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SPECTRAL DECOMPOSITION THEOREM FOR COMPACT
SELF-ADJOINT OPERATORS IN PREHILBERT SPACES

HANZEL LÁREZ

Abstract. In this paper we found a complete orthonormal system for a pre-

hilbert space, in which each element can be expressed as a Fourier series in
terms of this system. This result is applied to solve second order differential

equations with initial or boundary conditions. In particular, it is applied to

Dirichlet problem and to Neumann problem.

1. Introduction

In this work, we show a method for finding a complete orthonormal system in
a prehilbert space, such that each element of this space can be developed as a
Fourier series in terms of am orthonormal system. This method can be applied to
find the solutions of differential equations of second order with initial or boundary
conditions: x′′+λx = 0 λ ∈ C and x(0) = x(l) = 0, l ∈ R. This Problem is known as
Sturm-Liouville Problem and it is part of a more general class, which can be solved
in terms of the following result which is known as the Spectral Decomposition
Theorem: If T is a linear, bounded, injective, self-adjoint and compact operator; in
a prehilbert space H of finite dimension, then H possesses a complete orthonormal
system {e1, . . . , en, . . . } (countable infinite and complete in the sense that H does
not possess another orthonormal system that contains it) such that: T (en) = λnen

and λn → 0 if n → ∞, λn 6= 0, for each n ∈ N. However, it can exist elements of
H that do not admit developments in Fourier series, in terms of this orthonormal
system, here we give an example of where this happens. The aim of this work is to
show that if we modify the Spectral Decomposition Theorem, and we change the
injective hypothesis for the super-injective hypothesis, then all element of H can
be developed in Fourier series in terms of this orthonormal system. Let L(H) be
the space of the linear and bounded mappings of H in itself, H a prehilbert space,
we say that an operator T ∈ L(H) is super-injective if for each Cauchy sequence
(xn)∞n=1 in H with T (xn) → 0, if n → ∞, we have that xn → 0. This last result
can be applied to Dirichlet Problems and to Neumann Problems.
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2. Statement of the Problem

Many problems of the Mathematical Physics are reduced to second order differ-
ential equations in partial derivatives where we can find frequency equations such
as

∂U

∂t
= α2 ∂2U

∂x2
(Heat Equation)

∂2U

∂t2
= c2 ∂2U

∂x2
(Wave Equation)

∂2U

∂x2
+

∂2U

∂y2
= 0 (Laplace Equation).

These three equations are often solved by separation of variables method (Fourier
Method), with appropriated condition of boundary, they give ordinary differential
equations of the type:

x′′ + λx = 0 λ ∈ Cx(0) = x(l) = 0 l ∈ R. (2.1)

This problem is known as The Sturm-Liouville Problem, which belongs to a more
general class that can be solved in terms of the Spectral Decomposition Theorem.

Theorem 2.1 (Spectral Decomposition Theorem). Let T ∈ L(H) be injective, self-
adjoint and compact, and let us suppose that dim(H) = +∞. Then H possesses a
countable infinite complete orthonormal system; {e1, . . . , en, . . . } : T (en) = λnen;
|λ1| ≥ |λ2| ≥ . . . (countable infinite and complete in the sense that H does not
possess another orthonormal system that contains it) and λn → 0 as n → ∞,
λn 6= 0, for each n ∈ N.

However, it may exist elements of H that do not admit development in Fourier
series, in terms of this orthonormal system. It is the case of the Example 3.1.

The aim of this work is to show that if we change the injectivity hypothesis
by the super-injectivity hypothesis, then every element of H can be developed in
Fourier series in terms of this orthonormal system. This last result can be applied
to the Dirichlet Problem and the Neumann Problem.

Even more, if we make this change, we obtain a result, which we apply to
(C, 〈·, ·〉C), to show that:{ 1√

2π

} ⋃ { 1√
π

cos(nt) : n ∈ N
} ⋃ { 1√

π
sin(nt) : n ∈ N

}
,

is an orthonormal basis of C, the set of the continuous and 2π-periodic functions
from R into itself. Also, each element of C can be developed in Fourier series in
terms of this basis.

Preliminaries. A prehilbert space is a pair (V, 〈·, ·〉), where V is a vector space
and 〈·, ·〉 is an inner product in V.

The following sets of functions with the ordinary operations of addition and
multiplication by scalars define vector spaces.

(a) C[a,b] = {v : [a, b] → R such that v is continuous}.
(b) C2

[a,b] = {v : [a, b] → R such that v has second continuous derivative }.
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In these spaces, are prehilbert spaces when endowed with inner products defined
as follows:

〈f, g〉C[a,b] =
∫ b

a

f(t)g(t)dt, (2.2)

〈f, g〉C2
[a,b]

= 〈f, g〉C[a,b] + 〈f ′, g′〉C[a,b] + 〈f ′′, g′′〉C[a,b] . (2.3)

For a prehilbert space H, let L(H) be the set of all linear and bounded operators
from H to H.

Definition 2.2. A linear operator T ∈ L(H) is said to be super-injective if for each
Cauchy sequence (xn)∞n=1 in H with T (xn) → 0 (as n →∞), we have that xn → 0.

The following results are proved in [5].

Corollary 2.3. Let T ∈ L(H) satisfy those hypothesis of Theorem 2.1. If H is a
Hilbert space, then:

(a) x =
∑∞

n=1〈x, en〉en for each x ∈ H.
(b) Im(T ) is dense in H.

Corollary 2.4. Let (xn)∞n=1 be a continuously differentiable sequence in C[a,b],
such that: (xn)∞n=1 and (x′n)∞n=1 are bounded in C[a,b]. Then (xn)∞n=1 possesses a
subsequence that converges uniformly [a, b].

Proposition 2.5. Let W be a subspace of a vector space V. W has finite codimen-
sion n if and only if there exists epimorphism T : V → Rn with ker(T ) = W.

Proposition 2.6. Let W be a subspace of a vector space V (W ⊆ V). Then there
exists a hyperplane H ⊆ V such that W ⊆ H.

Proposition 2.7. Let V be a normed space and let H be a hyperplane of V. Then
H is closed or H is dense.

Proposition 2.8. Let H be a prehilbert space and (en)∞n=1 an orthonormal system
of H and x ∈ H. If we define xn =

∑n
i=1〈x, ei〉ei, then (xn)∞n=1 is a Cauchy

sequence.

Proposition 2.9. Let V be an normed space and let T : V → R be a linear operator.
Then ker(T) is closed if and only if T is continuous.

3. Main Result

Next, we will build a prehilbert space H and a linear, bounded, compact, self-
adjoint and injective operator T : H → H, such that if (en)∞n=1 is the orthonormal
system of H given in Theorem 2.1, and we find x ∈ H such that

x 6=
∞∑

n=1

〈x, en〉en,

Example 3.1. Let

l2 =
{
f : N → R;

∞∑
n=1

(f(n))2 < ∞
}

and 〈f, g〉l2 =
∞∑

n=1

f(n)g(n).

Then (l2, 〈f, g〉l2) is a prehilbert space. Let E = l2. Then the operator

T0 : E → E; T0(f) =
∞∑

i=1

aif(i)ei, (ai)∞i=1 ∈ l2, ai 6= 0



68 H. LÁREZ EJDE/CONF/13

is compact, self-adjoint and injective.
• T0 is well-defined. We can show that T0(f) ∈ E for every f ∈ E, and that it is
equivalent to show that

∞∑
i=1

aif(i)ei ∈ E, implies
∞∑

i=1

(aif(i))2 < ∞.

In fact, as (ai)∞i=1 ∈ E, we have that
∑∞

i=1(ai)2 < ∞, then (ai)2 → 0 as i → ∞.
Therefore, there exists i0 ∈ N such that |ai|2 < 1 if i > i0. On the other hand

∞∑
i=1

(aif(i))2 =
i0∑

i=1

(aif(i))2 +
∞∑

i=1+i0

(aif(i))2

≤
i0∑

i=1

(aif(i))2 +
∞∑

i=1+i0

(f(i))2 < ∞,

because f ∈ E and
∑i0

i=1(aif(i))2 is finite.
• T0 is compact. Let [e1, . . . , en] be the space generated by {e1, . . . , en} and let
f ∈ E. We define

T0n(f) =
n∑

i=1

aif(i)ei; (ai)∞i=1 ∈ l2, ai 6= 0, i ∈ N.

Then, Im(T0n) ⊆ [e1, . . . , en].

(T0 − T0n)(f) =
∞∑

i=n+1

aif(i)ei.

Hence,

‖(T0 − T0n)(f)‖ = ‖
∞∑

i=n+1

aif(i)ei‖

≤
∞∑

i=n+1

‖aif(i)ei‖

≤
∞∑

i=n+1

|ai||f(i)|

≤ (
∞∑

i=n+1

|ai|2)1/2(
∞∑

i=n+1

|fi|2)1/2

≤ (
∞∑

i=n+1

|ai|2)1/2‖f‖.

That implies ‖(T0−T0n)(f)‖
‖f‖ ≤ (

∑∞
i=n+1 |ai|2)1/2. Then

‖T0 − T0n‖ ≤ (
∞∑

i=n+1

|ai|2)1/2

and T0n → T0, as n → ∞. So the operator T0n is linear and bounded. It has
finite range also (because, Im(T0n) ⊆ [e1, . . . , en]). Therefore, T0n is compact and
consequently T0 is compact.
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• T0 is injective. Let f ∈ E and assume that T0(f) = 0. Then
∞∑

i=1

aif(i)ei = 0, (ai)∞i=1 ∈ l2.

with ai 6= 0 for every i ∈ N. Hence, f(i) = 0 for every i ∈ N. Therefore, f ≡ 0.
• T0 is self-adjoint. Let f, g ∈ l2 and note that

T0(f) =
∞∑

n=1

aif(i)en = (aif(i))∞i=1 .

hence

〈T0(f), g〉 =
∞∑

n=1

anf(n)g(n) =
∞∑

n=1

ang(n)f(n) = 〈f, T0(g)〉.

Claim: Im(T0) $ E.
We will show that (ai)∞i=1 /∈ Im(T0). In fact, if (ai)∞i=1 ∈ Im(T0), then there

exists g ∈ E such that:

T0(g) =
∞∑

i=1

aig(i)ei =
∞∑

i=1

aiei.

Hence, g(i) = 1 for every i ∈ N. So, g /∈ E; therefore, (ai)∞i=1 /∈ Im(T0) and
Im(T0) & E.

Let F ⊆ E be a hyperplane in E which contains Im(T0) (see Proposition 2.6).
Then F is dense in E. Therefore, Im(T0) $ E is dense in E (see Corollary 2.3) and
there exists a linear operator σ : E → R with ker(σ) = F (see Proposition 2.5),
hence σ is discontinuous, because ker(σ) is dense, see (Proposition 2.7 and 2.9).

In E× R we define the inner product

〈(x, λ), (y, α)〉 = 〈x, y〉E + λα.

With this product E× R is a Hilbert space. Let

H =
{
(x, σ(x)) ∈ E× R : x ∈ E

}
.

In this way, H is a subspace of E×R. Then H is dense in E×R. Let φ : E×R →
R;φ(x, t) = σ(x)−t. Then φ is discontinuous, because σ is discontinuous. Therefore,
ker(φ) is dense in E×R, and this implies that H is not a Hilbert space. The operator

T : H → H, T ((x, σ(x))) = (T0(x), 0)

is well-defined, linear, compact, self-adjoint, and injective.
• In order to prove that T is well-defined, let us note that T0 ⊆ F = ker(σ). In this
way σ(T0(x)) = 0, that means, (T0(x), 0) ∈ H. Hence, T is well-defined.
• T is compact. Let (zn)∞n=1 be a bounded sequence in H, this means that (zn)∞n=1 =
{((xn), φ(xn))}∞n=1 with (xn)∞n=1 ⊆ E and {σ(xn)}∞n=1 ⊆ R. Hence (xn)∞n=1 is
bounded (characterization of the product space). T is compact because T0is com-
pact.
• T is self-adjoint. Let z = (x, σ(x)) and w = (y, σ(y)) in H. Then

〈z, T (w)〉 = 〈(x, σ(x)), T (y, σ(y))〉
= 〈(x, σ(x)), T0(y), 0〉
= 〈x, T0(y)〉E + σ(x)0

= 〈x, T0(y)〉E.
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Similarly, it is proved that

〈T (z), w〉 = 〈T0(x), y〉E.

• T is injective. Let z = (x, σ(x)) be in H such that T (z) = 0 this means that
T (x, σ(x)) = 0. Hence T0(x) = 0, then x = 0, and T0 is injective. Now σ(x) = 0
because σ is linear. Therefore z = 0. Hence T is injective.

We have obtained that the operator T satisfies the hypotheses of the Spectral
Decomposition Theorem, then H possesses a countable infinite orthonormal basis
{e1, . . . , en, . . . }, such that T (en) = λnen and λn → 0 as n → ∞, λn 6= 0. Hence
en = (un, σ(un)), un ∈ E and σ(un) ∈ R, and by definition

T [(un, σ(un))] = (T0(un), 0) = λn(un, σ(un)).

Hence λnσ(un) = 0, this means that σ(un) = 0 for every n ∈ N. Therefore, any
element of H of the form (x, σ(x)), with σ(x) 6= 0, can be developed in a Fourier
series in terms of this orthonormal system.

Now we state the main result in this paper.

Theorem 3.2. Let H be a prehilbert space and let T ∈ L(H) be compact, self-
adjoint, and super-injective operator. If dim(H) = ∞, then H possesses a countable
infinite orthonormal basis {e1, . . . , en, . . . }, such that T (en) = λnen; |λ1| ≥ |λ2| ≥
. . . and λn → 0 as n →∞, λn 6= 0. Also, for each x ∈ H we have

x =
∞∑

n=1

〈x, en〉en.

In particular, Im(T ) is dense in H.

Proof. For x ∈ H, let

xn =
n∑

i=1

〈x, ei〉ei.

According to proposition 2.8, (xn)∞n=1 is a Cauchy sequence. Then (T (xn))∞n=1

is a Cauchy sequence. Since T is compact, (T (xn))∞n=1 possesses a convergent
subsequence and thus (T (xn))∞n=1 is also convergent; say T (xn) → z.
Claim: z = T (x).

By the properties of the inner product and the linearity of T we have

〈T (xn), ej〉 = 〈T (
n∑

i=1

〈x, ei〉ei), ej〉 for each j ∈ N

=
n∑

i=1

〈x, ei〉〈T (ei), ej〉

=
n∑

i=1

〈x, ei〉〈λiei, ej〉

=
n∑

i=1

〈x, λiei〉〈ei, ej〉

= 〈x, λiej〉 if 1 ≤ j ≤ n.

Thus
〈T (xn), ej〉 = 〈x, λjej〉 = 〈x, T (ej)〉 = 〈T (x), ej〉, 1 ≤ j ≤ n;
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hence
lim

n→∞
〈T (xn), ej〉 = 〈 lim

n→∞
T (xn), ej〉 = 〈T (x), ej〉 ∀j ∈ N.

Therefore,

〈z, ej〉 = 〈T (x), ej〉 ∀j ∈ N,

〈z − T (x), ej〉 = 0 ∀j ∈ N.

Hence z − T (x) = 0 which implies z = T (x).
On the other hand since T (xn) → T (x), T (xn − x) → 0 (because T is linear

and bounded). Thus (xn − x) → 0, (thus (xn − x) is a Cauchy sequence and T is
super-injective) this implies xn → x.

It just remains to prove that Im(T ) is dense in H. Let y ∈ H (y =
∑∞

i=1〈y, ei〉ei).
Put

tn =
n∑

i=1

〈y, ei〉ei.

Then tn → y, as n →∞. On the other hand

tn =
n∑

i=1

〈y, ei〉ei =
n∑

i=1

〈y, ei〉λiT (ei) = T [
n∑

i=1

1
λi
〈y, ei〉ei].

This implies tn ∈ Im(T ), thus y ∈ Im(T ). Therefore, Im(T ) is dense in H. �

Example 3.3. As an application of Theorem 3.2, we show that{ 1√
2π

} ⋃ { 1√
π

cos(nt) : n ∈ N
} ⋃ { 1√

π
sin(nt) : n ∈ N

}
, (3.1)

is an orthonormal basis for (C, 〈·, ·〉C). First we proved that that the mapping

L : C2 → C, L(x) = x′′ − x,

is an topologyc isomorphism, where C denotes the set of continuous and 2π−periodic
functions from R into itself and C2 denotes the set of the 2π-periodic functions from
R into itself, which possess continuous second derivative.

Proposition 3.4. The composition T = (I ◦ L−1) : C → C(L : C2 → C), L(x) =
x′′ − x, I : C2 → C, I(x) = x) is compact, self-adjoint, and injective. In addition,
µ ∈ R is an eigenvalue of T if and only if there is a not trivial µ ∈ C2 such that
µu′′ = (1 + µ)u.

In addition, we can observe that the operator T , given in the previous proposition
is super-injective. We prove this using some results of Lebesgue Theory, which are
presented after some definitions.

A property which is certain, except for a set of measure zero, it is said to be
valid almost everywhere (a.e.).

The space of all functions f for which |f |p is Lebesgue integrable on [a, b]; in
other words

∫ b

a
|f(x)|pdx < ∞ with p ≥ 1, is denoted by Lp

[a,b] (or Lp, if no confusion
arises). Every space Lp is complete.

Corollary 3.5. Let fn be a sequence of functions that possesses continuous first
derivative, and such that:

(1) fn converges uniformly to 0 on [a, b]
(2) If f ′n converges to h in L2.
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Then h = 0 a.e.

With this result, we will prove that the operator T is super-injective. Let (xn)∞n=1

be a Cauchy sequence in C such that

T (xn) → 0 on C as n →∞. (3.2)

Put
yn = T (xn) = (I ◦ L−1)(xn) = L−1(xn).

Hence, xn = L(yn). Since is L an isomorphism, there exists k > 0, such that

‖L(yn)‖C ≥ k‖(yn)‖C2 .

Then
‖L(yn)− L(ym)‖C = ‖L(yn − ym)‖C ≥ k‖yn − ym‖C2 .

This implies
‖xn − xm‖C ≥ k‖yn − ym‖C2 .

Hence, (yn)∞n=1 is a Cauchy sequence in C2. Thus, (y′n)∞n=1 and (y′′n)∞n=1 are Cauchy
sequence in C.

On the other hand, because L is continuous, there exists M > 0, such that

‖L(yn)‖C ≤ M‖yn‖C2 .

this implies
‖xn‖C ≤ M‖yn‖C2 .

Now we just must to prove that yn → 0 in C2, and thus xn → 0 en C. In order to
do it, we prove that y′n → 0, and y′′n → 0 in C.

First, we prove that y′n → 0 in C. In fact, as (yn)∞n=1 and (y′n)∞n=1 are Cauchy
sequences in C, then (yn)∞n=1 and (y′n)∞n=1 are bounded in C. In virtue of Corollary
2.4, there exists w in C and a subsequence (ynk

)∞nk=1
of (yn)∞n=1, such that (ynk

)∞nk=1

converges uniformly to w in [0, 2π]. Consequently, (ynk
)∞nk=1

converges uniformly
to w in C. As (yn)∞n=1 is a Cauchy sequence in C, then (yn)∞n=1 converges also in
C and it converges to w.
Claim: (yn)∞n=1 converges uniformly to w.

Assume that there exists ε0 > 0 and a subsequence (vn)∞n=1 of (yn)∞n=1 such that

‖vn − w‖∞ > ε0 for all k ∈ N. (3.3)
Since (vn)∞n=1 and (yn)∞n=1 are bounded in C, then according to Corollary 2.4, there
exists h in C and a subsequence (wk)∞k=1 de (vn)∞n=1 which converges uniformly to h
on [0, 2π]. According to the argument above, we have vk → h in C. Hence, (yn)∞n=1

converges also to h. Therefore, h ≡ w. By (3.3),

‖h− w‖∞ > ε0

which is a contradiction. This proves the Claim and by (3.2) that w = 0.
Since (y′n)∞n=1 is a Cauchy sequence in C and L2 is complete, then there exists

z ∈ L2, such that y′n → z in L2, in virtue of Corollary 3.5, z ≡ 0, a.e., that means,
y′n → 0 in C.

To work with (y′n)∞n=1, instead of (yn)∞n=1 we have that (y′′n)∞n=1 is a Cauchy
sequence in C. By applying the Corollary 3.5, we obtain that y′′n → 0. Thus, we
have proved that (xn)∞n=1 converges to 0 in C. Therefore the operator T is super-
injective. Then according to the Theorem 3.2, each element of C can be developed
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in Fourier series, in terms of an orthonormal basis of C, and it will be shown that
it is given by (3.1).

On the other hand, let µ be an eigenvalue of T , then there exists u ∈ C, not
trivial, such that T (u) = µu. But

T (u) = (I ◦ L)−1(u) = L−1(u).

Hence u = µ(u′′ − u). This implies

µu′′ = (1 + µ)u.

Now, suppose that there exists a non trivial function u ∈ C2 such that

µu′′ = (1 + µ)u for some µ ∈ R.

Hence, it is obtained that T (u) = µu.
The previous proposition says that to determine the eigenvalues of T , we must

find those values α ∈ R, for which there exists a non trivial u ∈ C2, such that
u′′ = αu.
Remarks. 1. Let α = k2. Then

u = c1e
kt + c2e

−kt

u′ = k(c1e
kt − c2e

−kt)

Because u ∈ C2, we have u(0) = u($) and u′(0) = u′($); therefore,

c1 + c2 = c1e
k2$ + c12e−k2$,

c1 − c2 = c1e
k2$ − c12e−k2$

which is a homogenous system having only trivial solutions for c1, c2.
2. If u′′ = 0 and u ∈ C2, then u is constant. In fact, u has the form u(t) = A + Bt
for some constants A, B ∈ R. Since u is 2π−periodic, we obtain that B = 0.
3. If α = −k2 < 0 and there exists u ∈ C2 such that u′′ = −k2u, then k is
an integer and u(t) = A sin(kt) + B cos(kt) for certain constants A, B ∈ R. Put
u1(t) = sin(kt) u2(t) = cos(kt), then u′′i = k2ui for i = 1, 2.

Let u : R → R be of class C2 such that u′′ = −k2u. Define

ϕ(t) = k−1[u′(0) sin(kt) + u(0)] cos(kt).

Then
ϕ′′ = −k2ϕ, ϕ(0) = u(0), ϕ′(0) = u′(0).

To reason as we did above, let

u(t) = A sin(kt) + B cos(kt),

where A, B ∈ R are constants. An expression of the type A sin(kt) + B cos(kt), is
2π-periodic if and only if k is an integer.

To conclude we have that the problem: x′′ = αx, with x ∈ C2 has a non trivial
solution u if and only if α = −k2, where k ≥ 0 is an integer. Consequently, the
eigenvalues of T are µ = −1/(1 + k2), with k a positive integer. In addition,

N(µk) = {A sin(kt) + B cos(kt) : A, B ∈ R}

for k ≥ 0, and
N(µ0) =

{
u ∈ C2

[0,2π] : u is constant
}
.
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In particular, dim[N(µ0)] = 1 and dim[N(µk)] = 2 if k ≥ 1. On the other hand,
the constant 1/

√
2π is an orthonormal basis of N(µ0), while{

[1/
√

π]cos(kt), [1/
√

π] sin(kt)
}

is an orthonormal basis of N(µk) for k ≥ 1. Thus, from the proof of Theorem 3.2,
we obtain that{ 1√

2π

} ⋃ { 1√
π

cos(nt) : n ∈ N
} ⋃ { 1√

π
sin(nt) : n ∈ N

}
,

is an orthonormal basis of C.
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