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FUNCTIONAL DIFFERENTIAL EQUATIONS OF THIRD ORDER

TUNCAY CANDAN, RAJBIR S. DAHIYA

ABSTRACT. In this paper, we consider the third-order neutral functional dif-
ferential equation with distributed deviating arguments. We give sufficient
conditions for the oscillatory behavior of this functional differential equation.

1. INTRODUCTION

The aim of this paper is to develop some oscillation theorems for a third-order
equations of the form

[a(O)b(O)[x(t) + e()z(t = 7] + / p(t,&)z(o(t,£))dE = 0, (1.1)

where
(a) aft), a(t), b(t), c(t) € C([to, 20), (0,00)), 0 < et) <1, a'(t) 2 0;
() [ b‘(if)—ooandf —t—oo
(c) p(t, &) € C([to,0) X [a b], [0,00)), and p(t, &) is not eventually zero on any

half line [t,,, 00) X [a,b], t, > to
(d) o(t,€) € C([to,00) X [a,b], R), o(t,&) + T < t, o(t,&) is nondecreasing with
respect to ¢ and &, respectively, and iminf;_, o eca,p) 0(, &) = 00

As is customary, a solution of equation (|1.1)) is called oscillatory if it has arbitrarily
large zeros. Otherwise, it is called nonoscillatory.
Oscillatory solutions of third-order differential equations

(r2(0)(r1 ()2 (1)) + a(t) f(z(g(1))) = h(?),
and
(O@)(a(t)y' (1)) + (@ (t)y) + a(t)y = f(t)

were considered in [I0] and [4], respectively. We refer to [I]-[3] and [7]-[9] for more
studies. However, our results are more general with different proofs than those
works.
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2. MAIN RESULTS
Let Do = {(t,s)[t > s > to}, D ={(t,s)[t > s > 1o}
Theorem 2.1. Suppose that there exist %o(t,a) and H(t,s) € C'(D;R), h(t,s) €
C(Do; R) and p(t) € C'([to, ), (0,00)) such that
(i) H(t,t) =0, H(t,s) >0
(ii) HL(t,s) <0, and —HL(t,s) — H(t,s)

26— bt s)\/H(L,5).

p(s
If \
ngpﬂ(t{to) [ [ s060) [ pto 011~ ctots )1 .
IEVOLIER OB |
1o(s.a) ~ T)o"(s.0)
and

/: {/ta (;(i;([ Cjz))] /abp(n £)dédr = oco. (2.2)

Then every solution of is oscillatory or tends to zero as t — oco.

Proof. Assume, for the sake of contradiction, that equation (|1.1)) has an eventually
positive solution x(t). That is, there exists a tg > 0 such that z(t) > 0 for t > t,.
If we put

y(t) = z(t) + c(t)x(t — 1) (2.3)
then, from 7 we obtain

la(®) b)Y )] = - / p(t, € (o (t,€))de. (2.4)

Since x(t) is an eventually positive solution of and o(t,£) — oo as t — o0,
¢ € la,b|, there exist a t; > tp such that z(t — 7) > 0 and a:( (t,€)) > 0 for
t > t1, £ € [a,b]. Thus in view of and (2.4), we have y(t) > 0, t > t;
and [a(t)[b(t)y' (1)) <0, ¢ > t;. Thus, y(t), v'(¢), (b(t)y'(t)) are monotone and
eventually one-signed. We want to show that there is a to > ¢ such that
@)y (1) >0, t=>ts. (2.5)

Suppose on the contrary, (b(t)y'(t))’ < 0. Since the right hand side of (2.4) is
not identically zero and a(t) > 0, it is clear that there exists a t3 > to such that
a(ts3)(b(t3)y'(t3))’ < 0. Then we have

a(t)(b(t)y'(t))" < alts)(b(ts)y'(ts))" <0, t=>ts. (2.6)
Dividing (2.6) by a(t) and integrating from ¢3 to ¢, we obtain
b ds
O () = bty (1) < alta) Oy (1)) [ 5.
t3
Letting t — oo in (2.7)), and because of (b) we see that b(t)y'(t) — —oo as t — oo.

Thus, there is a t4 > t3 such that b(t4)y’(t4) < 0. By making use of (b(t)y’(t))’ < 0,
we obtain

(2.7)

b(t)y'(t) < b(ta)y'(ts) <0, t=>ta. (2.8)
If we divide (2.8) by b(t) and integrate from ¢4 to ¢t with ¢ — oo, the right-hand side
becomes negative. Thus, we have y(t) — —oo. But this is a contradiction, since
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y(t) is eventually positive, which therefore proves that (2.5) holds. Now we have
two possibilities: (I) y'(t) > 0 for t > to, (IT) y'(t) < 0 for t > ts.
(I) Assume y/(t) > 0 for t > to. From (2.3)), y(¢t) > z(t) for t > to and

( (t,8) Zylot, &) —7) 2 x(o(t,§) —7), t=t3=ts.
Thus from ) and .

[a(t —c(o(t,€))a(a(t,€) — 7))dE

- [
< [ ot E)ylo(t,)))de
A

(O = cla(t, E)y(o(t, §))dE

< —y(o(t, a))/ p(t, E)[1 — c(a(t, &))]dE.
Then, we have
[a()[b(®)y' ()] b .
yota) - / (t [ = elo(t, €)ldg
Now set o
Ly AOOOY @) (D)

y(o(t a))

It is obvious that z(t) > 0 for ¢ > ¢35 and the derivative of z(t) is

la® OOy ) Tet) | p(2)

) — v () — (
R TCTOM | R V(o (L)
’ p't) .\ ylo(t,a))o'(t a)z(t)
<—p(t) [ plt.Ol1 = clot.eN)de + LT 20 - LTI o
On the other hand, since (a(t)(b(t)y’(¢))’) <0 and a'(t) > 0, we find that .
(b(t)y'(1))" < 0. (2.10)
Using the above inequality and
b(t)y'(t) = b(T)y'(T) +/ (b(s)y'(s))"ds
T
we obtain
b(t)y'(t) = (t=T)b)y' (1)), t=T >ts.
Since (by')’ is non-increasing, we have
b(o(t,a))y'(o(t,a)) = (o(t,a) = T)(b(t)y'(t))', t=ts > ts.
Thus, we have
/ (o(t,a) = T)(b(t)y' (1))’
y'(o(t,a)) > o (t.a) . (2.11)

Then, substituting (2.11)) in (2.9)), it follows that

p(t)
p(t)

[o(t,a) — T)o'(t,a)z2(t)
a(t)p(t)b(o(t, a)

b
20 < o) [ DO - (ot e + 2D a(t) -
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and

b
o(t) / p(t €)1 — e(o(t, €))de < —2'(t) +

(2.12)
Multiplying both sides of equation (2.12)) by H(t, s), and integrating by parts from
T* to t, and using the properties (%) and (i), we obtain

/ H(t,s)p /a (s,8)[1 — e(o(s,&))]dEds

]
—/ Htsz’sds+/T Hts)ls()s

H(t,s)[o( T( a)z?(s)
/ ap o)

B t dH(t s)
= H(LT)AT) + | [ -

L H()o(s,) = T)o'(s,0)2%(s),
a()p(s)blo(s. )

S

+ H(t,s)pl(s)}z(s)ds

=H(t,T")2(T") — . h(t,s)\/H(t,s)z(s)ds
/ I ote) - Tl .00,
a(s)p(s)b(o(s,a
_ ' [U( Tlo'(s,a)
= H(t \/ a(5)b(o(5.2))p(5) z(s)
Va(s) a(s)p(s)b(o(s, a))h2(t, s)
*W (m} */T* Alo(s.0) ~ Tlo'(s.a)

t>T*>t4. As a result of this, we get

t b 2 s
[ [HC90t9) [ 905,000~ ctots,tag - O DI,

_ N (T*) — ! H(t,s)[a(s,a)fT]cr’(s,a)Z S
= HtT)(T7) /T M Aol ap(m) )

\/a ( p( )h(t,S)rd

2y/[o (s, '(s,a)
From (i7) H.(t,s) <0, we have H(t,ty) < H(t, tg), t4 > to and therefore
- ol e - A,
[ et i1 ~totneppas - AN

< H(t,t4)z(ts) < H(t,to)z(ts)

which implies that

t b 2 s
iy . [0t [ s = (e, )a - “GERIE
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=L [T [ o0 elots. e
_ ol ),
4[o(s,a) — T)o'(s,a)

ta s b
Ilj((ti’to)) p(s) / p(s, 1 — (o (s, €))]deds

< Z(t4) +

< o(ta) + / " o(s) / p(s, €)1 — e(o(s, €))]deds.

Now taking upper limits as t — oo, we obtain
1 t b

limsup ———— H(t,s)p(s 5,81 —c(o(s, d

mewp s | [H900) [ oo, 911~ clots, )1

(Aol )0,
4[o(s,a) — T)o’'(s,a)

ta b
st + [ o) [ psOlL - clols,)ldeds = M < oo,
to a
where M is a constant. Hence, this result leads to a contradiction to (2).
(IT) Assume y/(¢) < 0 for t > to. We integrate (1.1)) from ¢ to oo and since
a(t)(b(t)y'(t))" >0, t >t
we have
oo b
—a(t)(b(t)y' (1))’ +/ / p(r, §)x(o(r,§))dEdr < 0. (2.13)
t a
Now integrating (2.13]) from ¢ to oo after dividing by a(t) and using b(t)y’(t) < 0,

will lead to
w0+ [ ( | ‘fz)) / (o ededr <0, (2.14)

Dividing (2.14)) by b(¢) and integrating again from ¢ to co gives

/too [/t bC(ZZ)(L ac(lz))} /abp(r, §z(o(r,§))dédr < y(t) (2.15)
for t > t3 > t5. Replacing ¢ by t3 in (2.15), we get

[T ) [ momtteenacir <o a0

On the other hand, since y is monotonically decreasing function in the interval
[t3, 00], we get limy o0 y(t) = limy—oo[2(t) + c(t)z(t — 7)] = K > 0. Suppose that
K >0, then [z(t)+c(t)z(t—7)] > & > 0 for t > t4 > t5. From this we can observe
that there exists K such that z(o(r,£)) > K7 > 0. Thus from

/: {/ szl“f)(/ ;(lz))] /abp(r, €)K1dédr < y(ts).

From the previous equation, we have

/: [/t ﬂf)(/u %ﬂ /:p(r,f)dgdr < 0.
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This is a contradiction to (2.2)). Therefore, lim;_,oo[x(t) 4+ c(t)x(t — 7)] = 0. Then
lim; o x(t) = 0, so the proof is complete. O

Example 2.2. Consider the functional differential equation

1 " 2/tm 2—e™" 1/ 1
[2(t) + 5a(t — )] +/1/5ﬂ (652)696(15—5

so that a(t) = b(t) = 1, e(t) = &, 7 = m, p(t,€) = Z= % (1) =t - L,

o(t)=o(t,b) =t — T, p(s) =s, H(t,s) = (t — 5)2, h(t,s) = [2 — =],
We can see that the conditions of Theorem [2.1] are satisfied. It is easy to verify
that z(t) = e sint is a solution of this problem, which is oscillatory.

Theorem 2.3. Suppose that the conditions of Theorem and condition
holds, and

)dg =0

) .. . H(t,s)
0 < inf [Hmint g ] <o (@17)
1 " a(s)p(s)b(a(s, a) h*(t, 5)
h{risogp i fo)/ o (s.a) — TVo"(5.a) ds < oo. (2.18)

If there exists a function ¢(t) € C([to, o0)

7R)
t b
timsup g7z [ [F90(s) [ p5.1 = clos. )1

_a(s)p(s)b(o 57a))h2(t’8)}ds (2.19)
4[o(s,a) — T)]o’'(s,a)

satisfying

—~

and

/t [U(U,a) - T]U/(u’ Cl)dﬁ- (u)du = 00
) a(u)p(u)b(o"(u, 0)) ’ (2:20)
¢+ (u) = max{g(u), 0}.

Then every solution of functional differential equation s oscillatory or tends
to zero as t — 0.

Proof. Assume, for the sake of contradiction, that equation (1.1) has positive so-
lution, say x(t) > 0, t > tg. Then, proceeding as in the proof of Theorem [2.1| we
obtain

1 ! ’ a(s)p(s)b(a(s,a))h*(t, s)
i | [H900) [ .00 = ot €)1ae — LI g,
1 Yr [H(t,s)[o(s,a) — T]a’(s,a)z s
< 2(u) H(t ) / [\/ Ao (s.apls)
| V) G )
2\/ a'(s,a) ] s,

t>u>t > to. Thus taking upper limit as t — oo and using (2.19)), we have

(in 1 br [H(t,s)[o(s,a) — T]a’(s,a)z .
() 2 0(0) + it 7755 | [\/ W plolsap) )
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2\/

Then from the last mequahty we see that z(u) > ¢(u), and

hEEéEfH(l )/u [\/ (
Va(s) () (t,
+ 2\/ s,a) —Tlo'(s,a) }

< z(u) —¢(u) = M < o0,

\/a ] 2ds
(

t,s)[o(s,a) —Tlo'(s,a)
a(s)b(o(s,a))p(s)
5)

z(s)

(2.21)

ds

where M is a constant. On the other hand, we have

imin; ' H{t,s)[o(s,a) - T]U/(s’a)zs
lme@,u)/ [\/ (o Wlols. ) )

y Vol rd
)

S

e

H t,
> lim inf / 5
tl

t—oo

(2.22)
[o(s,a) — To’(s,a)2(s)

a(s)b(a(s,a))p(s)

tt /\/ (t,8)h(t,s)z ds} t>t.

ds

Let
_ 1 L H(t,s)[o(s,a) — T)o'(s,a)2%(s)
H(t,t) Jy, a(s)b(a(s, a))p(s)

ds, (2.23)

and

’02(

tt1 /\/ (t,s)h(t,s)z (2.24)

Thus, from (2:21) and (2.22)), we see that
lim inflvy (t) + v (t)] < 0. (2.25)

Now we want to show that

/OO [o(s,a) —T)o'(s,a)z>(s)
4 a(s)p(s)b(o(s,a))

ds < oo, t>t. (2.26)

Assume that

/°° [o0(s,a) —T)o'(s,a)z>(s)
t a(s)p(s)b(o(s,a))

Because of (2.17)), there exists a constant L > 0 such that

. .. . H(t,s)
nf [hﬂéﬁ‘f H{(t, to)

ds =00, t>t. (2.27)

>L>0. (2.28)

From (2.27) one can see that for any positive number A > 0, there exists a T' > t;
such that

/t [o(s,a) — T]UI(&G)ZZ(S)d t>T. (2.29)

s > é
a(s)p(s)b(o(s,a)) L
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On the other hand,
1 Y H(t,s)[o(s,a) — T)o'(s,a)2%(s) .
COSHEG LT aobesae)
1 ¢ . *lo(u,a) — T)o' (u,a)z?(u) s
= sy J, 1 e

g [ S [

|
% /T U [0(2?)1)_(5:/«5?’:()5) . d“} {‘aHf;t)} o

= gt Jo [

_AH(@T) S AH({T)
L H(t,ty) — LH(tt)’
Moreover, it follows from (2.28) that
.. . H(t,s)
R H ()
Therefore, there exists a to > T such that
H(t,T)
>L, t>ts. 2.31
Ht,tg) =7 =7 (2:31)

It follows from (2.30) and (2.31) that vi(t) > A, t > t2. Since A is arbitrary , we
have

{ OH(t,s)

Y

t>T > t.

>L>0, s>t

ltlim v1(t) = oc. (2.32)

Moreover from ([2.25)), there exists a convergence subsequence {t,}5° on [¢1, 00) such
that lim,, . t,, = 0o and

lim [v1(t,) + v2(tn)] = liminf[vy (¢) + va(t)] < 0. (2.33)
n—oo t—o0
As a result of (2.33]) there exists a positive integer n; and constant k such that
v1(tn) +va(tn) <k, n>ng

and from ([2.32)), we have

lim vy (t,) = oo. (2.34)
Thus (2.33) and (2.34) will give
lim wvy(t,) = —oo. (2.35)
n—oo

Moreover, for any € € (0, 1), there exists a positive integer ngo such that

Ug(tn)
o1 (in) +1<e n>ng;
then
tn
va( )<e—1<0, n > ng. (2.36)
’Ul(tn)
Thus (2.35) and (2.36) give
. UZ(tn)
lim vo(t,) = oo. 2.37
il Sy 2(tn) (2.37)
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By using the Cauchy-Schwartz inequality, we obtain

0 < vd(ty) = ﬁ / " \/H(tn,s)h(tn,s)z(s)dsr

L[ Ho(s0) ~ Tl (s0) 5
< [H(tn,tl) a(s)b(o (5, 0))p(s) (5)ds]
1 b a(s)p(s)b(o (s, a))h(ty, s) <

[H(tn,tl)/ [0(s, a) — T]o’ (5, a) ds|

B 1 tra(s)p(s)b(a(s,a))h?(tn, s)
= olto) | 37773 / e T %) tzh

and

’U%(tn) 1 in Q(S)p(s)b(o(s, a))hZ(tn, 5)
vi(tn) ~ {H(tn,tl) / [0(s,a) — T)o'(s,a) ds]- (2.38)

Using , we see that
1 1 _ H(tn,to) 1 < 1
H(tn,t1) ~ H(tn,T) H(tn,T) H(tn,to) = LH(tn,to)’
Therefore, we see from (2.38]) and (2.39 - ) that
Bltn) _ 1 / () (s, )W (tn,5) |
v1(tn) — LH(tn,to) [o(s,a) — T)o'(s,a)
Then, it follows from and - ) that

T>t. (239

(2.40)

L el es)
2, H(tn,to)/ o(s,a) ~To' ()
and then a(s)p(s)b(o (s, a) (1, )
1 L a(s)p(s)b h2(t,s _
h?ii‘jpmt to)/ [o(s,a) — T]o’ (s, a) s =00

which contradicts . Thus, using z(s) > ¢(s) with (2.26)), we obtain

> lo(s,a) — T]U (s,a)¢? (s)ds [o(s,a) — ] "(s,a)z2(s)ds
/t1 a(s)p(s)b(a’(s, a)) : /tl al)plsb(o (s, a)
which leads to a contradiction to . This completes the proof. O

Theorem 2.4. Suppose that the conditions of Theorem and conditions (2.2]),

, hold, in addition to
liminf ———— / H(t,s)p / p(8,8)[1 — c(o(s,§))]deds < oc. (2.41)
t—o00 H tO

If there exists a function ¢(t) € C([to, ), R) satisfying

1 b

it )/ /p )L - elo(s, €))]dg

_ als)p(s)blo(s, ))h?(t,sq i (242)
4[o(s,a) — T)]o’(s,a)

> ¢(u), u=>to,

then every solution of 1s oscillatory or tends to zero ast — 0o.
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Proof. Assume, for the sake of contradiction, that equation (1.1]) has positive solu-
tion, say z(t) > 0, t > to. It follows from (2.42) that

t b
otto) < limint s [ [ [ (s, )01 = eloto, )

ol )Pk},
4lo(s,a) —Tlo'(s,a)

L , (2.43)
< liminfi/t [H(t,s)p(s)/ (s, )1 — c(o(s,§))]dE|ds

t—o0 H(ta tO)

1 b a(s)p(s)b(a(s,a))h?(t, s) .
|, e e

— limsu
t—)oop H(t, to) o

Then, from (2.41]) and (2.43)

. P a(s)p(s)b(a(s,a))h?(t, s)
i sup 7o) /t i[0(s,a) — T]o'(s,q)

Thus ([2.18) holds in Theorem Since the remaining part of the proof is similar
to the proof of Theorem [2.3] it is omitted. O

ds < oo.
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