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SOLUTION OF A SPECTRAL PROBLEM FOR THE CURL
OPERATOR ON A CYLINDER

ROMEN SAKS, CARMEN JUDITH VANEGAS

Abstract. In this work, we give method to construct an explicit solutions to
one spectral problem with the curl operator on a bounded cylinder. The eigen-

values of this operator are square roots of eigen-values of Laplace operator

(with Dirichlet boundary condition) and zero. The eigen-functions related to
this problem are found using some results from complex analysis.

1. Introduction

The eigenvalue problem for the curl operator has important applications in
plasma physics, where the eigen-functions of the curl operator are called free-decay
fields. In [1] the free-decay fields have been found as the sum of a poloidal and
a toroidal vector fields using a quite particular method. In the theory of fusion
plasma, a free-decay field is called Taylor state which is considered the final state
that makes the energy a minimum in order to leave the plasma in equilibrium [5].
The free-decay fields play also an important roll to study turbulence in plasma
[2]. From a mathematical point of view, we have the studies in [8] and [4]. In [8]
spectral properties of curl operator in various function spaces is considered, while
in [4] the eigenvalue problem for the curl operator on periodic vector functions is
studied. From this same point of view, we study the spectrum of the curl operator
on a bounded cylinder

G := {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 < R2, 0 ≤ x3 ≤ l}.
We consider the eigenvalue problem

curlu = λu in G, (1.1)

u3

∣∣
∂G

= 0, u2

∣∣
γ

= 0, u1

∣∣
p

= 0 . (1.2)

Here u = (u1(x), u2(x), u3(x)) is a vector value function of a class C1(G) ∩ C(G),
∂G is the boundary of G, γ is the circle of radius R in the plane x3 = 0, and
p is an arbitrary fixed point taken on γ. In this work Cα(G) denotes the space
of α-Hölder continuous functions defined on G and Ck,α(G) denotes the space of
functions defined on G and possessing there (α-Hölder) continuous derivatives up
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to order k. The subspace of Ck,α(G) consisting of all the functions of compact
support in G \ ∂G will be denoted by Ck,α

o (G).

2. The eigenvalues of the curl operator

If λ = 0, curlu = 0 on G, and for wk ∈ C2
0 (G), k = 1, 2, . . . , then

uk = ∇wk(x),

uk

∣∣
∂G

= 0 ;

i.e., we have infinitely many solutions (0,∇wk), k = 1, 2, . . . of the eigenvalue
problem (1.1), (1.2).

For the case λ 6= 0 , we apply the divergence and curl operators to (1.1), and
obtain

div u = 0, and −∆uj = λ2uj , for j = 1, 2, 3.

For j = 3, let us consider the eigenvalue problem

−∆u3 = λ2u3 in G, (2.1)

u3 = 0 on ∂G. (2.2)

The solutions of this problem are well known. We shift to cylindrical coordinates
(r, θ, z) obtaining, after a straightforward calculation, the eigenvalues λ2

κ with

λκ =

√
ρ2

k,j

R2
+

m2π2

l2
, k = 0, 1, . . . ; j = 1, 2, . . . ; m = 1, 2, . . . , (2.3)

where κ = (k, j,m) is multi-index and ρk,j are the positive roots of the Bessel
function Jk(z).

The corresponding eigen-functions are

uκ
3 =

√
2√

lπ R |J ′k(ρkj)|
Jk(ρkj

r

R
) exp(ikθ) sin(

mπ

l
z). (2.4)

As λ2
κ > 0 the real and imaginary parts of uκ

3 are eigen-functions also and they
form the real orthonormal basis in the space L2(G).

We have the following result.

Theorem 2.1. The eigenvalue λ = 0 of problem (1.1)-(1.2) has an infinite multi-
plicity. In the case λ 6= 0, we find the eigenvalues ±λκ for (1.1)-(1.2) through the
eigenvalues λ2

κ of the problem (2.1)-(2.2)); and λκ is given by (2.3); the multiplici-
ties of λκ and −λκ are equal and finite. The spectrum for problem (1.1)-(1.2) is a
point spectrum and does not have finite limits point.

3. Determining eigen-functions via complex analysis

In this section, we obtain the eigen-functions of problem (1.1)-(1.2) using some
results from complex analysis. We write the eigen-functions as uκ = (uκ

1 , uκ
2 , uκ

3 ),
where uκ

3 has been already found in the former section and it is the real (or imagi-
nary) part of uκ

3 represented by the expression (2.4). To find uκ
1 and uκ

2 we consider
the complex function ω = uκ

2 + i uκ
1 . After this definition and substituting λ by λκ

and u3 by uκ
3 , we obtain the following complex form of (1.1):

∂3ω − iλκω = 2i∂zu
κ
3 (3.1)

2 Re ∂z̄ω − λκuκ
3 = 0 , (3.2)
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where z = x1 + i x2 and
∂

∂z
=

1
2
(

∂

∂x1
− i

∂

∂x2
)

.
The general solution of the differential equation (3.1) is

ω(x) = ωκ
0 (x) + ω1(x’) exp(iλκx3), x’ = (x1, x2) , (3.3)

where
ωκ

0 (x) = 2i

∫ x3

0

exp(iλκ(x3 − t))∂zu
κ
3 (x’, t)dt

and ω1(x’) is a function in C2,α which will be specified later on.
We observe that ωκ

0 (x) ∈ C2,α(G) if uκ
3 ∈ C3,α(G).

On the left side of (3.2) we replace ω by the particular solution ωκ
0 of (3.1) and

this side will be called V0. We will need the following lemma.

Lemma 3.1. If uκ
3 ∈ C3,α(G) is a solution of (2.1) (with λ2 = λ2

κ) on G then V0

satisfies, on G, the equation

∂2V0

∂x2
3

+ λ2
κV0 = 0. (3.4)

Moreover V0 can be represented in the form

V0(x) = Re(v0(x’) exp(iλκx3)), (3.5)

where

v0(x’) = (V0(x)− i

λκ

∂V0(x)
∂x3

)
∣∣
x3=0

= i(∂3u
κ
3 )

∣∣
x3=0

.

Proof. When we apply the matrix differential operator
(

∂2 −∂1

∂1 ∂2

)
, where ∂i = ∂

∂ xi

for i = 1, 2, to the first two equations of system curl u = λu, where λ = λκ,
u = (uκ

1 , uκ
2 , uκ

3 ) and ωκ
0 = uκ

2 + iuκ
1 , and taking into account (2.1), we obtain the

equations

−∂3(λ div u) + λ2V0 = 0
∂3V0 + λ div u = 0 .

Because V0 and ∂3V0 belong to the space C1,α(G), we obtain the desired result. �

Substituting the ω given by (3.3) in the left side of (3.2), we obtain

2 Re ∂z̄(ω1(x’) exp(iλκx3)) + V0 = 0.

Using representation (3.5), this last equation can also be written as

Re((2∂z̄ω1(x’) + v0(x’)) exp(iλκx3)) = 0,

from which it follows
2∂z̄ω1(x’) + v0(x’) = 0. (3.6)

Therefore, the solvability condition for the last equation of system (1.1) is

∂z̄ω1(x’) = −1
2
v0(x’) (3.7)

It is known [6] that the general solution of the inhomogeneous Cauchy-Riemann
system (3.7) is

ω1(x’) = Φ(z)− 1
2π

∫
D

v0(ξ, η)
z − ζ

dξdη, ζ = ξ + iη, (3.8)
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where D is the disc |x| < R, x3 = 0 and Φ(z) is a function in C2,α(D̄), holomorphic
in D which will be determined soon.

Taking (3.3) and (3.8) into account we have

ω(x) = ωκ
2 (x) + Φ(z) exp(iλκx3) (3.9)

where

ωκ
2 (x) = ωκ

0 (x) +
( 1

2π

∫
D

v0(ξ, η)
ζ − z

dξdη
)

exp(iλκx3)

which belongs to C2,α(G) ∩ Cα(Ḡ) [7]. If x3 = 0 the function ωκ
0 (x) = 0 by

definition. Since uκ
2 + iuκ

1 = ω(x), according to the solution (3.9), we obtain

Re Φ(z) = −Re ωκ
2 (x′, 0) on γ (3.10)

Im Φ(z)
∣∣∣
p

= − Im ωκ
2 (p), for p = (p1, p2, 0) ∈ γ. (3.11)

Now we use (3.10) and (3.11), and the Schwartz Formula [3] to specify the function
Φ(z):

Φ(z) = − 1
2πi

∫
γ

Re ωκ
2 (t, 0)

t + z

t− z

dt

t
+ i C1.

where

C1 = −Im
[
ωκ

2 (p′, 0) +
1

2πi

∫
γ

Re ωκ
2 (t, 0)

t + z

t− z

dt

t

]
, for z = p1 + ip2.

Therefore, we have

uκ
1 (x) = Im

[
ωκ

2 (x) + Φ(z) exp(iλκx3)
]

(3.12)

uκ
2 (x) = Re

[
ωκ

2 (x) + Φ(z) exp(iλκx3)
]
. (3.13)

Then we arrive to the following result.

Theorem 3.2. The components of the vector value eigen-function uκ of problem
(1.1)-(1.2) associated to a positive eigen-value λκ expressed by (2.3) are given by
(3.12), (3.13) and real (or imaginary) part of (2.4) respectively. Moreover, if we
replace λκ by −λκ in (3.3),..., (3.12), (3.13), we obtain the eigen-function uκ

− of
problem (1.1)-(1.2) associated to a negative eigen-value −λκ.

Thus, we have shown: on one side for any solution (λκ,uκ) of the problem (1.1)-
(1.2) a pair (νκ, vκ) is a solution of the problem (2.1) -(2.2), where νκ = λ2

κ and
vκ = (uκ, e3) = uκ

3 is a projection of the vector-function uκ on the ax of cylinder
e3. Evidently, if the pair (−λκ,uκ

−) is another solution of the problem (1.1)-(1.2) a
pair (νκ, vκ

−) is also a solution of the problem (2.1)- (2.2) (with same νκ = λ2
κ and

vκ
− = (uκ

−, e3) 6= vκ in general case).
On other side, for any solution (νκ, vκ) of the problem (2.1)- (2.2) (with a real

function vκ), we have constructed two solutions (λκ,uκ) and (−λκ,uκ
−) of the

problem (1.1)-(1.2) such that λκ =
√

νκ and (uκ, e3) = (uκ
−, e3) = vκ.

Now Theorem 2.1 follows from these relations and properties of eigen-values of
the problem (2.1)-(2.2) (see [7], f.e.).
Remark. Later (in 2004) we have calculated the components of eigen-functions
uκ and uκ

− directly using the series representation of (2.4), which in variables
(x1, x2, x3) has the form

uκ
3 = aκ(x1 + ix2)k sin(

mπ

l
x3)

∞∑
p=0

(−1)pρ2p
k,j(x

2
1 + x2

2)
p

(2R)2pp!(p + k)!
. (3.14)
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These results will be published.
A short review of the physical background for the eigenvalue problem of the curl

operator in a 3-dimensional bounded domain, with another boundary condition,
can be found in [8].
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