2004 Conference on Diff. Eqns. and Appl. in Math. Biology, Nanaimo, BC, Canada. Electronic Journal of Differential Equations, Conference 12, 2005, pp. 47–56. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

FUNCTIONAL DIFFERENTIAL EQUATIONS OF THIRD ORDER

TUNCAY CANDAN, RAJBIR S. DAHIYA

ABSTRACT. In this paper, we consider the third-order neutral functional differential equation with distributed deviating arguments. We give sufficient conditions for the oscillatory behavior of this functional differential equation.

1. Introduction

The aim of this paper is to develop some oscillation theorems for a third-order equations of the form

$$[a(t)[b(t)[x(t) + c(t)x(t-\tau)]']']' + \int_{a}^{b} p(t,\xi)x(\sigma(t,\xi))d\xi = 0, \tag{1.1}$$

where

- $\begin{array}{ll} \text{(a)} & a(t), a'(t), b(t), c(t) \in C([t_0, \infty), (0, \infty)), \ 0 < c(t) \leq 1, \ a'(t) \geq 0; \\ \text{(b)} & \int^\infty \frac{dt}{b(t)} = \infty \text{ and } \int^\infty \frac{dt}{a(t)} = \infty \\ \text{(c)} & p(t, \xi) \in C([t_0, \infty) \times [a, b], [0, \infty)), \ \text{and} \ p(t, \xi) \ \text{is not eventually zero on any} \end{array}$ half line $[t_m, \infty) \times [a, b], t_m \geq t_0$
- (d) $\sigma(t,\xi) \in C([t_0,\infty) \times [a,b], R), \ \sigma(t,\xi) + \tau \le t, \ \sigma(t,\xi)$ is nondecreasing with respect to t and ξ , respectively, and $\liminf_{t\to\infty} \int_{\xi\in[a,b]} \sigma(t,\xi) = \infty$.

As is customary, a solution of equation (1.1) is called oscillatory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory.

Oscillatory solutions of third-order differential equations

$$(r_2(t)(r_1(t)x'(t))')' + q(t)f(x(q(t))) = h(t),$$

and

$$(b(t)(a(t)y'(t))')' + (q_1(t)y)' + q_2(t)y' = f(t)$$

were considered in [10] and [4], respectively. We refer to [1]-[3] and [7]-[9] for more studies. However, our results are more general with different proofs than those works.

²⁰⁰⁰ Mathematics Subject Classification. 34K11, 34K15.

Key words and phrases. Oscillation theory; neutral equations.

^{©2005} Texas State University - San Marcos.

Published Arpil 20, 2005.

2. Main Results

Let
$$D_0 = \{(t, s) | t > s \ge t_0\}, D = \{(t, s) | t \ge s \ge t_0\}.$$

Theorem 2.1. Suppose that there exist $\frac{d}{dt}\sigma(t,a)$ and $H(t,s) \in C'(D;R)$, $h(t,s) \in C(D_0;R)$ and $\rho(t) \in C'([t_0,\infty),(0,\infty))$ such that

(i)
$$H(t,t) = 0, H(t,s) > 0$$

(ii)
$$H'_s(t,s) \leq 0$$
, and $-H'_s(t,s) - H(t,s) \frac{\rho'(s)}{\rho(s)} = h(t,s) \sqrt{H(t,s)}$.

If

$$\begin{split} &\limsup_{t\to\infty}\frac{1}{H(t,t_0)}\int_{t_0}^t \Big[H(t,s)\rho(s)\int_a^b p(s,\xi)[1-c(\sigma(s,\xi))]d\xi\\ &-\frac{a(s)\rho(s)b(\sigma(s,a))h^2(t,s)}{4[\sigma(s,a)-T]\sigma'(s,a)}\Big]ds=\infty \end{split} \tag{2.1}$$

and

$$\int_{t_3}^{\infty} \left[\int_{t_3}^r \frac{du}{b(u)} \left(\int_u^r \frac{dv}{a(v)} \right) \right] \int_a^b p(r,\xi) d\xi dr = \infty. \tag{2.2}$$

Then every solution of (1.1) is oscillatory or tends to zero as $t \to \infty$.

Proof. Assume, for the sake of contradiction, that equation (1.1) has an eventually positive solution x(t). That is, there exists a $t_0 \ge 0$ such that x(t) > 0 for $t \ge t_0$. If we put

$$y(t) = x(t) + c(t)x(t - \tau)$$

$$(2.3)$$

then, from (1.1), we obtain

$$[a(t)[b(t)y'(t)]']' = -\int_{a}^{b} p(t,\xi)x(\sigma(t,\xi))d\xi.$$
 (2.4)

Since x(t) is an eventually positive solution of (1.1) and $\sigma(t,\xi) \to \infty$ as $t \to \infty$, $\xi \in [a,b]$, there exist a $t_1 \geq t_0$ such that $x(t-\tau) > 0$ and $x(\sigma(t,\xi)) > 0$ for $t \geq t_1$, $\xi \in [a,b]$. Thus in view of (2.3) and (2.4), we have y(t) > 0, $t \geq t_1$ and $[a(t)[b(t)y'(t)]'] \leq 0$, $t \geq t_1$. Thus, y(t), y'(t), (b(t)y'(t))' are monotone and eventually one-signed. We want to show that there is a $t_2 \geq t_1$ such that

$$(b(t)y'(t))' > 0, \quad t \ge t_2.$$
 (2.5)

Suppose on the contrary, $(b(t)y'(t))' \leq 0$. Since the right hand side of (2.4) is not identically zero and a(t) > 0, it is clear that there exists a $t_3 \geq t_2$ such that $a(t_3)(b(t_3)y'(t_3))' < 0$. Then we have

$$a(t)(b(t)y'(t))' \le a(t_3)(b(t_3)y'(t_3))' < 0, \quad t \ge t_3.$$
 (2.6)

Dividing (2.6) by a(t) and integrating from t_3 to t, we obtain

$$b(t)y'(t) - b(t_3)y'(t_3) \le a(t_3)(b(t_3)y'(t_3))' \int_{t_3}^t \frac{ds}{a(s)}.$$
 (2.7)

Letting $t \to \infty$ in (2.7), and because of (b) we see that $b(t)y'(t) \to -\infty$ as $t \to \infty$. Thus, there is a $t_4 \ge t_3$ such that $b(t_4)y'(t_4) < 0$. By making use of $(b(t)y'(t))' \le 0$, we obtain

$$b(t)y'(t) \le b(t_4)y'(t_4) < 0, \quad t \ge t_4.$$
 (2.8)

If we divide (2.8) by b(t) and integrate from t_4 to t with $t \to \infty$, the right-hand side becomes negative. Thus, we have $y(t) \to -\infty$. But this is a contradiction, since

y(t) is eventually positive, which therefore proves that (2.5) holds. Now we have two possibilities: (I) y'(t) > 0 for $t \ge t_2$, (II) y'(t) < 0 for $t \ge t_2$.

(I) Assume y'(t) > 0 for $t \ge t_2$. From (2.3), $y(t) \ge x(t)$ for $t \ge t_2$ and

$$y(\sigma(t,\xi)) \ge y(\sigma(t,\xi) - \tau) \ge x(\sigma(t,\xi) - \tau), \quad t \ge t_3 \ge t_2.$$

Thus from (2.3) and (2.4),

$$\begin{split} \left[a(t)[b(t)y'(t)]'\right]' &= -\int_a^b p(t,\xi)[y(\sigma(t,\xi)) - c(\sigma(t,\xi))x(\sigma(t,\xi) - \tau)]d\xi \\ &\leq -\int_a^b p(t,\xi)[y(\sigma(t,\xi)) - c(\sigma(t,\xi))y(\sigma(t,\xi))]d\xi \\ &= -\int_a^b p(t,\xi)[1 - c(\sigma(t,\xi))]y(\sigma(t,\xi))d\xi \\ &\leq -y(\sigma(t,a))\int_a^b p(t,\xi)[1 - c(\sigma(t,\xi))]d\xi. \end{split}$$

Then, we have

$$\frac{[a(t)[b(t)y'(t)]']'}{y(\sigma(t,a))} \le -\int_a^b p(t,\xi)[1-c(\sigma(t,\xi))]d\xi.$$

Now set

$$z(t) = \frac{a(t)(b(t)y'(t))'\rho(t)}{y(\sigma(t,a))}.$$

It is obvious that z(t) > 0 for $t \ge t_3$ and the derivative of z(t) is

$$z'(t) = \frac{[a(t)(b(t)y'(t))']'\rho(t)}{y(\sigma(t,a))} + \frac{\rho'(t)}{\rho(t)}z(t) - \frac{[a(t)(b(t)y'(t))']\rho(t)y'(\sigma(t,a))\sigma'(t,a)}{y^2(\sigma(t,a))}$$

$$\leq -\rho(t) \int_a^b p(t,\xi)[1 - c(\sigma(t,\xi))]d\xi + \frac{\rho'(t)}{\rho(t)}z(t) - \frac{y'(\sigma(t,a))\sigma'(t,a)z(t)}{y(\sigma(t,a))}.$$
(2.9)

On the other hand, since $(a(t)(b(t)y'(t))')' \leq 0$ and $a'(t) \geq 0$, we find that

$$(b(t)y'(t))'' \le 0. (2.10)$$

Using the above inequality and

$$b(t)y'(t) = b(T)y'(T) + \int_{T}^{t} (b(s)y'(s))'ds,$$

we obtain

$$b(t)y'(t) \ge (t - T)(b(t)y'(t))', \quad t \ge T \ge t_3.$$

Since (by')' is non-increasing, we have

$$b(\sigma(t,a))y'(\sigma(t,a)) \ge (\sigma(t,a) - T)(b(t)y'(t))', \quad t \ge t_4 \ge t_3.$$

Thus, we have

$$y'(\sigma(t,a)) \ge \frac{(\sigma(t,a) - T)(b(t)y'(t))'}{b(\sigma(t,a))}.$$
(2.11)

Then, substituting (2.11) in (2.9), it follows that

$$z'(t) \le -\rho(t) \int_a^b p(t,\xi) [1 - c(\sigma(t,\xi))] d\xi + \frac{\rho'(t)}{\rho(t)} z(t) - \frac{[\sigma(t,a) - T] \sigma'(t,a) z^2(t)}{a(t)\rho(t)b(\sigma(t,a))},$$

and

$$\rho(t) \int_{a}^{b} p(t,\xi) [1 - c(\sigma(t,\xi))] d\xi \le -z'(t) + \frac{\rho'(t)}{\rho(t)} z(t) - \frac{[\sigma(t,a) - T]\sigma'(t,a)z^{2}(t)}{a(t)\rho(t)b(\sigma(t,a))}. \tag{2.12}$$

Multiplying both sides of equation (2.12) by H(t, s), and integrating by parts from T^* to t, and using the properties (i) and (ii), we obtain

$$\int_{T^*}^t H(t,s)\rho(s) \int_a^b p(s,\xi)[1-c(\sigma(s,\xi))]d\xi ds$$

$$\leq -\int_{T^*}^t H(t,s)z'(s)ds + \int_{T^*}^t \frac{H(t,s)\rho'(s)z(s)}{\rho(s)}ds$$

$$-\int_{T^*}^t \frac{H(t,s)[\sigma(s,a)-T]\sigma'(s,a)z^2(s)}{a(s)\rho(s)b(\sigma(s,a))}ds$$

$$= H(t,T^*)z(T^*) + \int_{T^*}^t \left[\frac{dH(t,s)}{ds} + H(t,s)\frac{\rho'(s)}{\rho(s)}\right]z(s)ds$$

$$-\int_{T^*}^t \frac{H(t,s)[\sigma(s,a)-T]\sigma'(s,a)z^2(s)}{a(s)\rho(s)b(\sigma(s,a))}ds$$

$$= H(t,T^*)z(T^*) - \int_{T^*}^t h(t,s)\sqrt{H(t,s)}z(s)ds$$

$$-\int_{T^*}^t \frac{H(t,s)[\sigma(s,a)-T]\sigma'(s,a)z^2(s)}{a(s)\rho(s)b(\sigma(s,a))}ds$$

$$= H(t,T^*)z(T^*) - \int_{T^*}^t \left[\sqrt{\frac{H(t,s)[\sigma(s,a)-T]\sigma'(s,a)}{a(s)b(\sigma(s,a))\rho(s)}}z(s)\right]$$

$$+ \frac{\sqrt{a(s)b(\sigma(s,a))\rho(s)}h(t,s)}{2\sqrt{\sigma(s,a)-T]\sigma'(s,a)}} ds + \int_{T^*}^t \frac{a(s)\rho(s)b(\sigma(s,a))h^2(t,s)}{4[\sigma(s,a)-T]\sigma'(s,a)}ds,$$

 $t > T^* > t_4$. As a result of this, we get

$$\begin{split} &\int_{T^*}^t \left[H(t,s)\rho(s) \int_a^b p(s,\xi)[1-c(\sigma(s,\xi))] d\xi - \frac{a(s)\rho(s)b(\sigma(s,a))h^2(t,s)}{4[\sigma(s,a)-T]\sigma'(s,a)} \right] ds \\ &= H(t,T^*)z(T^*) - \int_{T^*}^t \left[\sqrt{\frac{H(t,s)[\sigma(s,a)-T]\sigma'(s,a)}{a(s)b(\sigma(s,a))\rho(s)}} z(s) \right. \\ &+ \left. \frac{\sqrt{a(s)b(\sigma(s,a))\rho(s)h(t,s)}}{2\sqrt{[\sigma(s,a)-T]\sigma'(s,a)}} \right]^2 ds \, . \end{split}$$

From (ii) $H'_s(t,s) \leq 0$, we have $H(t,t_4) \leq H(t,t_0)$, $t_4 \geq t_0$ and therefore

$$\begin{split} & \int_{t_4}^t \Big[H(t,s) \rho(s) \int_a^b p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi - \frac{a(s) \rho(s) b(\sigma(s,a)) h^2(t,s)}{4 [\sigma(s,a) - T] \sigma'(s,a)} \Big] ds \\ & \leq H(t,t_4) z(t_4) \leq H(t,t_0) z(t_4) \end{split}$$

which implies that

$$\frac{1}{H(t,t_0)} \int_{t_0}^t \left[H(t,s) \rho(s) \int_a^b p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi - \frac{a(s) \rho(s) b(\sigma(s,a)) h^2(t,s)}{4 [\sigma(s,a) - T] \sigma'(s,a)} \right] ds$$

$$\begin{split} &= \frac{1}{H(t,t_0)} \Big[\int_{t_0}^{t_4} + \int_{t_4}^t \Big] \Big[H(t,s) \rho(s) \int_a^b p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi \\ &- \frac{a(s) \rho(s) b(\sigma(s,a)) h^2(t,s)}{4 [\sigma(s,a) - T] \sigma'(s,a)} \Big] ds \\ &\leq z(t_4) + \int_{t_0}^{t_4} \frac{H(t,s)}{H(t,t_0)} \rho(s) \int_a^b p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi ds \\ &\leq z(t_4) + \int_{t_0}^{t_4} \rho(s) \int_a^b p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi ds. \end{split}$$

Now taking upper limits as $t \to \infty$, we obtain

$$\begin{split} &\limsup_{t\to\infty}\frac{1}{H(t,t_0)}\int_{t_0}^t \Big[H(t,s)\rho(s)\int_a^b p(s,\xi)[1-c(\sigma(s,\xi))]d\xi\\ &-\frac{a(s)\rho(s)b(\sigma(s,a))h^2(t,s)}{4[\sigma(s,a)-T]\sigma'(s,a)}\Big]ds\\ &\leq z(t_4)+\int_{t_0}^{t_4}\rho(s)\int_a^b p(s,\xi)[1-c(\sigma(s,\xi))]d\xi ds=M<\infty, \end{split}$$

where M is a constant. Hence, this result leads to a contradiction to (2).

(II) Assume y'(t) < 0 for $t \ge t_2$. We integrate (1.1) from t to ∞ and since

$$a(t)(b(t)y'(t))' > 0, \quad t \ge t_2,$$

we have

$$-a(t)(b(t)y'(t))' + \int_{t}^{\infty} \int_{a}^{b} p(r,\xi)x(\sigma(r,\xi))d\xi dr \le 0.$$
 (2.13)

Now integrating (2.13) from t to ∞ after dividing by a(t) and using b(t)y'(t) < 0, will lead to

$$b(t)y'(t) + \int_{t}^{\infty} \left(\int_{t}^{r} \frac{du}{a(u)} \right) \int_{a}^{b} p(r,\xi)x(\sigma(r,\xi))d\xi dr \le 0.$$
 (2.14)

Dividing (2.14) by b(t) and integrating again from t to ∞ gives

$$\int_{t}^{\infty} \left[\int_{t}^{r} \frac{du}{b(u)} \left(\int_{u}^{r} \frac{dv}{a(v)} \right) \right] \int_{a}^{b} p(r,\xi) x(\sigma(r,\xi)) d\xi dr \le y(t)$$
 (2.15)

for $t \ge t_3 \ge t_2$. Replacing t by t_3 in (2.15), we get

$$\int_{t_0}^{\infty} \left[\int_{t_0}^{r} \frac{du}{b(u)} \left(\int_{u}^{r} \frac{dv}{a(v)} \right) \right] \int_{a}^{b} p(r,\xi) x(\sigma(r,\xi)) d\xi dr \le y(t_3). \tag{2.16}$$

On the other hand, since y is monotonically decreasing function in the interval $[t_3,\infty]$, we get $\lim_{t\to\infty}y(t)=\lim_{t\to\infty}[x(t)+c(t)x(t-\tau)]=K\geq 0$. Suppose that K>0, then $[x(t)+c(t)x(t-\tau)]\geq \frac{K}{2}>0$ for $t\geq t_4\geq t_3$. From this we can observe that there exists K_1 such that $x(\sigma(r,\xi))\geq K_1>0$. Thus from (2.16)

$$\int_{t_2}^{\infty} \left[\int_{t_2}^{r} \frac{du}{b(u)} \left(\int_{u}^{r} \frac{dv}{a(v)} \right) \right] \int_{a}^{b} p(r,\xi) K_1 d\xi dr \le y(t_3).$$

From the previous equation, we have

$$\int_{t_3}^{\infty} \Big[\int_{t_3}^r \frac{du}{b(u)} \Big(\int_u^r \frac{dv}{a(v)} \Big) \Big] \int_a^b p(r,\xi) d\xi dr < \infty.$$

This is a contradiction to (2.2). Therefore, $\lim_{t\to\infty} [x(t)+c(t)x(t-\tau)]=0$. Then $\lim_{t\to\infty} x(t) = 0$, so the proof is complete.

Example 2.2. Consider the functional differential equation

$$[x(t) + \frac{1}{2}x(t-\pi)]''' + \int_{1/5\pi}^{2/7\pi} \frac{(2-e^{-\pi})e^{1/\xi}}{\xi^2} x(t-\frac{1}{\xi})d\xi = 0$$

so that a(t) = b(t) = 1, $c(t) = \frac{1}{2}$, $\tau = \pi$, $p(t,\xi) = \frac{(2-e^{-\pi})e^{1/\xi}}{\xi^2}$, $\sigma(t,\xi) = t - \frac{1}{\xi}$, $\sigma(t)=\sigma(t,b)=t-\frac{7\pi}{2},\ \rho(s)=s,\ H(t,s)=(t-s)^2,\ h(t,s)=[2-\frac{(t-s)}{s}].$ We can see that the conditions of Theorem 2.1 are satisfied. It is easy to verify

that $x(t) = e^t \sin t$ is a solution of this problem, which is oscillatory.

Theorem 2.3. Suppose that the conditions of Theorem 2.1, and condition (2.2) holds, and

$$0 < \inf_{s > t_0} \left[\liminf_{t \to \infty} \frac{H(t, s)}{H(t, t_0)} \right] \le \infty, \tag{2.17}$$

$$\limsup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t \frac{a(s)\rho(s)b(\sigma(s, a))h^2(t, s)}{[\sigma(s, a) - T)]\sigma'(s, a)} ds < \infty. \tag{2.18}$$

If there exists a function $\phi(t) \in C([t_0, \infty), R)$ satisfying

$$\limsup_{t \to \infty} \frac{1}{H(t,u)} \int_{u}^{t} \left[H(t,s)\rho(s) \int_{a}^{b} p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi - \frac{a(s)\rho(s)b(\sigma(s,a))h^{2}(t,s)}{4[\sigma(s,a) - T)]\sigma'(s,a)} \right] ds$$

$$\geq \phi(u), \quad u \geq t_{0}, \tag{2.19}$$

and

$$\limsup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t \frac{[\sigma(u, a) - T]\sigma'(u, a)\phi_+^2(u)du}{a(u)\rho(u)b(\sigma'(u, a))} = \infty,$$

$$\phi_+(u) = \max_{u > t_0} \{\phi(u), 0\}.$$
(2.20)

Then every solution of functional differential equation (1.1) is oscillatory or tends to zero as $t \to \infty$.

Proof. Assume, for the sake of contradiction, that equation (1.1) has positive solution, say x(t) > 0, $t \ge t_0$. Then, proceeding as in the proof of Theorem 2.1, we obtain

$$\begin{split} &\frac{1}{H(t,u)} \int_{u}^{t} \left[H(t,s)\rho(s) \int_{a}^{b} p(s,\xi) [1-c(\sigma(s,\xi))] d\xi - \frac{a(s)\rho(s)b(\sigma(s,a))h^{2}(t,s)}{4[\sigma(s,a)-T]\sigma'(s,a)} \right] ds \\ &\leq z(u) - \frac{1}{H(t,u)} \int_{u}^{t} \left[\sqrt{\frac{H(t,s)[\sigma(s,a)-T]\sigma'(s,a)}{a(s)b(\sigma(s,a))\rho(s)}} z(s) \right. \\ &\left. + \frac{\sqrt{a(s)b(\sigma(s,a))\rho(s)}h(t,s)}{2\sqrt{[\sigma(s,a)-T]\sigma'(s,a)}} \right]^{2} ds, \end{split}$$

 $t>u\geq t_1\geq t_0$. Thus taking upper limit as $t\to\infty$ and using (2.19), we have

$$z(u) \ge \phi(u) + \liminf_{t \to \infty} \frac{1}{H(t, u)} \int_u^t \left[\sqrt{\frac{H(t, s)[\sigma(s, a) - T]\sigma'(s, a)}{a(s)b(\sigma(s, a))\rho(s)}} z(s) \right]$$

$$+ \ \frac{\sqrt{a(s)b(\sigma(s,a))\rho(s)}h(t,s)}{2\sqrt{[\sigma(s,a)-T]\sigma'(s,a)}} \Big]^2 ds.$$

Then from the last inequality we see that $z(u) \geq \phi(u)$, and

$$\lim_{t \to \infty} \inf \frac{1}{H(t,u)} \int_{u}^{t} \left[\sqrt{\frac{H(t,s)[\sigma(s,a) - T]\sigma'(s,a)}{a(s)b(\sigma(s,a))\rho(s)}} z(s) \right. \\
\left. + \frac{\sqrt{a(s)b(\sigma(s,a))\rho(s)}h(t,s)}{2\sqrt{[\sigma(s,a) - T]\sigma'(s,a)}} \right]^{2} ds \\
\leq z(u) - \phi(u) = M < \infty, \tag{2.21}$$

where M is a constant. On the other hand, we have

$$\lim_{t \to \infty} \inf \frac{1}{H(t,t_1)} \int_{t_1}^{t} \left[\sqrt{\frac{H(t,s)[\sigma(s,a) - T]\sigma'(s,a)}{a(s)b(\sigma(s,a))\rho(s)}} z(s) \right] \\
+ \frac{\sqrt{a(s)b(\sigma(s,a))\rho(s)}h(t,s)}{2\sqrt{[\sigma(s,a) - T]\sigma'(s,a)}} \right]^{2} ds \\
\geq \lim_{t \to \infty} \inf \left[\frac{1}{H(t,t_1)} \int_{t_1}^{t} \frac{H(t,s)[\sigma(s,a) - T]\sigma'(s,a)z^{2}(s)}{a(s)b(\sigma(s,a))\rho(s)} ds \right] \\
+ \frac{1}{H(t,t_1)} \int_{t_1}^{t} \sqrt{H(t,s)}h(t,s)z(s) ds , \quad t > t_1. \tag{2.22}$$

Let

$$v_1(t) = \frac{1}{H(t,t_1)} \int_{t_1}^t \frac{H(t,s)[\sigma(s,a) - T]\sigma'(s,a)z^2(s)}{a(s)b(\sigma(s,a))\rho(s)} ds, \tag{2.23}$$

and

$$v_2(t) = \frac{1}{H(t,t_1)} \int_{t_1}^t \sqrt{H(t,s)} h(t,s) z(s) ds.$$
 (2.24)

Thus, from (2.21) and (2.22), we see that

$$\liminf_{t \to \infty} [v_1(t) + v_2(t)] < \infty.$$
(2.25)

Now we want to show that

$$\int_{t_1}^{\infty} \frac{[\sigma(s,a) - T]\sigma'(s,a)z^2(s)}{a(s)\rho(s)b(\sigma(s,a))} ds < \infty, \quad t > t_1.$$

$$(2.26)$$

Assume that

$$\int_{t_1}^{\infty} \frac{[\sigma(s,a) - T]\sigma'(s,a)z^2(s)}{a(s)\rho(s)b(\sigma(s,a))} ds = \infty, \quad t > t_1.$$

$$(2.27)$$

Because of (2.17), there exists a constant L > 0 such that

$$\inf_{s \ge t_0} \left[\liminf_{t \to \infty} \frac{H(t,s)}{H(t,t_0)} \right] > L > 0.$$
 (2.28)

From (2.27) one can see that for any positive number $\lambda > 0$, there exists a $T > t_1$ such that

$$\int_{t_1}^t \frac{[\sigma(s,a) - T]\sigma'(s,a)z^2(s)}{a(s)\rho(s)b(\sigma(s,a))} ds \ge \frac{\lambda}{L}, \quad t > T.$$
 (2.29)

On the other hand,

$$v_{1}(t) = \frac{1}{H(t,t_{1})} \int_{t_{1}}^{t} \frac{H(t,s)[\sigma(s,a) - T]\sigma'(s,a)z^{2}(s)}{a(s)b(\sigma(s,a))\rho(s)} ds$$

$$= \frac{1}{H(t,t_{1})} \int_{t_{1}}^{t} H(t,s) d \left[\int_{t_{1}}^{s} \frac{[\sigma(u,a) - T]\sigma'(u,a)z^{2}(u)}{a(u)b(\sigma(u,a))\rho(u)} \right] ds$$

$$= \frac{1}{H(t,t_{1})} \int_{t_{1}}^{t} \left[\int_{t_{1}}^{s} \frac{[\sigma(u,a) - T]\sigma'(u,a)z^{2}(u)}{a(u)b(\sigma(u,a))\rho(u)} du \right] \left[-\frac{\partial H(t,s)}{\partial s} \right] ds$$

$$\geq \frac{1}{H(t,t_{1})} \int_{T}^{t} \left[\int_{t_{1}}^{s} \frac{[\sigma(u,a) - T]\sigma'(u,a)z^{2}(u)}{a(u)b(\sigma(u,a))\rho(u)} du \right] \left[-\frac{\partial H(t,s)}{\partial s} \right] ds$$

$$\geq \frac{\lambda}{LH(t,t_{1})} \int_{T}^{t} \left[-\frac{\partial H(t,s)}{\partial s} \right] ds$$

$$= \frac{\lambda}{L} \frac{H(t,T)}{H(t,t_{1})} \geq \frac{\lambda}{L} \frac{H(t,T)}{H(t,t_{0})}, \quad t \geq T > t_{1}.$$

$$(2.30)$$

Moreover, it follows from (2.28) that

$$\liminf_{t\to\infty}\frac{H(t,s)}{H(t,t_0)}>L>0,\quad s\geq t_0.$$

Therefore, there exists a $t_2 > T$ such that

$$\frac{H(t,T)}{H(t,t_0)} \ge L, \quad t \ge t_2. \tag{2.31}$$

It follows from (2.30) and (2.31) that $v_1(t) \ge \lambda, \ t \ge t_2$. Since λ is arbitrary , we have

$$\lim_{t \to \infty} v_1(t) = \infty. \tag{2.32}$$

Moreover from (2.25), there exists a convergence subsequence $\{t_n\}_1^{\infty}$ on $[t_1, \infty)$ such that $\lim_{n\to\infty} t_n = \infty$ and

$$\lim_{n \to \infty} [v_1(t_n) + v_2(t_n)] = \liminf_{t \to \infty} [v_1(t) + v_2(t)] < \infty.$$
 (2.33)

As a result of (2.33) there exists a positive integer n_1 and constant k such that

$$v_1(t_n) + v_2(t_n) < k, \quad n > n_1$$

and from (2.32), we have

$$\lim_{n \to \infty} v_1(t_n) = \infty. \tag{2.34}$$

Thus (2.33) and (2.34) will give

$$\lim_{n \to \infty} v_2(t_n) = -\infty. \tag{2.35}$$

Moreover, for any $\epsilon \in (0,1)$, there exists a positive integer n_2 such that

$$\frac{v_2(t_n)}{v_1(t_n)} + 1 < \epsilon, \quad n > n_2;$$

then

$$\frac{v_2(t_n)}{v_1(t_n)} < \epsilon - 1 < 0, \quad n > n_2. \tag{2.36}$$

Thus (2.35) and (2.36) give

$$\lim_{n \to \infty} \frac{v_2(t_n)}{v_1(t_n)} v_2(t_n) = \infty.$$
 (2.37)

By using the Cauchy-Schwartz inequality, we obtain

$$\begin{split} 0 &\leq v_2^2(t_n) = \frac{1}{H^2(t_n,t_1)} \Big[\int_{t_1}^{t_n} \sqrt{H(t_n,s)} h(t_n,s) z(s) ds \Big]^2 \\ &\leq \Big[\frac{1}{H(t_n,t_1)} \int_{t_1}^{t_n} \frac{H(t_n,s) [\sigma(s,a) - T] \sigma'(s,a)}{a(s) b(\sigma(s,a)) \rho(s)} z^2(s) ds \Big] \\ &\qquad \Big[\frac{1}{H(t_n,t_1)} \int_{t_1}^{t_n} \frac{a(s) \rho(s) b(\sigma(s,a)) h^2(t_n,s)}{[\sigma(s,a) - T] \sigma'(s,a)} ds \Big] \\ &= v_1(t_n) \Big[\frac{1}{H(t_n,t_1)} \int_{t_1}^{t_n} \frac{a(s) \rho(s) b(\sigma(s,a)) h^2(t_n,s)}{[\sigma(s,a) - T] \sigma'(s,a)} ds \Big], \quad t \geq t_1 \end{split}$$

and

$$\frac{v_2^2(t_n)}{v_1(t_n)} \le \left[\frac{1}{H(t_n, t_1)} \int_{t_1}^{t_n} \frac{a(s)\rho(s)b(\sigma(s, a))h^2(t_n, s)}{[\sigma(s, a) - T]\sigma'(s, a)} ds \right]. \tag{2.38}$$

Using (2.31), we see that

$$\frac{1}{H(t_n, t_1)} \le \frac{1}{H(t_n, T)} = \frac{H(t_n, t_0)}{H(t_n, T)} \frac{1}{H(t_n, t_0)} \le \frac{1}{LH(t_n, t_0)}, \quad T > t_1.$$
 (2.39)

Therefore, we see from (2.38) and (2.39) that

$$\frac{v_2^2(t_n)}{v_1(t_n)} \le \frac{1}{LH(t_n, t_0)} \int_{t_1}^{t_n} \frac{a(s)\rho(s)b(\sigma(s, a))h^2(t_n, s)}{[\sigma(s, a) - T]\sigma'(s, a)} ds. \tag{2.40}$$

Then, it follows from (2.37) and (2.40) that

$$\lim_{n \to \infty} \frac{1}{H(t_n, t_0)} \int_{t_0}^{t_n} \frac{a(s)\rho(s)b(\sigma(s, a))h^2(t_n, s)}{[\sigma(s, a) - T]\sigma'(s, a)} ds = \infty,$$

and then

$$\limsup_{t\to\infty}\frac{1}{H(t,t_0)}\int_{t_0}^t\frac{a(s)\rho(s)b(\sigma(s,a))h^2(t,s)}{[\sigma(s,a)-T]\sigma'(s,a)}ds=\infty,$$

which contradicts (2.18). Thus, using $z(s) > \phi(s)$ with (2.26), we obtain

$$\int_{t_1}^{\infty} \frac{[\sigma(s,a)-T]\sigma'(s,a)\phi_+^2(s)ds}{a(s)\rho(s)b(\sigma'(s,a))} \leq \int_{t_1}^{\infty} \frac{[\sigma(s,a)-T]\sigma'(s,a)z^2(s)ds}{a(s)\rho(s)b(\sigma'(s,a))} < \infty,$$

which leads to a contradiction to (2.20). This completes the proof.

Theorem 2.4. Suppose that the conditions of Theorem 2.1, and conditions (2.2), (2.17), (2.20) hold, in addition to

$$\liminf_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t H(t, s) \rho(s) \int_a^b p(s, \xi) [1 - c(\sigma(s, \xi))] d\xi ds < \infty.$$
 (2.41)

If there exists a function $\phi(t) \in C([t_0, \infty), R)$ satisfying

$$\lim_{t \to \infty} \inf \frac{1}{H(t,u)} \int_{u}^{t} \left[H(t,s)\rho(s) \int_{a}^{b} p(s,\xi) [1 - c(\sigma(s,\xi))] d\xi - \frac{a(s)\rho(s)b(\sigma(s,a))h^{2}(t,s)}{4[\sigma(s,a) - T)]\sigma'(s,a)} \right] ds$$

$$\geq \phi(u), \quad u \geq t_{0}, \tag{2.42}$$

then every solution of (1.1) is oscillatory or tends to zero as $t \to \infty$.

Proof. Assume, for the sake of contradiction, that equation (1.1) has positive solution, say x(t) > 0, $t \ge t_0$. It follows from (2.42) that

$$\phi(t_{0}) \leq \liminf_{t \to \infty} \frac{1}{H(t, t_{0})} \int_{t_{0}}^{t} \left[H(t, s)\rho(s) \int_{a}^{b} p(s, \xi) [1 - c(\sigma(s, \xi))] d\xi \right]
- \frac{a(s)\rho(s)b(\sigma(s, a))h^{2}(t, s)}{4[\sigma(s, a) - T]\sigma'(s, a)} ds
\leq \liminf_{t \to \infty} \frac{1}{H(t, t_{0})} \int_{t_{0}}^{t} \left[H(t, s)\rho(s) \int_{a}^{b} p(s, \xi) [1 - c(\sigma(s, \xi))] d\xi \right] ds
- \lim_{t \to \infty} \sup_{t \to \infty} \frac{1}{H(t, t_{0})} \int_{t_{0}}^{t} \frac{a(s)\rho(s)b(\sigma(s, a))h^{2}(t, s)}{4[\sigma(s, a) - T]\sigma'(s, a)} ds.$$
(2.43)

Then, from (2.41) and (2.43)

$$\limsup_{t\to\infty}\frac{1}{H(t,t_0)}\int_{t_0}^t\frac{a(s)\rho(s)b(\sigma(s,a))h^2(t,s)}{4[\sigma(s,a)-T]\sigma'(s,a)}ds<\infty.$$

Thus (2.18) holds in Theorem 2.3. Since the remaining part of the proof is similar to the proof of Theorem 2.3, it is omitted. \Box

References

- R. Agarwal and S. Grace; Interval criteria for oscillation of second order half-linear ordinary differential equations, Oscillation of third order nonlinear differential equations with and without delay, Func. Differ. Eq. 1-2 (2002), 3-16.
- [2] T. Candan and R. S. Dahiya; Oscillation of third order nonlinear differential equations with and without delay, *Int. J. Differ. Equ. and Appl.* 4(2) (2001), 125-139.
- [3] T. Candan and R. S. Dahiya; Oscillation of third order functional differential equations with delay, Electron. J. Differ. Equ. Conference 10 (2003), 79-88.
- [4] R. S. Dahiya; Oscillation of third order differential equations with and without delay, Differential Equations and Nonlinear Mechanics. 528 (2001), 75-87.
- [5] I. Györi and G. Ladas; Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford (1991).
- [6] G. S. Ladde, V. Lakshmikantham and B. G. Zhang; Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, Inc. (1987).
- [7] V. Sree Hari Rao and R. S. Dahiya; Properties of solutions of a class of third-order linear differential equations, Period. Math. Hungarica 20 (3) (1989), 177-184.
- [8] A. S. Tantawy; Oscillation of Third and Higher Order Functional Differential Equations, Ph.D Thesis, ISU (1989).
- [9] P. Waltman; Oscillation criteria for third-order nonlinear differential equations, Pasific J. Math. 18 (1966), 385-389.
- [10] A. Zafer and R. S. Dahiya; Oscillatory and Asymptotic Behavior of Solutions of Third Order Delay Differential Equations With Forcing Terms, *Differential Equations and Dynamical Systems*. 1(2), (1993) 123-136.

Tuncay Candan

Department of Mathematics, Faculty of Art and Science, Niğde University, Niğde, 51100, Turkey

E-mail address: tcandan@nigde.edu.tr

Rajbir S. Dahiya

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IA 50011, USA

 $E\text{-}mail\ address{:}\ \mathtt{rdahiya@iastate.edu}$