\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 73--81.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{73} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Leray Lions degenerated problem] {Leray Lions degenerated problem with general growth condition} \author[Y. Akdim, A. Benkirane, M. Rhoudaf \hfil EJDE/Conf/14 \hfilneg] {Youssef Akdim, Abdelmoujib Benkirane, Mohamed Rhoudaf} \address{Youssef Akdim \newline D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences Dhar-Mahraz\\ B.P 1796 Atlas F\`es, Maroc} \email{akdimyoussef@yahoo.fr} \address{Abdelmoujib Benkirane \newline D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences Dhar-Mahraz\\ B.P 1796 Atlas F\`es, Maroc} \email{abenkirane@fsdmfes.ac.ma} \address{Mohamed Rhoudaf \newline D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences Dhar-Mahraz\\ B.P 1796 Atlas F\`es, Maroc} \email{rhoudaf\_mohamed@yahoo.fr} \date{} \thanks{Published September 20, 2006.} \subjclass[2000]{35J15, 35J70, 35J85} \keywords{Weighted Sobolev spaces; truncations; $L^1$-version of Minty's lemma; \hfill\break\indent Hardy inequality} \begin{abstract} In this paper, we study the existence of solutions for the nonlinear degenerated elliptic problem $$ -{\mathop{\rm div}}(a(x,u,\nabla u)) = F\quad \text{in } \Omega, $$ where $\Omega$ is a bounded domain of $\mathbb{R}^N$, $N \geq 2$, $a:\Omega\times\mathbb{R}\times\mathbb{R}^N\to\mathbb{R}^N $ is a Carath\'eodory function satisfying the coercivity condition, but they verify the general growth condition and only the large monotonicity. The second term $F$ belongs to $W^{-1, p'}(\Omega, w^*)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \section{Introduction} Let $\Omega$ be a bounded open set of $\mathbb{R}^N$, $p$ be a real number such that $10$ independent of $u$, and moreover, the imbedding \begin{equation} X\hookrightarrow\hookrightarrow L^q(\Omega, \sigma), \label{h2.8} \end{equation} expressed by the inequality \eqref{h2.7} is compact. Note that $(X,\||.|\|_X)$ is a uniformly convex (and thus reflexive) Banach space. \begin{remark} \label{rmk3.1} \rm If we assume that $w_0(x)\equiv 1$ and in addition the integrability condition: There exists $ \nu \in ]\frac{N}{P},{+\infty}\, [\cap[\frac{1}{P-1},{+\infty}[$ such that \begin{equation} w_i^{-\nu} \in L^1(\Omega) \quad \mbox{for all } i=1,\dots,N. \label{2.4} \end{equation} Note that the assumptions \eqref{2.1} and \eqref{2.4} imply that, \begin{equation} \||u\|| = \Big({ \sum_{i=1}^N}{\int_{\Omega}|\frac{\partial u} {\partial x_i}|^p w_i(x)\,dx}\Big)^{1/p},\label{2.5} \end{equation} is a norm defined on $W_0^{1,p}(\Omega,w)$ and its equivalent to $(\ref{2.3})$ and that, the imbedding \begin{equation} W_0^{1,p}(\Omega,w) \hookrightarrow L^p(\Omega), \label{2.6} \end{equation} is compact for all $1\leq q\leq p_1^*$ if $p.\nu1$ and $s$ in $\mathbb{R}$, the truncation is defined as, $$ T_k(s)=\begin{cases} s & \mbox{if } s \leq k\\ k \frac{s}{|s|} & \mbox{if } |s|>k. \end{cases} $$ \section{Existence results} Consider the problem \begin{equation} \label{P} \begin{gathered} u \in W_0^{1,p}(\Omega,w),\quad F \in W^{-1,p'}(\Omega,w^*) \\ - \mathop{\rm div} (a(x,u,\nabla u)) = F\quad \text{in } \Omega \\ u = 0\quad \mbox{on } \partial \Omega. \end{gathered} \end{equation} \begin{definition} \label{def3.1} \rm A function $u$ in $W_0^{1,p}(\Omega,w)$ is a $T$-solution of \eqref{P} if \[ \int_{\Omega} a(x,u,\nabla u) \nabla T_k[u-\varphi] \,dx = \langle F, T_k[u-\varphi] \rangle \quad \forall \varphi \in W_0^{1,p}(\Omega,w) \cap L^{\infty}(\Omega). \] \end{definition} \begin{theorem} \label{thm1} Assume that (H1) and(H2). Then the problem \eqref{P} has at least one $T$-solution $u$. \end{theorem} \begin{remark} \label{rmk3.2} \rm Recall that an existence result for the problem \eqref{P} can be found in \cite{drabekk} by using the approach of pseudo monotonicity with some particular growths condition, that is $\gamma (s) = 1$. \end {remark} \begin{remark} \label{rmk3.3} \rm In \cite{drabek} the authors study the problem \eqref{P} under the strong hypotheses \begin{gather*} [a(x,s,\xi)-a(x,s,\eta)](\xi-\eta)>0,\quad \mbox{for all } \xi \neq \eta \in \mathbb{R}^N, \label{2.10}\\ |a_i(x, s,\xi)|\leq \beta w_i^{1/p}(x) [ k(x) + |s|^{p-1} + { \sum_{j=1}^N}w_j^{1/p'}(x)|\xi_j|^{p-1}], \label{2.11} \end{gather*} instead of $(\ref{2.8})$ and $(\ref{2.7})$ (respectively ). Then the operator $A$ associated to the problem \eqref{P} verifies the $(S^+)$ condition and is coercive. Hence $A$ is surjective from $W_0^{1,p}(\Omega,w)$ into its dual $W^{-1, p'}(\Omega, w^{*})$. \end{remark} \begin{proof}[Proof of Theorem \ref{thm1}] Consider the approximate problem \begin{equation} \label{Pn} \begin{gathered} u_n \in W_0^{1,p}(\Omega,w) \\ - \mathop{\rm div} (a(x,T_n(u_n),\nabla u_n)) = F. \end{gathered} \end{equation} under the following assumptions: \noindent {\bf Assertion (a): A priori estimates} The problem \eqref{Pn} has a solution by a classical result in \cite{drabekk}. Moreover, by using $u_n$ as test function in \eqref{Pn} we have, $$ \int_{\Omega} a(x,T_n(u_n),\nabla u_n).\nabla u_n \,dx = \int_{\Omega} Fu_n \,dx. $$ Thanks to assumption $(\ref{2.9})$, we have $$ \int_{\Omega} a(x,T_n(u_n),\nabla u_n).\nabla u_n \,dx \geq \alpha {\sum_{i=1}^N}{\int_{\Omega}|\frac{\partial u_n}{\partial x_i}|^p w_i(x) \,dx} = \alpha \||u_n\||^p $$ i.e., $$ \alpha \||u_n\||^p \leq \langle F,u_n \rangle \leq \|F\|_{-1,p',w^*} \||u_n\||, $$ which implies $\alpha \||u_n\||^p \leq C_1 \||u_n\||$ for $p >1$, with $C_1$ is a constant positive, then the sequence ${u_n}$ is bounded in $W_0^{1,p}(\Omega,w)$, thus, there exists a function $u \in W_0^{1,p}(\Omega,w)$ and a subsequence $u_{n_j} $ such that $u_{n_j}$ converges weakly to $u$ in $W_0^{1,p}(\Omega,w)$. \noindent{\bf Assertion (b)} We shall prove that for $\varphi$ in $W_0^{1,p}(\Omega,w) \cap L^{\infty}(\Omega)$, we have \begin{equation} \int_{\Omega} a(x,u_{n_j},\nabla \varphi) \nabla T_k[u_{n_j}-\varphi] \,dx \leq \langle F, T_k[u_{n_j}-\varphi] \rangle. \label{3.1} \end{equation} Let $n_j$ large enough $(n_j>k+\| \varphi \|_{L^{\infty}(\Omega)})$, we have by choosing $T_k[u_{n_j}-\varphi]$ as test function in \eqref{Pn} $$ \int_{\Omega} a(x,u_{n_j},\nabla u_{n_j}) \nabla T_k[u_{n_j}-\varphi] \,dx= \langle F, T_k[u_{n_j}-\varphi] \rangle, $$ i.e., \begin{align*} &\int_{\Omega} a(x,u_{n_j},\nabla u_{n_j}) \nabla T_k[u_{n_j}-\varphi] \,dx + \int_{\Omega} a(x,u_{n_j},\nabla \varphi) \nabla T_k[u_{n_j}-\varphi] \,dx \\ &- \int_{\Omega} a(x,u_{n_j},\nabla \varphi) \nabla T_k[u_{n_j}-\varphi] \,dx\\ &= \langle F, T_k[u_{n_j}-\varphi] \rangle, \end{align*} which implies \begin{equation} \begin{aligned} \int_{\Omega} [a(x,u_{n_j},\nabla u_{n_j})-a(x,u_{n_j},\nabla \varphi)] \nabla T_k[u_{n_j}-\varphi] \,dx& \\ + \int_{\Omega} a(x,u_{n_j},\nabla \varphi) \nabla T_k[u_{n_j}-\varphi] \,dx &= \langle F, T_k[u_{n_j}-\varphi] \rangle. \end{aligned}\label{3.2} \end{equation} Thanks to assumption $(\ref{2.8})$ and the definition of truncating function, we have, \begin{equation} \int_{\Omega} [a(x,u_{n_j},\nabla u_{n_j})-a(x,u_{n_j}, \nabla \varphi)]\nabla T_k[u_{n_j}-\varphi] \,dx \geq 0. \label{3.3} \end{equation} Combining $(\ref{3.2})$ and $(\ref{3.3})$, we obtain $(\ref{3.1})$. \noindent{\bf Assertion (c)} We claim that, $$ \int_{\Omega} a(x,u_{n_j},\nabla \varphi) \nabla T_k[u_{n_j}-\varphi] \,dx \to \int_{\Omega} a(x,u,\nabla \varphi) \nabla T_k[u-\varphi] \,dx $$ and that $$ \langle F, T_k[u_{n_j}-\varphi] \rangle \to \langle F, T_k[u-\varphi] \rangle. $$ Indeed, first, by virtue of $u_{n_j} \rightharpoonup u$ weakly in $W_0^{1,p}(\Omega,w)$, and \cite[Lemma 2.4]{Akdimaz}, we have \begin{equation} T_k(u_{n_j}-\varphi) \rightharpoonup T_k(u-\varphi) \quad \mbox {in } W_0^{1.p}(\Omega,w). \label{3.4} \end{equation} Which gives \begin{equation} \frac {\partial T_k}{\partial x_i}(u_{n_j}-\varphi) \rightharpoonup \frac {\partial T_k}{\partial x_i}(u_{n_j}-\varphi ) \quad \mbox{in }L^p(\Omega,w_i).\label{3.5} \end{equation} Note that $\nabla T_k(u_{n_j}-\varphi )$ is not zero on the subset $\{ x \in \Omega : |u_{n_j}-\varphi(x)|\leq k \}$ (subset of $ \{x \in \Omega : |u_{n_j}(x)|\leq k + \|\varphi \|_{L^\infty (\Omega )}\},$). Thus thanks to assumption $(\ref{2.7})$, we have \begin{equation} \begin{aligned} |a_i(x,u_{n_j},\nabla \varphi)|^{p'} w_i^{-p'/p} &\leq [k(x)+|u_{n_j}|^{p-1}+\gamma_0^{p-1} \sum_{k=1}^{N}| \frac{\partial \varphi }{\partial x_k}|^{p-1}w_k^{1/p'}]^{p'} \\ &\leq \beta [k(x)^{p'}+|u_{n_j}|^{p} + \gamma_0^{p}\sum_{k=1}^{N}| \frac{\partial \varphi }{\partial x_k}|^{p}w_k]. \end{aligned}\label{3.6} \end{equation} where $\{\gamma_0 = \mbox {sup}|\gamma(s)|, |s|\leq k+ \|\varphi\|_\infty$\}. Since $u_{n_j} \rightharpoonup u$ weakly in $W_0^{1,p}(\Omega,w)$ and $W_0^{1,p}(\Omega,w) \hookrightarrow \hookrightarrow L^q(\Omega,\sigma)$, it follows that $u_{n_j} \to u$ strongly in $L^q(\Omega,\sigma)$ and $u_{n_j} \to u$ a.e. in $\Omega$. Combining $(\ref{3.5})$, $(\ref{3.6})$ and By Vitali's theorem we obtain, \begin{equation} \int_{\Omega} a(x,u_{n_j},\nabla \varphi) \nabla T_k[u_{n_j}-\varphi] \,dx \to \int_{\Omega} a(x,u,\nabla \varphi) \nabla T_k[u-\varphi] \,dx. \label{3.7} \end{equation} Secondly, we show that \begin{equation} \langle F,T_k[u_{n_j}- \varphi] \rangle \to \langle F,T_k[u-\varphi] \rangle . \label{3.8} \end{equation} In view of $(\ref{3.4})$ and since $F \in W^{-1,p'}(\Omega,w^*)$, we get \begin{equation} \langle F,T_k[u_{n_j}- \varphi] \rangle \to \langle F,T_k[u-\varphi] \rangle . \label{3.9} \end{equation} The convergence $(\ref{3.7})$ and $(\ref{3.9})$ allow to pass to the limit in the inequality $(\ref{3.1})$, and to obtain \begin{equation} \int_{\Omega} a(x,u,\nabla \varphi) \nabla T_k[u-\varphi] \,dx \leq \langle F, T_k[u-\varphi] \rangle .\label{3.10} \end{equation} Now we introduce the following Lemma which will be proved later and which is considered as an $L^1$ version of Minty's lemma (in weighted Sbolev spaces). Result \eqref{3.10} and the following lemma complete the proof of Theorem \ref{thm1}. \end{proof} \begin{lemma} \label{lem3.1} Let $u$ be a measurable function such that $T_k(u)$ belongs to $W_0^{1,p}(\Omega,w)$ for every $k>0$. Then the following two statements are equivalent: \begin{itemize} \item[(i)] For every $\varphi $ in $W_0^{1,p}(\Omega,w)\cap L^\infty (\Omega)$ and every $k>0$, $$ \int_{\Omega} a(x,u,\nabla \varphi ) \nabla T_k[u-\varphi ] \,dx \leq \int_{\Omega}F\nabla T_k(u-\varphi )\,dx\,. $$ \item[(ii)] For every $\varphi $ in $W_0^{1,p}(\Omega,w)\cap L^\infty (\Omega)$ and every $k>0$, $$ \int_{\Omega} a(x,u,\nabla u) \nabla T_k[u-\varphi] \,dx = \int_{\Omega}F\nabla T_k(u-\varphi )\,dx\,. $$ \end{itemize} \end{lemma} \begin{proof} Note that (ii) implies (i) is easily proved adding and subtracting $$ \int_{\Omega} a(x,u,\nabla \varphi) \nabla T_k[u-\varphi] \,dx, $$ and then using assumption $(\ref{2.8})$. Thus, it only remains to prove that (i) implies (ii). Let $h$ and $k$ be positive real numbers, let $\lambda \in ]-1,1[$ and $\psi \in W_0^{1,p}(\Omega,w) \cap L^{\infty}(\Omega)$. Choosing, $\varphi = T_h(u-\lambda T_k(u-\psi)) \in W_0^{1,p}(\Omega,w) \cap L^{\infty}(\Omega)$ as test function in $(\ref{3.10})$, we have, \begin{equation} I \leq J,\label{3.11}\end{equation} with \begin{gather*} I = \int_{\Omega} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx,\\ J= \langle F,T_k(u-T_h(u-\lambda T_k(u-\psi)) \rangle . \end{gather*} Put $A_{hk} =\{x \in \Omega: |u-T_h(u-\lambda T_k(u-\psi))| \leq k \}$ and $B_h = \{x \in \Omega: |u-\lambda T_k(u-\psi)| \leq h \}$. Then, we have \begin{align*} I &= \int_{A_{kh} \cap B_h} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx\\ &\quad + \int_{A_{kh} \cap B_h^C} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx\\ &\quad + \int_{A_{kh}^C} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi))) \,dx. \end{align*} Since $\nabla T_k(u-T_h(u-\lambda T_k(u-\psi))$ is zero in $A_{kh}^C$, we obtain \begin{equation} \int_{A_{kh}^C} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx = 0. \label{3.12} \end{equation} Moreover, if $x \in B_h^C$, we have $\nabla T_h(u- \lambda T_k(u- \psi) = 0$ which implies, \begin{align*} &\int_{A_{kh} \cap B_h^C} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx\\ &=\int_{A_{kh} \cap B_h^C} a(x,u,0) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx. \end{align*} Now, thanks to assumption $(\ref{2.9})$, we have $a(x,u,0) = 0$. Then \begin{equation} \int_{A_{kh} \cap B_h} a(x,u,0) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx = 0. \label{3.13} \end{equation} Combining $(\ref{3.12})$ and $(\ref{3.13})$, we obtain $$ I = \int_{A_{kh} \cap B_h} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx, $$ letting $h \to + \infty$, we have \begin{equation} A_{kh} \to \{x , |T_k(u- \psi)| \leq k \} = \Omega, \label{3.14} \end{equation} and $B_h \to \Omega$ which implies \begin{equation} A_{kh} \cap B_h \to \Omega. \label{3.15} \end{equation} Then \begin{equation} \begin{aligned} &\lim_{h\to +\infty}\int_{A_{kh} \cap B_h} a(x,u,\nabla T_h(u-\lambda T_k(u-\psi)) \nabla T_k(u-T_h(u-\lambda T_k(u-\psi)) \,dx\\ &=\lambda \int_ \Omega a(x,u, \nabla(u- \lambda T_k(u- \psi) \nabla T_k(u- \psi) \,dx. \end{aligned} \label{3.16} \end{equation} On the other hand, we have $$ J = \langle F,T_k[u-T_h(u- \lambda T_k(u- \psi)] \rangle . $$ Then \begin{equation} \lim_{h\to +\infty} \langle F,T_k(u-T_h(u- \lambda T_k(u- \psi)) \rangle = \lambda \langle F,T_k[u- \psi] \rangle .\label{3.17} \end{equation} Together $(\ref{3.16})$, $(\ref{3.17})$ and passing to the limit in $(\ref{3.11})$, we obtain $$ \lambda \int_ \Omega a(x,u, \nabla(u- \lambda T_k(u- \psi) \nabla T_k(u- \psi) \,dx \leq \lambda \langle F,T_k[u- \psi] \rangle $$ for every $\psi \in W_0^{1,p}(\Omega,w)\cap L^{\infty}(\Omega)$, and for $k > 0 $. Choosing $\lambda > 0 $ dividing by $\lambda$, and then letting $\lambda$ tend to zero , we obtain \begin{equation} \int_ \Omega a(x,u, \nabla u) \nabla T_k(u- \psi) \,dx \leq \langle F,T_k[u- \psi] \rangle. \label{3.18} \end{equation} For $\lambda < 0 $ , dividing by $\lambda$, and then letting $\lambda$ tend to zero , we obtain \begin{equation} \int_ \Omega a(x,u, \nabla u) \nabla T_k(u- \psi) \,dx \geq \langle F,T_k[u- \psi] \rangle , \label{3.19} \end{equation} Combining $(\ref{3.18})$ and $(\ref{3.19})$, we conclude that $$ \int_ \Omega a(x,u, \nabla u) \nabla T_k(u- \psi) \,dx = \langle F,T_k[u- \psi] \rangle . $$ This completes the proof of Lemma. \end{proof} \begin{remark}\label{rem4}\rm (1) The fact that the terms $T_n(u_n)$ is introduced in \eqref{Pn} and also $\gamma(s)$ is a continuous function, allow to have a weak solution for the a approximate problem. \noindent (2) Since in the formulation of the problem \eqref{P}, we have $a(x,u,\nabla u)$ instead of $a(x,T_n(u_n),\nabla u_n)$, then the term $a(x,u,\nabla u)$ may not belongs in $L^{p'}(\Omega,w^*)$ and not in $L^1(\Omega)$, thus the problem \eqref{P} can have a T-solutions but, not a weak solution. For example if $w_i\equiv 1$, $i=1,\dots,N$ and $a(x,u,\nabla u)=e^{|u|}|\nabla u|^{p-2}\nabla u$, with $\gamma(s)=e^{|s|}$ then \begin{gather*} u \in W_0^{1,p}(\Omega,w), F \in W^{-1,p'}(\Omega,w^*) \\ -\mathop{\rm div}(e^{|u|}|\nabla u|^{p-2}\nabla u)=F\quad \text{in } \Omega \\ u = 0\quad \mbox{on } \partial \Omega. \end{gather*} our simple problem has a $T$-solutions, but not a weak solution \end{remark} \begin{example} \label{exa4} \rm Let us consider the special case: $$ a_i(x,\eta,\xi) = e^{|s|}w_i(x)|\xi_i|^{p-1} \mathop{\rm sgn}(\xi_i) \quad i=1,\dots,N , $$ with $w_i(x)$ is a weight function $(i=1,\dots,N)$. For simplicity, we shall suppose that $w_i(x)=w(x)$, for $i=1,\dots,N-1$, and $w_N(x) \equiv 0$ it is easy to show that the $a_i(x,s,\xi)$ are Caracth\'eodory function satisfying the growth condition $(\ref{2.7})$ and the coercivity $(\ref{2.8})$. On the other hand the monotonicity condition is verified. In fact, \begin{align*} &\sum_{i=1}^{N}(a_i(x,s,\xi)-a_i(x,s,\hat \xi))(\xi_i-\hat \xi_i)\\ &= e^{|s|}w(x)\sum_{i=1}^{N-1}(|\xi_i|^{p-1} \mathop{\rm sgn}(\xi_i)-|\hat \xi_i|^{p-1} \mathop{\rm sgn}(\hat \xi_i))(\xi_i-\hat \xi_i) \geq 0 \end{align*} for almost all $x\in \Omega$ and for all $\xi, \hat \xi \in \mathbb{R}^N$. This last inequality can not be strict, since for $\xi \neq \hat \xi$ with $\xi_N \neq \hat \xi_N$ and $\xi_i = \hat \xi_i$, $i=1,\dots,N-1$. The corresponding expression is zero. In particular, let us use special weight functions $w$ expressed in terms of the distance to the bounded $\partial \Omega$. Denote $d(x)=\mathop{\rm dist}(x,\partial \Omega)$ and set $w(x)=d^\lambda(x),$ such that, \begin{equation} \lambda <\min(\frac{p}{N},p-1)\label{4.1} \end{equation} \end{example} \begin{remark} \rm Condition $(\ref{4.1})$ is sufficient for \eqref{2.4} to hold [see \cite{Kufner},pp 40-41]. \end{remark} Finally, the hypotheses of Theorem \ref{thm1} are satisfied. Therefore, for all $ F \in { \prod_{i=1}^N}L^{p'}(\Omega,w_i^*) $ the following problem has at last one solution: \begin{gather*} T_k(u) \in W_0^{1,p}(\Omega,w), \\ \int_{\Omega} { \sum_{i=1}^N} w_i(x)e^{|u|}| \frac{\partial u}{\partial x_i}|^{p-1} \mathop{\rm sgn} \big(\frac{\partial u}{\partial x_i}\big) \frac{\partial T_k (u - \varphi)}{\partial x_i} \,dx = \int_{\Omega}F T_k(u- \varphi) \,dx \\ \ \forall \varphi \in W_0^{1,p}(\Omega,w) \cap L^\infty(\Omega)\,. \end{gather*} \begin{thebibliography}{99} \bibitem{Abdellaou} B. Abdellaou and I. Peral, \emph{Existence and nonexistence results for quasilinear elliptic equations involving, The P-Laplaces}, Ann. Mat. Pure Applicata vol 182 (2003) 247-270. \bibitem{adams} R. Adams, \emph{Sobolev spaces}, AC, Press, New York, 1975. \bibitem{Akdimaz} Y. Akdim, E. Azroul, and A. Benkirane, \emph{Existence of Solution for quasilinear degenerated Elliptic Unilateral Problems}, Ann. Math. Blaise pascal vol 10 (2003) pp 1-20. \bibitem{Akdim} Y. Akdim, E. Azroul and A. Benkirane, \emph{Existence of solution for quasilinear degenerated elliptic equation}, Electronic J. Diff. Equ. Vol 2001 , No 71 (2001), pp 1-19. \bibitem{boccardo} L. Boccardo, L. Orsina, \emph{Existence Results for Dirichlet Problem in $L^1$ via Minty's lemma}, Applicable Ana. (1999) pp 309-313. \bibitem{bocardo} L. Boccardo, \emph{A remark on some nonlinear elliptic problems}, Electronic J. Diff. Equ. Conference 08, (2002) pp 47-52. \bibitem{Gallouet} L. Boccardo T. Gallouet, \emph{Nonlinear elliptic equations with right hand side measure,} Comm. Partial Differential Equations, 17 (1992), 641-169. \bibitem{drabekk} P. Drabek, A. Kufner and V. Mustonen, \emph{Pseudo-monotonicity and degenerated or singular elliptic operators}, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221. \bibitem{drabek} P. Drabek, A. Kufner and F. Nicolosi, \emph{Non linear elliptic equations, singular and degenerated cases}, University of West Bohemia, (1996). \bibitem{Kufner} A. Kufner, \emph{Weighted Sobolev Spaces}, John Wiley and Sons, (1985). \bibitem{lions} J. L. Lions \emph{quelques m\'ethodes de r\'esolution des probl\`eme aux limites non lineaires}, Dundo, Paris (1969). \end{thebibliography} \end{document}