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FAST AND HETEROCLINIC SOLUTIONS FOR A SECOND
ORDER ODE

MARGARITA ARIAS

ABSTRACT. We present some results on the existence of fast and heteroclinic
solutions of an ODE connected with travelling wave solutions of a Fisher-
Kolmogorov’s equation. In particular, we present a variational characterization
of the minimum speed of propagation.

1. INTRODUCTION

Some chemical and biological systems can be modelled by an autocatalytic pro-
cess (see, e.g. [9,[10]). In many of these process the system can support propagating
wavefronts due to a combination of a reaction effect and a molecular diffusion. The
pioneering model in this framework is due to Fisher, [5], who suggested the equation

Ut = Ugy + u(l — u)

for studying the spatial spread of a favoured gene in a population. The simplest
generalization of that equation is the so called Fisher-Kolmogorov’s equation

where f is a given function with two zeroes, say v = 0 and v = 1, and positive on
]0,1[ so that u = 0 and w = 1 are the only two stationary states of . Equations
like arises in many problems suggested, for instance, by the classical theory of
population genetics or by certain flame propagation problems in chemical reactor
theory (see, e.g. [3]).

A travelling wavefront or travelling wave solution (t.w.s., in short) of is a
solution u(t, z) having a constant profile, that is, such that

u(t, z) = p(x —ct),

for some fixed ¢(&) (called the wave shape) and a constant ¢ (called the wave speed).
Specially important for the applications are t.w.s. connecting the two stationary
states, u =0 and u = 1.
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A simple calculation shows that if u(t,x) = p(z — ct) is a t.w.s. of (L.1)), then
the wave shape ¢ is a solution of the ODE

u' +cu' + f(u) =0. (1.2)

When a t.w.s. connects the stationary states, its corresponding wave shape is a
positive heteroclinic solution of that connects the equilibria 1 and 0, that is,
a solution of defined on R and satisfying

u(t) €]0,1[, VteR, lim wu(t)=1, lim wu(t)=0.
t——o0 t——+o00

There is a vast and rich body of literature dealing with the existence of t.w.s.
of connecting the stationary states, going from the pioneering work of Kol-
mogorov, Petrovski and Piskounoff [6], through the remarkable paper of Aronson
and Weinberger [4] up to more recent approaches (see [T} [7, [8, [12]).

It is well known (see, e.g. [4} [7]) that there exists a positive number, ¢*, such
that equation has a heteroclinic solution connecting 1 and 0 if and only if
c>c*.

In terms of the Fisher-Kolmogorov’s equation, that result says that none t.w.s.
of starting from the stationary state ©v = 1 and moving with speed less than
¢* reaches the stationary state uw = 0. ¢* is called the minimum propagation speed.

It is clear that the heteroclinic solution, if there exists, is strictly decreasing.
When f is differentiable in [0,1], then ¢* > 24/f/(0) since otherwise the origin
cannot acts as an attractor for positive solutions of equation . It is also proved
(see [4, [7, [1, 12]) that

<2 [ s fw)/u.
O0<u<1
with equality if f is concave in [0, 1].

On the other hand, the way that positive solutions of approach zero in
the phase plane, at least when f € C!, mimics the phase plane picture for the
corresponding linearization at the origin: There exists an extremal trajectory, T,
in the lower half-plane u’ < 0, that connects some point (1,a), a < 0, with (0,0)
whose slope at the origin is

—c — 2 _41(0
\, - “C—VE—0)
2
while every other trajectory in the region u > 0 approaching (0, 0) has slope at the
origin

—c+ /2 —4f(0)
Ao = .
2

Moreover, T, is extremal in the sense that trajectories below it stays bounded
away from the origin. Aronson and Weinberger (see [4], theorem 4.1) proved that
whenever ¢* > 24/f7(0), the extremal trajectory T,« is an heteroclinic solution
between 1 and 0.

This note is a brief summary of the conference given by the author on the ”Col-
loque International d’Analyse Non linéaire d’Oujda”, about some recent results
obtained in collaboration with J. Campos, A.M. Robles-Pérez and L. Sanchez deal-
ing with some variational problems whose solutions are in correspondence with T,
and that, in particular, let us give a variational characterization of ¢*. All the
presented results with their proofs can be found in [2].
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2. A VARIATIONAL CHARACTERIZATION OF FAST SOLUTIONS

We say that a solution u(t) of equation is a fast solution if its corresponding
trajectory is the extremal trajectory T.. Our purpose is to characterize these solu-
tions in variational terms. In order to do that, we express their speed in approaching
0 by means of an integrability condition:

Given ¢ > 0, we define the space

—+o0
H, :={u € Hy,.(0,+00) : / e (t)* dt < +o0 and u(+00) = 0}
0

with the norm [Ju|| = ( 0+°° et ()% dt) /2 This is a Hilbert space and if u € H,
u obviously tends “quickly” to 0 as ¢ — +o0.
We introduce the functional F : H., — R defined as

+o0 o 2
f(u):/o et (215) ~ P(u(®)dt, ueH.,

where F(u) := [, f(s)ds. When

(H) f :[0,1] — R4 is a Lipschitz function such that f(0) = 0 = f(1) and
flu)>0if0 <u <1,

one can prove that F is well defined, continuous and in fact differentiable in H..
A critical point of F is a solution of equation

(e“u) + e f(u) =0, (2.1)

or, equivalently, of . We call it a fast solution because of its integrability
property near +o0.

We prove that a potential minimizer of F in {u € H. : u(0) = 1} has to verify
0 <wu(t) <1, forallt>0,and v(t) <0, for all ¢ > 0, and that F has a minimum
in {u € H. : u(0) = 1} provided that there exist 0 < k < % with F(u) < ku?/2,
for all w € [0, 1]. Therefore, we have the following result.

Proposition 1. Assume (H) and there exist 0 < k < % so that F(u) < ku?/2, for
all w € [0,1]. Then equation (1.2) has a fast solution u € H, defined on t > 0 such
that w(0) =1 and v (t) <0, for all t > 0.

This result is particularly connected to the existence of heteroclinic solutions.
Indeed, one can prove that

If there exists a solution of defined on [0, 400), with u(0) =
1, u(t) >0, t >0 and u(t) — 0 as t — 400, then equation
has an heteroclinic solution.

So, the above proposition proves the existence of heteroclinic solutions whenever

212(2“) < %, for all u € [0,1]. Consequently,
2F 2
¢ <inf{c>0: (Qu) < Cz, Yu € [0,1]}.
u

This upper bound generalizes the estimate in [4].
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3. FAST HETEROCLINIC SOLUTIONS

After studying the fast solutions, we ask about heteroclinic connections between
the two equilibria v = 1 and u = 0 of equation . As in the previous section,
we begin by introducing an appropriate space to work.

Given ¢ > 0, we consider the space

“+oo
X.:={uc H}.(R): / ety (t)? dt < +oo and u(400) = 0},

—oo

+o0
with the norm [jull. := ([ e/ (t)? dt)l/Q.

We will say that a solution u, of the equation
u’ +cu' + Nf(u) =0, (3.1)

for some A > 0, is a fast heteroclinic solution if u € X, and u(—o0) = 1. Note that,
under assumption (H), any heteroclinic connection u(t) of between 1 and 0
has the property u(t) €]0, 1], v/(t) < 0, for all t € R.

Our aim now is to obtain a variational characterization of the smallest value of
A for which equation has a fast heteroclinic solution. We remark that u(t) is
a solution of for some X\ > 0 if and only if v(t) := u(t/v/)) is a solution of
with ¢ = ¢/ NsY

To do that, we introduce two real functionals on X,:

+oo

+o0 u ()2
Ac(u) := / GCt¥ dt; Be(u) := / e F(u(t)) dt,

— 00 — 00

and we will look for critical points of the restriction of A. to the set M, := {u €
X : Be(u) = 1}. (Note that M, is non empty as a consequence of the hypothesis
on f).
We define
Ae) :=inf{A.(u) : u € M_}.

It is easy to check that A. and B, are C'-functionals and M, is a C'-manifold. By
Lagrange multipliers rule, u € M, is a critical point of the restriction of A, to M,
if and only if w € M, is a solution of . Playing appropriately with we are
able to prove that

If A(c) is attained, then equation with A = A(c) has a fast
heteroclinic solution u € M, and A.(u) = A(c).

Remark 2. Given u € X, and a € R, the function v(t) := u(t — a) belongs to X,
and A.(v) = e“®A.(u), Be(u) = e®®Be(u). So, if u € X, is a critical point of A,
subject to the restriction B.(u) = 1, for all a > 0, the function v(t) := u(t — 22)
is a critical point of A. subject to the restriction B.(u) = «. Hence, condition

B.(u) =1 is a kind of normalization.

The previous result reduces the problem of the existence of fast heteroclinic
solutions to prove that A(c) is attained. Using a convenient closed convex set, we
show that \(c) is attained when F(u) = o(u?) as u — 0%.

Finally, working with an auxiliary functional defined on that closed convex set,
we obtain our main result.
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Theorem 3. Assume (H), and also that there exists f'(0) and

2

AMe) < ———. 3.2

© < 17 (32

Then, A(c) is attained. In particular, with A\ = A(¢) has a fast heteroclinic
solution.

Observe that our approach does not require differentiability except at the origin.
On the other hand, if there exists f/(0), working with truncations of the function
ce ¥ &0, k| c/2, one can prove

C2

4f'(0)°

Ale) <

and condition (3.2]) is almost necessary.
Moreover, as a consequence of this result, if there exists f/(0), A\(c) is positive.
A simple change of variable shows that A(c) = ¢2\(1). Hence, condition (3.2) is
independent of ¢ and it can be write
1
A1) < ——.
Wi

4. A VARIATIONAL CHARACTERIZATION OF c*

Theorem [3] let us obtain a variational characterization of the minimum propaga-
tion speed c*. As we have already said in the introduction,

¢* :=inf{c € R: (1.2)) has an heteroclinic solution.}

Mallaguti and Marcelli [§] proved that ¢* is in fact a minimum and it is positive. We
are going to relate this number with the function A\(c¢) introduced in the previous
section. In order to do that, let us define

!
A1)

Having in mind that A(c) < ﬁio) and \(c) = ¢2\(1), one has that ¢ > 2./ f/(0).
From Theorem if ¢ > 2,/ f'(0), equation {D with ¢ = ¢ has a fast heteroclinic

solution and, then, ¢ > ¢*. We can prove the following result.
Theorem 4. ¢ = c*.
The proof of this theorem is based on the following result.

Proposition 5. Assume that for some ¢ > 24/ f'(0) there exists an heteroclinic
solution. Then, ¢ = c* if and only if this heteroclinic is fast.

Remark that the previous proposition says:

At least when ¢ > 24/ f'(0), ¢* is the only value of the parameter
for which the heteroclinic connection between the two equilibria of

is fast.

The proof of this result follows by interpreting positive decreasing solutions of (|1.2))
as solutions of a suitable first order equation (as it has been done in [I1, [7]).
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A positive decreasing solution of (1.2]) has a trajectory in the second quadrant of
the (u,u')-plane. It is about looking at such a trajectory as the graph of a function
#, so that v’ = ¢(u). Putting y(u) = ¢(u)?, y is a solution of

% = 2¢y/y — 2f(u). (4.1)

A heteroclinic solution of corresponds to a positive solution of on |0, 1]
such that y(0) = y(1) = 0.
(Note that the Cauchy problem for equation has no uniqueness, but any
solution of can be continued as long as it remains positive.)
Summarizing, we obtain
+oo

= (inf{/+oo eCt%t)Q dt : u e Xy, / e F(u(t))dt = 1})71.

o e
Moreover, when ¢ > c¢* equation has an heteroclinic connection between its
equilibria though it is no fast, that is, the extremal trajectory T, is not an hetero-
clinic, but if ¢ = ¢* > 2,/f/(0), then T, connects the two equilibria.

When ¢* = 24/f'(0), has an heteroclinic connection between its equilibria,
but it is an open problem to know if it is or not a fast heteroclinic.
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