2005-Oujda International Conference on Nonlinear Analysis, Oujda, Morocco. Electronic Journal of Differential Equations, Conference 14 (2006), pp. 73-81. Title: Leray Lions degenerated problem with general growth condition Authors: Youssef Akdim (Faculte des Sciences Dhar-Mahraz, Maroc) Abdelmoujib Benkirane (Faculte des Sciences Dhar-Mahraz, Maroc) Mohamed Rhoudaf (Faculte des Sciences Dhar-Mahraz, Maroc) Abstract: In this paper, we study the existence of solutions for the nonlinear degenerated elliptic problem $$ -{\mathop{\rm div}}(a(x,u,\nabla u)) = F\quad \mbox{in } \Omega, $$ where $\Omega$ is a bounded domain of $\mathbb{R}^N$, $N \geq 2$, $a:\Omega\times\mathbb{R}\times\mathbb{R}^N\to\mathbb{R}^N $ is a Caratheodory function satisfying the coercivity condition, but they verify the general growth condition and only the large monotonicity. The second term $F$ belongs to $W^{-1, p'}(\Omega, w^*)$. Published September 20, 2006. Math Subject Classifications: 35J15, 35J70, 35J85. Key Words: Weighted Sobolev spaces; truncations; $L^1$-version of Minty's lemma; Hardy inequality.