] {On a problem of lower limit in the study of nonresonance with Leray-Lions operator} \author[A. Anane, O. Chakrone, M. Chehabi \hfil EJDE/Conf/14 \hfilneg] {Aomar Anane, Omar Chakrone, Mohammed Chehabi} % in alphabetical order \address{Aomar Anane \newline D\'epartement de Math\'ematiques et Informatique, Facult\'e des Sciences, Universit\'e Mohammed 1er, Oujda, Maroc} \email{anane@sciences.univ-oujda.ac.ma} \address{Omar Chakrone \newline D\'epartement de Math\'ematiques et Informatique, Facult\'e des Sciences, Universit\'e Mohammed 1er, Oujda, Maroc} \email{chakrone@sciences.univ-oujda.ac.ma} \address{Mohammed Chehabi \newline D\'epartement de Math\'ematiques et Informatique, Facult\'e des Sciences, Universit\'e Mohammed 1er, Oujda, Maroc} \email{chehb\_md@yahoo.fr} \date{} \thanks{Published September 20, 2006.} \subjclass[2000]{35J60, 35P30} \keywords{Leray-Lions operator; Nonresonance; fist eigenvalue} \begin{abstract} We prove the solvability of the Dirichlet problem \begin{gather*} Au = f(u)+h \quad\text{in } \Omega , \\ u = 0 \quad\text{on }\partial \Omega \end{gather*} for a given $h$, under a condition involving only the asymptotic behaviour of the potential $F$ of $f$, where $A$ is a Leray-Lions operator. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \section{Introduction and statement of results} This paper concerns the existence of solutions to the problem \begin{equation} \label{P} \begin{gathered} Au = f(u)+h \quad\text{in } \Omega , \\ u = 0 \quad\text{on } \partial \Omega \end{gathered} \end{equation} where $\Omega $ is a bounded domain of $\mathbb{R}^N$, $N\geq 1$, $A$ is an operator of the form $A(u)=-\sum_{i=1}^N \frac{\partial }{\partial x_{i}}A_{i}(\nabla u)$, $f$ is a continuous function from $\mathbb{R}$ to $\mathbb{R}$ and $h$ is a given function on $\Omega $. Also we consider the problem \begin{equation} \label{Pp} \begin{gathered} -\Delta _{p}u=f(u)+h\quad\text{in }\Omega \\ u =0 \quad\text{on }\partial \Omega \end{gathered} \end{equation} where $\Delta _{p}$ denotes the $p$-Laplacian $\Delta_{p}u=\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)$, $11$ and $p=2$, $( \frac{\pi }{2R(\Omega)}) ^2<\lambda _{1}$, and a similar strict inequality holds when $11$, and the question raised above remains open. In this paper we investigate the question of replacing $\Delta_{p}$ by the operator of the form \[ A(u)=-\sum_{i=1}^N \frac{\partial }{\partial x_{i}}A_{i}(\nabla u). \] We assume the following hypotheses: \begin{itemize} \item[(A0)] For all $i\in \{1,2,\dots ,N\}$, $A_{i}:\mathbb{R}^{\mathbb{N}}\to \mathbb{R}$ is continuous. \item[(A1)] there exists $(c,k)\in (]0,+\infty [ )^2$ such that $|A_{i}(\xi )| \leq c|\xi |^{p-1}+K$ for all $\xi \in \mathbb{R}^{\mathbb{N}}$, and all $i\in \{1,2,\dots ,N\}$. \item[(A2)] \begin{itemize} \item[(a)]$\sum_{i=1}^N (A_{i}(\xi)-A_{i}(\xi '))(\xi _{i}-\xi _{i}')>0$ for all $\xi \neq \xi '\in \mathbb{R}^N$; \item[(b)] for all $i\in \{1,2,\dots ,N\}$, the function defined by \\ $r_{i}(s)=A_{i}(0,\dots,0,s,0,\dots ,0)$ for $s\in \mathbb{R}$ is odd; \item[(c)] for each $i\in \{1,2,\dots ,N\}$, there exists $a_{i}\in ]0,+\infty [$ such that \\ $\lim_{s\to +\infty} r_{i}(s)/ s^{p-1}=a_{i}$; \item[(d)] for each $i\in \{1,2,\dots ,N\}$, $r_{i}\in C^{1}(\mathbb{R}^{\ast })$ and $\lim_{s\to 0} sr_{i}'(s)=0$; \item[(e)] for all $i\in \{1,2,\dots ,N\}$, $A_{i}(\xi )=0$ for all $\xi \in \mathbb{R}^N$ such that $\xi _{i}=0$. \end{itemize} \end{itemize} \begin{remark} \label{rmk1.1} (1) The hypothesis (A2)(d) is in particular satisfied if we suppose that for $i\in \{1,\dots ,N\}$, $r_{i}\in C^{1}(\mathbb{R}^{\ast })$ and there exists $q_i$, $10$, there exists $(a,b)\in \mathbb{R}^2$, such that for all $|s|<\eta _{i}$, $|r_{i}'(s)|\leq a|s|^{q_{i}-2}+b$. \noindent (2) The assumption (A2)(d) is an hypothesis of homogenization at infinity for the operator $A$. \end{remark} \begin{definition} \label{def1.1}\rm For $i\in \{1,2,\dots ,N\}$, we define \[ l_{i}(s)=\frac{1}{p-1}[sr_{i}(s)-\int_{0}^{s}r_{i}(t)dt]\quad \forall s\in \mathbb{R}. \] \end{definition} \begin{proposition} \label{prop1.2} Assume (A0), (A1) and (A2). Then: (1) The operator $A:W_{0}^{1,p}(\Omega )\to W^{-1,p'}(\Omega )$ is defined, strictly monotone and \[ \langle Au,v\rangle =\sum_{i=1}^N \int_{\Omega }A_{i}(\nabla u) \frac{\partial v}{\partial x_{i}}dx\quad \forall u,v\in W_{0}^{1,p}(\Omega ). \] \noindent (2) For each $i\in \{1,2,\dots ,N\}$, the function $r_{i}:\mathbb{R}\to \mathbb{R}$ is continuous, strictly increasing and $r_{i}(0)=0$. \noindent (3) For each $i\in \{1,2,\dots ,N\}$, the function $l_{i}$ satisfies \begin{itemize} \item[(i)] $l_{i}$ is even, continuous and $l_{i}(0)=0$; \item[(ii)] $\lim_{s\to +\infty} \frac{l_{i}(s)}{s^p }=\frac{a_{i}}{p}$ \item[(iii)] $l_{i}\in C^{1}(\mathbb{R)}$ and $l_{i}'(s)=\begin{cases} \frac{sr_{i}'(s)}{p-1} & \text{if }s\neq 0 \\ 0 & \text{if } s=0. \end{cases}$ \item[(iv)] $l_{i}$ is strictly increasing in $\mathbb{R}^{+}$. \end{itemize} \end{proposition} \begin{proof} (1) By (A0), (A1), it is clear that the operator $A$ is defined from $W_{0}^{1,p}(\Omega )$ to $W^{-1,p'}(\Omega)$, we have \[ \langle Au,v\rangle =\sum_{i=1}^N \int_{\Omega }A_{i}(\nabla u)\frac{% \partial v}{\partial x_{i}}dx\quad \forall u,v\in W_{0}^{1,p}(\Omega ) \] and by (A1)(a), we verify easily that $A$ is strictly monotone. (2) Let $i\in \{1,\dots ,N\}$. By (A0) and (A2)-(b), $r_{i}$ is continuous and $r_{i}(0)=0$ , in the end $r_{i}$ is strictly increasing. Indeed, let $(s,s')\in \mathbb{R}^2$ such that $s\neq s', $ we have \[ (r_{i}(s)-r_{i}(s'))(s-s')=\sum_{i=1}^N (A_{i}(\xi )-A_{i}(\xi '))(\xi _{i}-\xi _{i}')>0 \] where $\xi =(0,\dots,s,\dots 0)$ and $\xi '=(0,\dots,s',\dots 0)$ (3)(i) By the foregoing, the function $l_{i}$ is even, continuous and $l_{i}(0)=0$ for every $i\in \{1,\dots,N\}$ (3)(ii) We show first that \begin{equation} \label{ast} \lim_{s\to +\infty } \frac{1}{s^p } \int_{0}^{s}r_{i}(t)dt=\frac{a_{i}}{p}. \end{equation} Let $\varepsilon >0$, by (A2)(c), there exists $\eta_{\varepsilon }=\eta $ such that $|r_{i}(s)-a_{i}s^{p-1}| \leq \varepsilon s^{p-1}$ for all $s\geq \eta $. Integrating from $\eta $ to $s$, we obtain \[ \big |\int_{0}^{s}r_{i}(t)dt-\int_{0}^{\eta }r_{i}(t)dt-\frac{a_{i}}{p} [s^p -\eta ^p ]\big|\leq \frac{\varepsilon }{p}[s^p -\eta ^p ]. \] Dividing by $s^p $ and letting $n\to +\infty $, we obtain \[ \lim_{s\to +\infty }\big|\frac{1}{s^p } \int_{0}^{s}r_{i}(t)dt-\frac{a_{i}}{p}\big|=0 \] i.e \eqref{ast} holds. Writing \[ \frac{l_{i}(s)}{s^p }=\frac{1}{p-1}\big\{ \frac{r_{i}(s)}{% s^{p-1}}-\frac{1}{s^p }\int_{0}^{s}r_{i}(t)dt\big\}. \] By \eqref{ast} and (A2)(c), we have $\lim_{s\to +\infty}\frac{l_{i}(s)}{s^p }=\frac{a_{i}}{p}$ (3)(iii) Since $r_{i}\in C^{1}(\mathbb{R}^{\ast })$, we have $l_{i}\in C^{1}(\mathbb{R}^{\ast })$ and $l_{i}'(s)=\frac{1}{p-1}sr_{i}'(s)$ for every $s\neq 0$. On the other hand, for $s\neq 0$, since $r_{i}$ is increasing and odd, we have \[ |\frac{l_{i}(s)}{s}|=\frac{1}{p-1}\big| r_{i}(s)-\frac{1}{s}\big|\int_{0}^{s}r_{i}(t)dt\leq \frac{2}{p-1}r_{i}(|s|). \] It results that $l_{i}'(0)$ exists and $l_{i}'(0)=0$. By (A2)-(d) we obtain $\lim_{s\to 0}l_{i}'(s)=\lim_{s\to 0}sr_{i}'(s)$. This proves that $l_{i}\in C^{1}(\mathbb{R})$. (3)(iv) is a consequence of (3)(iii) \end{proof} \begin{example} \label{exa1.3} \rm We give at first some examples for operators $A$ satisfying the hypothesis (A0), (A1) and (A2). (1) Let \[ Au=-\Delta _{p}u=-\sum_{i=1}^N \frac{\partial }{\partial x_{i}} (|\nabla u|^{p-2}\frac{\partial u}{\partial x_{i}}) \] Then we have $A_{i}(\xi )=|\xi |^{p-2}\xi _{i}$ for every $\xi =(\xi _{i})\in \mathbb{R}^N$. \\ $r(s)=r_{i}(s)=|s|^{p-2}s$ for every $s\in \mathbb{R}$ and every $i\in \{1,\dots,N\}$. \\ $l(s)=l_{i}(s)=\frac{1}{p}|s|^p $ for every $s\in\mathbb{R}$ and every $i\in \{1,\dots,N\}$. (2) Let \[ Au=-\Delta _{p}u-\Delta _{q}u=-\sum_{i=1}^N \frac{\partial }{\partial x_{i}}(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}}+|\nabla u|^{q-2} \frac{\partial u}{\partial x_{i}}) \] where $10$. Then we have $A_{i}(\xi )=(\varepsilon +|\xi |^2)^{\frac{p-2}{2}}\xi _{i}$ for every $\xi =(\xi _{i})\in \mathbb{R}^N$. \\ $r(s)=r_{i}(s)=(\varepsilon +|s|^2)^{\frac{p-2}{2}}s$ for every $s\in \mathbb{R}$ and every $i\in \{1,\dots,N\}$. \\ $l(s)=l_{i}(s)=(\varepsilon +|s|^2)^{\frac{p-2}{2}} \big(\frac{s^2}{p}-\frac{\varepsilon }{p(p-1)}\big) +\frac{1}{p(p-1)}\varepsilon ^{\frac{p}{2}}$ for every $s\in \mathbb{R}$ and every $i\in \{1,\dots,N\}$. \end{example} \section{Proof of Main Theorem} We consider the Dirichlet problem \eqref{P} where $\Omega $ is a bounded domain of $\mathbb{R}^N$, $N\geq 1$, $f$ is a continuous function from $\mathbb{R}$ to $\mathbb{R}$ and $h\in L^{\infty }(\Omega )$. Denote by $[AB]$ the smallest edge of an arbitrary parallelepiped containing $\Omega $. Making an orthogonal change of variables, we can always suppose that $AB$ is parallel to one of the axis of $\mathbb{R}^N$. So $\Omega \subset P=\prod_{j=1}^N [a_{j},bj]$ with, for some $i$, $|AB|=b_{i}-a_{i}=\min_{1\leq j\leq N} \{b_{j}-a_{j}\}$, a quantity which we denote by $b-a$. Denote by $l=l_{i}$, $r=r_{i}$, $F$ the primitive $F(s)=\int_{0}^{s}f(t)dt$ and \[ C_{p}=(p-1)\big\{ \frac{2}{b-a}\int_{0}^{1}\frac{dt}{(1-t^p )^{\frac{1}{p% }}}\big\} ^p . \] \begin{theorem} \label{theor} Assume \begin{equation}\label{F} \liminf_{s\to \pm \infty } \frac{F(s)}{l(s)}0$, and assume \begin{equation} \label{F+} \liminf_{s\to +\infty }\frac{F(s)}{l(s)}\| h\| _{\infty }$ and $i\in \{1,2,\dots,N\}$ such that $b=b_{i}$, $a=a_{i}$. By Lemma \ref{lem2.2} there exists $\beta _{1}:I\to \mathbb{R}$ such that $\beta _{1}\in C^{1}(I)$, $(r(\beta_{1}'(t)))'\in C(I)$ and \begin{gather*} -(r(\beta _{1}'(t)))'\geq f(\beta_{1}(t))+M \quad \forall t\in I, \\ \beta _{1}(t)\geq 0\quad \forall t\in I. \end{gather*} Writing $\beta (x)=\beta _{1}(x_{i})$ for all $x=(x_{i})\in \overline{\Omega }$, it is clear that $\beta \in C^{1}(\overline{\Omega })$, $A(\beta (x))=A(\beta _{1}(x_{i}))\in C(\overline{\Omega })$, and we have by (A2)(e): \begin{align*} A(\beta (x)) &=-\sum_{j=1}^n \frac{\partial}{\partial x_{j}}A_{j} (\nabla \beta (x)) \\ &=-\frac{\partial }{\partial x_{i}}(r_{i}(\beta _{1}'(x_{i}))) \\ &=-(r(\beta _{1}'(x_{i})))' \\ &\geq f(\beta _{1}(x_{i}))+M \\ &=f(\beta (x))+M \\ &\geq f(\beta (x))+h(x)\text{ \ \ a.e.}x\in \Omega \end{align*} The proof of Theorem \ref{theor} is thus complete. Next, we present the proof of Lemma \ref{lem2.2}. The proof of Lemma \ref{lem2.3} follows similarly. \textbf{First case.} Suppose $\inf_{s\geq 0} f(s)=-\infty $. Then there exists $\beta \in \mathbb{R}^{\ast }\mathbb{+}$ such that $f(\beta )<-M$, and the constant function $\beta $ provides a solution to the problem in Lemma \ref{lem2.2}. \noindent\textbf{Second case.} Suppose now $\inf_{s\geq 0} f(s)>-\infty $. Let $K>M$ such that $\inf_{s\geq 0} f(s)>-K+1$. Thus $f(s)+K\geq 1$ for all $s\geq 0$. Define $g:\mathbb{R}\to \mathbb{R}$ by \[ g(s)=\begin{cases} f(s)+K & \text{if } s\geq 0 \\ f(0)+K & \text{if } s<0 \end{cases} \] and denote $G(s)=\int_{0}^{s}g(t)dt$ for all $s$ in $\mathbb{R}$. It is easy to see that $g(s)\geq 1$ for all $s$ in $\mathbb{R}$ and that \[ 0\leq \liminf_{s\to +\infty } \frac{G(s)}{l(s)}= \liminf_{s\to +\infty } \frac{F(s)}{l(s)}0\,. \] Writing \[ s(\alpha )=\frac{1}{[\frac{c(l(\alpha )-l(\alpha t))}{\alpha ^p }] ^{1/p}}\frac{[c(l(\alpha )-l(\alpha t))]^{1/p}}{l^{-1}(c(l(\alpha ) -l(\alpha t)))} \] Letting $n\to +\infty $ and by the three limits above, we have \[ \lim_{\alpha \to +\infty} s(\alpha )=\frac{1}{c^{1/p}(1-t^p )^{1/p}} \] \end{proof} \begin{lemma} \label{lem2.5} For $d>0$, define \[ \tau _{G}(d)=\int_{0}^{d}\frac{ds}{l^{-1}[\frac{G(d)-G(s)}{p-1}]}\,. \] Then \[ \limsup_{d\to +\infty} \tau _{G}(d)\geq \Big(\int_{0}^{1}\frac{dt}{(1-t^p )^{1/p}}\Big) \Big(\frac{1}{p-1}\liminf_{s\to +\infty } \frac{G(s)}{l(s)}\Big)^{1/p}. \] In particular \eqref{F+} implies $\limsup_{d\to +\infty} \tau _{G}(d)>(b-a)/2$. \end{lemma} \begin{proof} Let $\rho $ be a positive number such that $\liminf_{s\to +\infty } \frac{G(s)}{l(s)}<\rho 0$ and consider the mapping $T_{d}$ defined by \[ T_{d}(u)=d-\int_{a}^{t}r^{-1}\Big( \Big[ \int_{a}^{\tau }g(u(s))ds\Big] ^{1/(p-1)}\Big) d\tau \] in the Banach space $C(I)$. Then $T_{d}$ has a fixed point. \end{lemma} \begin{proof} Clearly by Ascoli's theorem $T_{d}$ is compact. The proof of Lemma \ref {lem2.6} uses an homotopy argument based on the Leray Schauder topological degree. So $T_{d}$ will have a fixed point if the following condition holds: There exists $\rho >0$ such that $(I-\lambda T_{d})(u)\neq 0$ for all $u\in \partial B(0,\rho )$ for all $\lambda \in [0,1]$, where $\partial B(0,\rho )=\{u\in C(I);\| u\| _{\infty }=\rho \}$. To prove that this condition holds, suppose by contradiction that for all $n=1,2,\dots$ there exists $u_{n}\in \partial B(0,n)$, $ \lambda _{n}\in [0,1]$ such that: $u_{n}=\lambda _{n}T_{d}(u_{n})$. The latter relation implies \begin{equation} \label{e1} u_{n}=\lambda _{n}d-\lambda _{n}\int_{a}^{t}r^{-1} \Big(\Big[ \int_{a}^{\tau }g(u(s))ds\Big] ^{\frac{1}{p-1}}\Big) d\tau \end{equation} Therefore, $u_{n}\in C^{1}(I)$ and we have successively \begin{equation} \label{e2} \begin{gathered} u_{n}'(t)=-\lambda _{n}r^{-1}\Big( \Big[\int_{a}^{\tau }g(u(s))ds\Big] ^{\frac{1}{p-1}}\Big) <0 \quad \forall t\in ]a,b], \\ u_{n}'(a) = 0, \end{gathered} \end{equation} $\big( r[ \frac{u_{n}'(t)}{\lambda _{n}}]\big) '\in C(I)$ and \begin{equation} \label{e3} -\Big( r\Big( \frac{u_{n}'(t)}{\lambda _{n}} \Big) \Big) '=g(u_{n}(t))\quad \forall t\in I. \end{equation} Note that by \eqref{e2}, $u_{n}'(t)<0$ in $]a,b]$, so that $u_{n}$ is decreasing. Hence, for $n>d$, $u_{n}(b)=-n$. Multiplying the equation \eqref{e3} by $u_{n}'(t)$, we obtain \begin{equation} \label{e4} -\lambda _{n}\Big( l\Big( \frac{u_{n}'(t)}{\lambda _{n}}\Big) \Big) ' =\frac{1}{p-1}\frac{d}{dt}G(u_{n}(t)). \end{equation} Indeed \begin{align*} \Big( l\Big( \frac{u_{n}'(t)}{\lambda _{n}}\Big)\Big)' &= \Big[ l\Big( r^{-1}\Big( r\big( \frac{u_{n}'(t)}{\lambda _{n}}\big) \Big) \Big) \Big] ' \\ &= \big(l\circ r^{-1}\big)' \Big( r\big( \frac{u_{n}'(t)}{\lambda _{n}}\big) \Big) \Big( r\big( \frac{u_{n}'(t)}{\lambda _{n}}\big) \Big) ' \\ &= \frac{1}{p-1}\frac{u_{n}'(t)}{\lambda _{n}} \Big( r\big( \frac{u_{n}'(t)}{\lambda _{n}}\big) \Big) ' \end{align*} By \eqref{e4}, we have \[ \lambda _{n}\Big( l\big( \frac{u_{n}'(t)}{\lambda _{n}}\big) \Big) =\frac{1}{p-1}(G(\lambda _{n}d)-G(u_{n}(t)) \] and \[ -\frac{u_{n}'(t)}{\lambda _{n}l^{-1}\big[ \frac{G(\lambda _{n}d)-G(u_{n}(t))}{(p-1)\lambda _{n}}\big]}=1. \] Integrating from $a$ to $b$ and changing variable $s=u_{n}(t)$ \ $(u_{n}(a)=\lambda _{n}d$ and $u_{n}(b)=-n)$, we obtain \[ \int_{-n}^{\lambda _{n}d}\frac{ds}{\lambda _{n}l^{-1}\big[ \frac{G(\lambda _{n}d)-G(s)}{(p-1)\lambda _{n}}\big] }=b-a \] i.e. \[ \int_{0}^{\lambda _{n}d}\frac{ds}{\lambda _{n}l^{-1}\big[ \frac{G(\lambda_{n}d)-G(s)}{(p-1)\lambda _{n}}\big] } = b-a+\int_{0}^{-n}\frac{ds}{\lambda _{n}l^{-1} \big[ \frac{G(\lambda _{n}d)-G(s)}{(p-1)\lambda _{n}}\big] } \\ \geq 0 \] Since $G(s)=sg(0)$ for $s\leq 0$ and changing variable $s=-u$, we obtain \begin{equation} \label{e5} 0\leq (b-a)-\int_{0}^{n}\frac{ds}{\lambda _{n}l^{-1}\big[ \frac{G(\lambda _{n}d)-sg(0)}{(p-1)\lambda _{n}}\big] } \end{equation} Denote by $l(u)=\frac{G(\lambda _{n}d)-G(s)}{(p-1)\lambda _{n}}$ such that $l'(u)du=\frac{g(0)}{(p-1)\lambda _{n}}ds$ and $ds=\frac{\lambda _{n}}{g(0)}r'(u)udu$ for $u\neq 0$ and denote $\alpha _{n}=l^{-1}\big[ \frac{G(\lambda _{n}d)}{(p-1)\lambda _{n}}\big] $ and $\beta _{n}=l^{-1}\big[\frac{(G(\lambda _{n}d)+ng(0))}{(p-1)\lambda _{n}}\big]$. By \eqref{e5}, we obtain \begin{align*} 0 &\leq (b-a)-\int_{\alpha _{n}}^{\beta _{n}}\frac{r'(u)}{g(0)}du \\ &= (b-a)-\frac{1}{g(0)}r\big\{ l^{-1}\big[ \frac{G(\lambda _{n}d)-ng(0)}{(p-1)\lambda _{n}}\big] \big\} +\frac{1}{g(0)}r\big\{l^{-1}\big[ \frac{G(\lambda _{n}d)}{(p-1)\lambda _{n}} \big]\big\} . \end{align*} Since \[ \frac{G(\lambda _{n}d)-ng(0)}{(p-1)\lambda _{n}} \geq \frac{ng(0)}{(p-1)}, \quad \frac{G(\lambda _{n}d)}{(p-1)\lambda _{n}} \leq \frac{d}{p-1}\max_{0\leq s\leq d}|g(s)| \] and $r\circ l^{-1}$ is increasing, it results that \[ 0\leq (b-a)-\frac{1}{g(0)}r\big\{ l^{-1}\big[ \frac{ng(0)}{(p-1)\lambda_{n}}\big] \big\} +\frac{1}{g(0)}r\big\{ l^{-1}\big[ \frac{d}{p-1} \underset{0\leq s\leq d}{\max }|g(s)|\big] \big\} . \] Letting $n\to +\infty $, we get a contradiction. Let us denote by $u_{d}\in C(I)$ a fixed point of the mapping $T_{d}$ of Lemma \ref{lem2.6} \end{proof} \begin{lemma} \label{lem2.7} There exists $d>0$ such that $u_{d}(t)\geq 0$ for all $t\in [a,\frac{a+b}{2}[$. \end{lemma} \begin{proof} We know that $u_{d}$ is decreasing and that $u_{d}(a)=d$ for all $d>0$. Let us distinguish two cases. First if there exists $d>0$ such that $u_{d}(b)\geq 0$, then the conclusion of Lemma \ref{lem2.7} clearly follows. So we can assume that $u_{d}(b)<0$ for every $d>0$. Since $u_{d}(a)=d>0$, there exists $\delta _{d}\in ]a,b[$ such that $u_{d}(\delta _{d})=0$. It is clear that $u_{d}(t)\geq 0$ for all $t\in [a,\delta _{d}[$, and so it is sufficient to show that $\limsup_{d\to +\infty}\delta _{d}>\frac{a+b}{2}$. Processing as in the proof of Lemma \ref{lem2.6}, we obtain \[ -u_{d}'(t)\big\{ l^{-1}\big( \frac{G(d)-G(u_{d}(t))}{p-1}\big) \big\} ^{-1}=1. \] Integrating from $a$ to $\delta _{d}$ and changing variable $s=u_{d}(t)$, one gets \[ \tau _{G}(d)=\int_{0}^{d}\frac{ds}{l^{-1}\big[ \frac{G(d)-G(s)}{p-1}% \big] }=\delta _{d}-a, \] consequently \[ \limsup_{d\to +\infty} \delta _{d}>a+\frac{b-a}{2}=\frac{a+b}{2} \] \end{proof} \begin{proof}[Proof of Lemma \ref{lem2.2} continued]. Denoting $u_{d}(t)$ by $u(t)$, we have $u\in C^{1}(I)$, $(r(u'))'\in C(I)$ and \begin{gather*} -(r(u'))' = g(u(s)) \quad \forall t\in I, \\ u(t) \geq 0 \quad \forall t\in [a,\frac{a+b}{2}[, \\ u'(a)=0. \end{gather*} Define a function $\beta _{1}$ from $[a,b]$ to $\mathbb{R}$ by \[ \beta _{1}(t)=\begin{cases} u(\frac{3a+b}{2}-t)& \text{if } t\in [a,\frac{a+b}{2}], \\ u(t-\frac{b-a}{2}) & \text{if } t\in [\frac{a+b}{2},b]. \end{cases} \] We will show that this function $\beta $ fulfills the conditions of Lemma \ref{lem2.2}. To see this it is sufficient to show that \begin{itemize} \item[(a)] $\beta _{1}$ is nonnegative in $[a,b]$, \item[(b)] $\beta _{1}\in C^{1}([a,b])$, \item[(c)] $(r(\beta _{1}'(t)))'\in C([a,b])$ and $-(r(\beta _{1}'(t)))'=g(\beta _{1}(t))$ for all $t\in [a,b]$. \end{itemize} Proof of (a). If $a\leq t\leq \frac{a+b}{2}$, then $a\leq \frac{3a+b}{2}-t\leq \frac{a+b}{2}$, and if $\frac{a+b}{2}\leq t\leq b$, then $a\leq t-\frac{b-a}{2}\leq \frac{a+b}{2}$, so that the conclusion follows from the sign of $u$ on $[a,\frac{a+b}{2}]$. Proof of (b). $\beta _{1}\in C^{1}([a,\frac{a+b}{2}[)$, $\beta_{1}\in C^{1}(]\frac{a+b}{2},b])$, and moreover $\frac{d}{dt^{+}}\beta _{1}(\frac{a+b}{2})=u'(a)=0$ and $\frac{d}{dt^{-}}\beta _{1}(\frac{a+b}{2})=u'(a)=0$. Proof of (c). We know that $-(r(u'(t)))'=g(u(t))$ for $t\in [a,b]$, therefore \[ -(r(u'(t))=\int_{a}^{t}g(u(s))ds. \] If $a\leq t\leq \frac{a+b}{2}$ then $a\leq \frac{3a+b}{2}-t\leq \frac{a+b}{2}$, which gives \[ \beta _{1}(t)=u\big( \frac{3a+b}{2}-t\big) \quad \text{and}\quad \beta_{1}'(t)=-u'\big( \frac{3a+b}{2}-t\big). \] We obtain \[ -(r(u'(\frac{a+b}{2}-t))=r(\beta _{1}'(t)). \] The change of variable $u=\frac{3a+b}{2}-s$ yields \[ \int_{a}^{\frac{3a+b}{2}-t}g(u(s))ds=\int_{t}^{\frac{a+b}{2}} g(u(\frac{3a+b}{2}-s))ds, \] hence \[ r(\beta _{1}'(t))=\int_{t}^{\frac{a+b}{2}}g(\beta _{1}(s))ds\quad \forall t\in [a,\frac{a+b}{2}] \] and \[ -(r(\beta _{1}'(t)))'=g(\beta _{1}(t))\quad \forall t\in [a,\frac{a+b}{2}] \] The proof is similar for all $t\in [\frac{a+b}{2},b]$. \end{proof} \begin{thebibliography}{99} \bibitem{A} A. Anane, \emph{Simplicit\'{e} et isolation de la premi\`{e}re valeur propre du p-laplacien avec poids}, C.R. Acad. Sci. Paris Sr. I Math. \textbf{% 305} (1987), 725-728. \bibitem{AC} A. Anane and O. Chakrone; \emph{On a probem of lower limit in the study of nonresonance}, Abstract and Applied Analysis, Vol. 2, Nos. 3-4, 1997, pp. 43-53. \bibitem{B} E. di Benedetto, \emph{C$^{1,\alpha }$ local regularity of weak solutions of degenerate elliptic equations}, Nonlinear Anal. \textbf{7} (1983), 827-850. \bibitem{DG} D. G. de Figuerido and J. P. Gossez; \emph{Nonresonance below the first eigenvalue dor a semilinear elliptic problem}, Math. Ann. \textbf{281} (1988), 589-610. \bibitem{E} A. El Hachimi and J. P. Gossez; \emph{A note on a nonresonance condition for quasilinear elliptic problem, Nonlinear Anal}, \textbf{22} (1994), 229-236. \bibitem{EG} A. El Hachimi and J. P. Gossez; \emph{On a nonresonance condition near the first eigenvalue for a quasilinear elliptic problem}, Partial Differential Equations (Han-sur-Less, 1993), 144-151, Math. Res, $\neq $% \textbf{82}, Akademie-Verlag, Berlin, 1994. \bibitem{Fe} M. Fernandes, P. Omari and F. Zanolin; \emph{On the solvability of a semilineair two point BVP around the first eingenvalue}, Differential Integral Equations, \textbf{2} (1989), 63-79. \bibitem{F} A. Fonda, J. P. Gossez and F. Zanolin; \emph{On a nonresonance condition for a semi-linear elliptic problem}, Differential Integral Equations, \textbf{4} (1991), 945-951. \bibitem{H} A. Hammerstein, \emph{Nichtlineare Integralgleichungen nebst Anwendungen}, Acta Math. \textbf{54} (1930), 117-176. \bibitem{L} J. L. Lions, \emph{Quelques m\'{e}thodes de r\'{e}solutions des probl\`{e}mes aux limites non-lin\'{e}aires}, Dunod, Paris, Gauthier-Villars, (1969). \bibitem{S} D. Del Santo and P. Omari; \emph{Nonresonance conditions on the potential for a semilinear elliptic problem}, J. Differential Equations, \textbf{108} (1994), 120-138. \end{thebibliography} \end{document}